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Abstract: Reverse electrodialysis is a promising membrane technology to generate energy from
controlled mixing of water streams of different salinities. Electrical potentials generate on the ion
exchange membranes (IEMs) when selective transport of cations and anions across the membranes
driven by concentration difference. The accurate determination of the potentials developed on
the IEMs is critical to fairly assess the feasibility of the technology. The Nernst–Planck–Poisson
(NPP) equations for IEMs (the membranes with fixed charge) were solved numerically with the
boundary updating scheme. The validity of this numerical method was verified by the identical
values of Donnan potential obtained with the well-established analytical methods. The suitability
and applicability of the classic Teorell–Meyer–Siever (TMS) model were assessed by comparison to
the simulation results from the numerical method.

Keywords: membrane potential; reverse electrodialysis; ion exchange membrane; Nernst-Planck-
Poisson equations; numerical solution; boundary updating scheme

1. Introduction

Salinity gradient energy (SGE) is a type of clean and renewable energy embodied
in water streams of different salinities [1,2]. The amount of SGE is estimated at about
2.6 terawatts globally or approximately 20% of the current worldwide energy consumption
rate [3]. Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are currently
under investigation as two promising technologies to harvest SGE [3–6]. In PRO process, a
semipermeable membrane is employed to separate two solutions of different salt concen-
tration. Driven by osmotic pressure, water transports from low concentration side to high
concentration side and builds up a hydraulic pressure there. The controlled release of the
pressurized water from the high concentration side can generate energy by turning a hydro
turbine. The working principle, process features, and technical and economic feasibilities
of PRO have been extensively studied.

RED, which is the other promising technology that can be used to harvest SGE, is
also a membrane-based process. Instead of semipermeable membranes, ion exchange
membranes (IEMs) are used in RED processes [7–11]. IEMs are permselective membranes
due to the fixed charges on membrane materials. There are two types of IEMs according to
the fixed charges carried by the membranes. Cation exchange membranes (CEMs) carry
negative fixed charges and only allow cations to pass while anion exchange membranes
(AEMs) carry positive fixed charges and only allow anion to pass. When a CEM and an
AEM are arranged on two sides of a concentrated flow, sandwiched with two diluted flows,
cations and anions in the concentrated flow would move through membranes to opposite
directions. As a result, electrical potentials develop on the membranes. Electrical energy
can be produced when the potentials are applied to an external load.

Development of potential on IEMs is a very complex phenomenon that is affected by
many factors, such as properties of IEMs, diffusivities of various ions, and configuration of
the RED cells. Although it is well established that membrane potential is governed by the
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Poisson equation coupled with the Nernst–Planck equation for concentration distributions
of ions along the membrane thickness, seeking a rigorous solution of the Nernst–Planck–
Poisson (NPP) equations remains a serious challenge in the field. The commonly used
Nernst equation [5,6] and Teorell–Meyer–Siever (TMS) model [12–14] for the potential on
IEMs are at best approximations or surrogates for the true membrane potential because
both models are obtained with suspicious simplifications and assumptions [15,16].

An optional method for the membrane potential is to directly seek numerical solutions
of the NPP equations without the commonly used simplifications and assumptions [17–20].
However, new challenge emerges that the potentials and ion concentrations at the mem-
brane surfaces cannot be assigned a priori in the rigorous formulation of the problem [21,22].
Inappropriately imposed boundary conditions were often used in the numerical solutions
in previous studies until we recently developed a boundary updating scheme to handle
this challenge successfully [23]. With this scheme, the NPP equations for a membrane of
no-fixed charge was rigorously solved for the first time under the true boundary conditions.

The main objective of this article is to apply the boundary updating scheme to deter-
mine the potential developed on the membranes with fixed charges. Numerical solutions of
the NPP equations for IEMs with various charge density were obtained and the suitability
and accuracy of the numerical method were discussed. The impact of charge density of
IEMs on the total potential and potential components were studied. Finally, the classic TMS
model was compared and assessed for its applicability and limitations with the numerical
method.

2. Governing Equations and Numerical Methods
2.1. Governing Equations

The problem under consideration is to determine the membrane potential at steady
state on an IEM as schematically shown in Figure 1. The IEM of fixed charge density X
separates two solutions of a monovalent salt with concentrations Cb0 and CbL, respectively.
There is a transition layer between the membrane surface and the bulk solution on each
side of the membrane. While electroneutrality is always maintained in the bulk solutions,
charge is usually unbalanced in the transition layers because the attraction of counter-
ions and repulsion of co-ions by the charge on the membrane. As a result, both ion
concentrations and potential on the membrane surfaces differ from those in the bulk
solutions, as schematically described by the lines for concentrations and potential in
Figure 1. There is only a concentration profile for one ion in the figure for the sake of clarity.
The concentration profile for the other ion would be different in the transition layers and
on the membrane.
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Figure 1. Schematic of ion transport across an IEM that separates two solutions of different electrolyte
concentration. The profiles of salt concentration and potential are schematically presented.
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The ion concentrations on a membrane are governed by the Nernst–Planck Equation (1):

dCi
dt

= Di
d2Ci
dx2 +

DiziF
RT

d
dx

(
dψ

dx
Ci

)
(1)

where Ci is the concentration of ion i, Di is the diffusion coefficient of ion i, x is the spatial
coordinate perpendicular to the membrane, zi is the valance of ion i, F is the Faraday
constant, R is the gas constant, and ψ is the potential. Convection term was not considered
in Equation (1) because no water flow across the membrane was assumed. The potential
on the membrane is then governed by Poisson equation:

d2ψ

dx2 = − F
ε

(
X + ∑

i
ziCi

)
(2)

where ε is the permittivity of the membrane material, and X is the fixed charge density.
Please be reminded that the variable X can take a positive value for AEMs or a negative
value for CEMs.

The boundary conditions for the NPP equations in the problem depicted in Figure 1
cannot be specified a priori. There is a dilemma between the boundary conditions and the
final solutions of the equations. The ion concentrations and potential on the membrane
surfaces are strongly dependent on the free charge developed on the membrane. However,
the free charge on the membrane can only be known after the equations have been solved
with the specified boundary conditions. We will handle this dilemma with the boundary
updating scheme described below.

2.2. Boundary Updating Scheme

The boundary updating scheme was initially developed in one of our previous pa-
pers [23]. For convenience of readers, a more concise description of the method is provided
here. The scheme starts with a state of the membrane for which the boundary conditions
can be easily specified. For example, there is no potential on a neutral membrane (referring
to the bulk solutions) and the ion concentrations at the membrane surfaces are equal to the
bulk solutions, i.e.:

Ci0 = Cib0 (3)

CiL = CibL (4)

ψ0 = 0 (5)

dψ

dx

∣∣∣∣
x=L

= 0 (6)

where Ci0 and CiL are the concentrations of ion i on the left surface and right surface of the
membrane, respectively, Cib0 and CibL are the concentrations of ion i in the bulk solutions
on the left and right sides of the membrane, respectively, and ψ0 is the potential on the
left surface of the membrane, and dψ

dx

∣∣∣
x=L

is the derivative of membrane potential at the
right surface of the membrane. Ion concentrations on the membrane surfaces are equal to
the bulk concentrations because there are not electrical forces on the neutral membrane to
repel co-ions and to attract counter-ions.

The governing Equations (1) and (2) with the boundary conditions Equations (3)–(6)
completely define the membrane transport problem and can be solved with common
numerical methods. The Crank–Nicolson method and central difference method are used
for the Nernst–Planck equation and Poisson equation, respectively. From the numerical
solutions, the ion fluxes at the two boundaries can be determined:

Ji|0 or L = −Di

(
dCi
dx

+
F

RT
dψ

dx
ziCi

)∣∣∣∣
0 or L

(7)
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where Ji is the flux of ion i. The derivatives of concentration and potential at two membrane
surfaces are calculated from the numerical solutions.

The cumulative net charges in the two transition layers can be calculated with:

Q0 = Q0
′ −∑

i
Fzi Ji|0∆t (8)

and
QL = QL

′ + ∑
i

Fzi Ji|L∆t (9)

where Q0 and QL are the cumulative charges in the transient layers on left and right sides
of the membrane, respectively, Q0

′ and QL
′ are the cumulative charges at the previous time

step in the conresping transient layers, respectively, and ∆t is timestep size. At the first
timestep, Q0

′ = 0 and QL
′ = 0 for the initially neutral membrane.

The boundary conditions at any timestep are updated with the cumulative charges in
the transition layers by:

Ci0 = Cib0e
zi Fλ0
RTε Q0 (10)

CiL = CibLe
zi FλL

RTε QL (11)

ψ0 = −λ0

ε
Q0 (12)

dψ

dx

∣∣∣∣
x=L

=
1
ε

QL (13)

where λ0 and λL are the Debye lengths in the solutions on the left and right sides of the
membrane, which are calculated by:

λ0 =

√
εRT

∑i F2z2
i Cib0

(14)

λL =

√
εRT

∑i F2z2
i CibL

(15)

The numerical solution of the NPP equations can be obtained for the next timestep
with the updated boundary conditions. The above procedure is repeated with the newly
obtained numerical solution to update the boundary conditions for the next timestep until
the steady state is reached, which is indicated by the null current condition:

∑
i

zi Ji = 0 (16)

With boundary updating scheme, the concentration boundary conditions are always
consistent with potential boundary conditions at any time step. Therefore, the true solution
of NPP equations at the steady state is guaranteed.

2.3. Calculation of Membrane Potentials

With the numerical solution at the steady state, the ion fluxes can be calculated by:

Ji = −Di

(
dCi
dx

+
F

RT
dψ

dx
ziCi

)
(17)

The total membrane potential can be calculated with:

ψT = ∆ψ0 + ∆ψm + ∆ψL (18)
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where ψT is the total potential of the membrane, ∆ψm is the potential difference across the
membrane thickness, and ∆ψ0 and ∆ψL are the potential differences across the transition
layers on the two sides of the membrane, respectively. The potential difference across the
membrane thickness is available from the numerical solution of the Poisson equation. The
two potential differences across the transition layers can be calculated from the cumulated
charges in the layers with:

∆ψ0 = −λ0

ε
Q0 (19)

∆ψL =
λL
ε

QL (20)

3. Simulations and Discussion

A C++ program for the numerical procedure described above was developed on
Visual Studio 2019 for calculation of the potential on IEMs under various conditions. All
simulations reported below were done at a PC with CPU of Intel i7-9700 at 3.00 Ghz, on
which a numerical solution can be obtained in a few seconds. Unless other specified, the
parameters listed in Table 1 were used in the simulations.

Table 1. Default parameter values used in numerical simulations.

Parameter Symbol Unit Value

Membrane permittivity ε F/m 6.92 × 10−10

Membrane thickness L m 5 × 10−8

Temperature T K 298.15
Time step ∆t s 10−9

Number of spatial steps N 1000
Number of ions 2

Valence of cation z+ +1
Valence of anion z− −1

Diffusivity of cation D+ m2/s 1 × 10−10

Diffusivity of anion D− m2/s 2 × 10−10

Fixed charge X mol/m3 10
Concentration on the left side Cb0 mol/m3 10

Concentration on the right side CbL mol/m3 5

3.1. The Effectiveness of Boundary Updating Schemne

The numerical solution of NPP equations for parameters given in Table 1 is presented
in Figure 2. The membrane in this case is an AEM because of the positive fixed charge on it.
The numerical solution for a membrane of no-fixed-charge for the same parameters is also
shown in the figure. Figure 2a shows that concentrations of both cations and anions at the
membrane surfaces (boundaries) differ significantly from the bulk concentrations, which
are 10 mol/m3 and 5 mol/m3, respectively, in the solutions on the left and right sides of
the membrane. The different cation and anion concentrations at the membrane surfaces
are an essential feature of ion transport across the membranes, which is especially true for
IEMs. The boundary updating scheme is particularly effective for the IEMs because of the
bigger differences between cation and anion concentrations at the surfaces than those for
the membranes of no-fixed-charge.

The anion concentration is higher than the cation concentration throughout the entire
membrane thickness because of the positive fixed charge on the AEM. The electroneutrality
can only be roughly maintained in a middle section of the membrane thickness, i.e., the
difference between anion concentration and cation concentration is nearly equal to the
fixed positive charge of the AEM. The lower anion concentrations and higher cation
concentrations (unbalanced charges) in the regions near the membrane surfaces are the
results of ion transfer between the membrane and solutions. The distributions of ions for the
membrane of no-fixed-charge are relatively simple. Concentrations of anions and cations
are equal through almost the entire membrane thickness with exceptions in two narrow
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regions near the membrane surfaces. The concentration differences cannot be clearly seen
for the membrane of no-fixed-charge in the figure. Interested readers can find more details
about the distributions of ion concentrations on the membrane of no-fixed-charge in one of
our previous papers [23].
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Figure 2. (a) Concentration distributions and (b) potential distributions across the membrane thick-
ness.

The corresponding potential distributions are presented in Figure 2b. The potential on
the membrane of no-fixed-charge decreases monotonically from the left surface to the right
surface. The potential on the AEM behaves more complexly than that on the membrane
of no-fixed-charge. The middle section of potential on the AEM declines with a rate like
that on the membrane of no-fixed- charge. This behavior of potential is obviously due
to the differential diffusion of ions with different mobilities. A jump in an initial region
and a drop in a final region of the potential on the AEM can be attributed to the repulsion
of cations and the attraction of anions by the fixed positive charge on the AEM, i.e., the
Donnan effect of the fixed charge on the membrane. The potentials at the membrane
surfaces were again determined by the boundary updating scheme, which are consistent
with the ion concentrations at the membrane surfaces. Such rigorous numerical solutions
of NPP equations with the well-defined consistent boundary conditions have not been
obtained before with any methods other than the boundary updating scheme.

3.2. Impact of the Charge Density of IEMs

Potential distributions along the membrane thickness for IEMs with different charge
densities are presented in Figure 3. The thick line in the middle presents the potential
profile on the membrane of no-fixed-charge. The potentials for AEMs are all above the
line for the uncharged membrane while those for CEMs are below. This feature can be
attributed to the Donnan effect of the fixed charge on the IEMs. The parallel middle sections
of all the potential lines decline from the left to the right reflect impact of the differential
diffusion of cations and anions on the potential profiles.

Another useful feature of the boundary updating scheme is that the potential dif-
ferences across the transition layers are determined simultaneously with the numerical
solution of the NPP equations. The potential differences across the two transition layers
and across the membrane calculated with parameters in Table 1 are presented in Figure 4,
together with the total membrane potential. The potential difference on the membrane ∆φm
varies in a range of ~5 mV under the simulation conditions. The potential difference across
the left transition layer ∆φ0 varies in a range that is more than doubled the range for the
membrane potential (~10 mV). The potential difference across the right transition layer ∆φL
varies in a range of about 25 mV. Under the simulation conditions, the potential differences
in the transition layers are primarily controlled by Donnan potential. The larger absolute
value of the potential difference in the right transition layer is reasonable because Donnan
potential of the same fixed charge density is greater in the solution of lower concentration.
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The total potential difference of the membrane ∆φT decreases monotonically throughout
the entire range of charge density.
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Ion fluxes at various charge densities are listed in Table 2 with the corresponding
membrane potentials and total potentials. The impact of the charge density on flux is much
more moderate than on the potentials. Ion flux changes less than 50% in magnitude for
the range of charge density used in the simulations. It clearly demonstrates that the ion
flux through the membrane is largely determined by the concentration difference across
the membrane with relatively minor impact of charge density on the membrane. This
observation is reasonable because concentration difference across the membrane is the
original driving force for ion transport. The fixed charge density on the membrane can
only modify the ratio of cation and anion concentrations inside the membrane.
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Table 2. Ion fluxes and potentials at different charge density.

Charge Density (mol/m3) ∆φm (mV) ∆φT (mV) Flux (mol/m2·s)

−10.00 −1.74 4.61 1.36 × 10−2

−7.50 −2.58 2.21 1.40 × 10−2

−5.00 −3.57 −0.45 1.41 × 10−2

−2.50 −4.58 −3.24 1.39 × 10−2

0.00 −5.46 −5.94 1.33 × 10−2

2.50 −6.09 −8.36 1.25 × 10−2

5.00 −6.38 −10.37 1.15 × 10−2

7.50 −6.38 −11.97 1.05 × 10−2

10.00 −6.13 −13.20 9.55 × 10−3

Ion flux increases as the charge density decreases in CEMs and maximizes at charge
density of −5 mol/m3. Ion flux then declines as charge density further decrease to zero
in CEMs and as charge density increase in AEMs. In this example, because cations have
smaller mobility than the anions, the appropriate increase in cation concentration would
improve ion flux due to the zero current condition at steady state. The positive fixed
charge in the AEMs will reduce cation concentration and therefore further reduce the
capacity of ion transport. On the other hand, the negative fixed charge of the membrane
can increase cation concentration in the CEMs so that the capacity of ion transport can
be increased. Of course, the anion concentration would be reduced in the CEMs at the
same time. Because of the larger mobility of anions, the impact of the reduced anion
concentration in a certain range on ion flux would be over-compensated by the benefit of
the increased cation concentration. Beyond this range, anion would become the limiting
factor for ion transport. Further decrease in anion concentration would reduce the ion flux.

3.3. Comparison of Donnan Potentials Determinded Analytically and Numerically

As a demonstration of the boundary updating scheme, Donnan potential was calcu-
lated by solving the NPP equations with solutions of equal concentrations on both sides
of an AEM. Concentrations Cb0 = CbL = 10 mol/m3 and X = 10 mol/m3 were used in
the simulation. The distributions of ion concentrations and potential at the steady state
from a numerical solution is presented in Figure 5. Anion concentration is higher than
cation concentration throughout the membrane thickness. In a middle section of membrane
thickness (~10–40 nm), electroneutrality is roughly satisfied because difference between
anions and cations is about equal to the fixed charge density on the membrane. The results
also show that there are some ion exchanges between the initially neutral membrane and
solutions. As a result, lower anion concentration and higher cation concentration compared
to those in the middle section were observed in regions near the membrane surfaces. The
unbalanced charges in these regions are the cause for the Donnan potential. The boundary
updating scheme is capable to catch this subtle feature of the numerical solution for the
NPP equations. Potential distribution is also presented in Figure 5 for the AEM. The
potential increases inward from the membrane surfaces on the membrane. The value of the
plateau on the potential curve is the Donnan potential, which is 12.36 mV in this case.

Donnan potential for a membrane of a fixed change density X in contact with solution
of a monovalent salt can be calculated analytically by [14,24]:

∆ψD =
RT
F

ln
[

1
2C

(
X +

√
X2 + 4C2

)]
(21)

where ∆ψD is the Donnan potential and C is the salt concentration in the solution. Equation (21)
was derived with the electroneutrality assumption of the membrane. Donnan potentials
determined both numerically with our method and analytically with Equation (21) are
listed in Table 3. It is a good surprise to find that the two methods yield Donnan potentials
that are identical up to 3 effective digits! It is convincing evidence that the numerical
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method for membrane potential is very accurate. At the same time, it also shows that the
use of electroneutrality assumption to reach the analytical expression for Donnan potential
is acceptable though it is unphysical fundamentally.
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Table 3. Analytically and numerically calculated Donnan potentials.

X (mol/m3) Analytical Numerical Error (%)

−10.00 −12.363 −12.350 −0.105
−7.50 −9.422 −9.415 −0.070
−5.00 −6.358 −6.353 −0.074
−2.50 −3.203 −3.201 −0.066
2.50 3.203 3.201 −0.066
5.00 6.358 6.353 −0.074
7.50 9.422 9.415 −0.070
10.00 12.363 12.360 −0.024

3.4. The Applicability and Accuracy of TMS Model

Membrane potential on an IEM with monovalent salt solutions of different concen-
tration on two sides of the membrane can be calculated analytically with the classic TMS
model [14]:

∆ϕTMS =
RT
F

ln
CbL
Cb0

√
X2 + 4Cb0

2 + X√
X2 + 4CbL

2 + X
− RT

F
Uln

√
X2 + 4CbL

2 + UX√
X2 + 4Cb0

2 + UX
(22)

where U is the mobility coefficient that is defined as:

U =
D+ − D−
D+ + D−

(23)

where D+ and D− are the diffusion coefficients of cations and anions, respectively. The
potentials on an AEM calculated analytically with Equation (22) for varying charge density
are presented (as dots) in Figure 6. In the calculation, concentrations Cb0 = 10 mol/m3 and
CbL = 1 mol/m3 were employed on two sides of the membrane. The numerically calculated
membrane potentials under the same conditions are also presented (as lines) in Figure 6.
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The mobility coefficients are indicated on the graphs. The results for a CEM would produce
similar graphs as Figure 6 but with the mobility coefficients flipped on the figure.
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The mobility coefficients are indicated on the graphs.

Figure 6 shows that the membrane potentials from TMS model agree well with the
numerically calculated values when the ratio of X/Cb0 is smaller than 0.03 or greater than
30. However, there are significant discrepancies between the two values in the range of
0.03 < X/Cb0 < 30. The TMS potentials are systematically lower than the true membrane
potentials, with the biggest discrepancy at X/Cb0 = 1. For example, the TMS potential (8.71
mV) is only about 40% of the numerical potential (22.0 mV) for mobility coefficient of 0.9 at
X/Cb0 = 1.

TMS model is not a rigorous solution of the NPP equations because it is simply
impossible. The assumptions and simplifications [12,13] used to reach the analytical
solution would certainly cause some deviations from the true solution of the equations.
On the other hand, the numerical potentials can be taken as the true values because no
assumptions and simplifications are made in the solution seeking process. Furthermore,
the TMS model can be only used for limited cases where only two types of ions of equal
charges exist in solutions while the numerical method can be applied to the general cases
with multiple ions of various charges.

4. Conclusions

The potential of an IEM in RED can be rigorously calculated with the boundary
updating scheme. The validity and accuracy of the numerical method is strongly supported
by the identical Donnan potentials calculated with the well-established analytical method
and the numerical method presented in this study. It is demonstrated that the classic TMS
model tends to underestimate the membrane potentials systematically for IEMs with fixed
charge density in the intermediate range.
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