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Abstract: Activities and/or processes in different segments of the petroleum industry, including
upstream and downstream, generate aqueous waste streams containing oil and various contaminants
that require treatment/purification before release/reuse. Nanofiltration (NF) technology has been
approved as an efficient technology for treating wastewater streams from the petroleum industry.
The primary critical issues in an NF treatment process can be listed as mitigation of membrane
fouling; selection of appropriate pre-treatment process; and selection of a suitable, cost-effective,
non-hazardous cleaning strategy. In this study, NF separation mechanisms, membrane fabrica-
tion/modification, effective factors on NF performance, and fouling are briefly reviewed. Then,
a summary of recent NF treatment studies on various petroleum wastewaters and performance
evaluation is presented. Finally, based on the gaps identified in the field, the conclusions and future
perspectives are discussed.
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1. Introduction

Petroleum (crude oil and natural gas) is one of the world’s main energy sources; and it
is an essential provider for many other industries [1,2]. Water is used in different segments
of the petroleum industry including upstream and downstream for different applications
such as production, cooling, washing, processing, etc. [3]. The exploration and production
of petroleum, processing of hydrocarbons in refineries and petrochemical plants, and even
other activities like storage, transportation, and distribution of petroleum products [2,4,5],
can generate aqueous waste streams containing oil and various contaminants that require
treatment/purification before release/reuse. If not suitably treated, the oily wastewater
streams not only contaminates the environment and endangers water resources and human
health but also decreases the reuse capability of oil and water [2,6–15].

Produced water, water produced as a byproduct during the extraction of oil and
natural gas, from both oil and gas fields is the petroleum industry’s most massive waste
stream by volume [16,17]. It has a complex composition consisting of various organic
and inorganic compounds [18,19]. There are different approaches regarding the waste
management of produced water including (i) avoiding the production of water onto the
surface by polymer gels or downhole water separators; (ii) injecting into formations after
probable treatment to decrease fouling and bacterial growth; (iii) possible discharging to
the environment according to the discharge regulations; (iv) reusing within the petroleum
industry operations with minimal treatment; and (v) remarkable treatment for beneficial
uses [16,18,20].

In the petroleum industry, a range of wastewater treatment technologies, including
primary treatment processes such as physical and physicochemical processes; secondary
treatment processes such as suspended and/or attach growth biological processes; and
tertiary treatment processes such as sand filtration, membrane processes, ion exchange,
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chemical oxidation, advanced oxidation processes (AOPs), etc., have been utilized to treat
wastewater streams [2,11–14,21–24]. There is an increasing interest in designing the new
energy-efficient, cost-effective, reliable, resilient, and sustainable wastewater treatment
systems [25].

Pressure-driven membrane processes are the most commercial membrane filtration
technology [26]. Based on the membrane pore sizes, these processes have typically been
classified into microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse os-
mosis (RO) [27]. These membranes have usually been utilized to treat wastewater streams
from the petroleum industry by applying high pressure (high energy) across the mem-
branes [28–32]. In comparison with the conventional treatment techniques, the membrane
technology offer advantages such as effective removal of oil, compact design, less-necessity
for chemical additives [33–37] and stable effluent quality [36]. The feed streams with high
oil concentration cannot be treated by MF and UF due to their relatively larger membrane
pores, whereas NF and RO, with higher rejection in comparison with MF and UF, suffer
from high energy consumption [2,32,38–41]. In the tradeoff between the acceptable rejec-
tion and energy-consumption, NF has potential to replace RO membranes because of lower
operating pressure and/or energy consumption [27,42–45], relatively lower investment,
operation, and maintenance costs [44]. There is a need to comprehensively review treating
wastewater streams from the petroleum industry using the NF process. Thus, this study in-
tends to review the treatment of petroleum wastewater streams by NF technology and then,
based on the gaps identified in the area, discuss the conclusions and future perspectives.

The remaining sections of this paper are organized as follows. In Section 2, NF separa-
tion mechanisms, membrane fabrication/modification, effective factors on NF performance,
and fouling are briefly reviewed. Section 3 includes a discussion of recent NF treatment
studies on various petroleum wastewaters and performance evaluation. Finally, Section 4
discusses conclusions and future perspectives of this study.

2. Nanofiltration
2.1. Nanofiltration Fundamentals

In the mid-1980s, Eriksson [46] used the term NF for the new class of membranes that
their characteristics fall between UF and RO [2,26,46–49]. The pore size and molecular
weight cut-off (MWCO) of NF membranes are 1–10 nm [50–52] and 100–2000 Da [26],
respectively. The operating pressure is usually 5–35 bar [49]. These membranes are
relatively impermeable to divalent ions, dissolved organic matter, pesticides, and other
macromolecules, but tend to pass monovalent ions [2,27,51,53,54].

Wetted surface, preferential sorption-capillary, solution-diffusion, charged capillary,
and finely porous rejection mechanisms have been presented by Macoun [55] as the ma-
jor rejection mechanisms. Further information can be found in Macoun [55] and Shon
et al. [27]. A combination of charge effect repulsion, solution diffusion, and sieving through
micro/nano-pores have been reported as separation mechanisms [2,26,56]. Among the
mentioned mechanisms, the sieving and charge effects are two dominant separation mech-
anisms of NF membranes. Uncharged or high molecular weight solutes are separated
by sieving or size exclusion mechanism. Whereas the charged solutes are separated by
both sieving and the electrostatic interaction between the solute species and the membrane
surface (Donnan phenomenon) [26,37,47,49,52,57,58].

2.2. Nanofiltration Process Applications

NF membranes can relatively reject divalent ions, multivalent ions, organics, starch,
sugar, pesticides, herbicides, and other macromolecules [16,54,56]. In comparison with MF
and UF processes, this process has higher efficiencies in the reduction of chemical oxygen
demand (COD) and total dissolved solids (TDS) and also operates under low pressure
(i.e., low energy usage) conditions compared to RO process [59]. Thus, there has been an
increasing interest to use NF technology as an effective process in a variety of applications:
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• Food industries including dairy [60,61], beverage [62–64], sugar [65,66], vegetable
oil [67,68] and plant extracts [49,69];

• Textile industry and dye concentration [49,70–73];
• Biotechnological/pharmaceutical industry [49,50,74–76];
• Water purification: Water softening, removal of natural organic matter, heavy metals,

viruses and bacteria from water [37,49,50,77–81]; and
• Wastewater treatment: Olive mill wastewater [82,83], coke wastewater [84], munic-

ipal wastewater [85,86], leachate [87,88], car wash wastewater [89], pulp and paper
wastewater [90], oily wastewater from the petroleum industry [59], etc.

2.3. Factors Affecting the Nanofiltration Process Performance

NF process performance is significantly influenced by membrane characteristics,
feed characteristics, and operational conditions [26]. Membrane characteristics includ-
ing MWCO, porosity, morphology, charge, and hydrophilicity can dramatically affect the
NF process performance. Additionally, membrane performance is strongly influenced
by feed characteristics such as the molecular weight, molecular size, geometry, charge,
hydrophilicity of the solute and the feed water chemistry (e.g., pH) [26,42,91,92]. Further-
more, operational conditions such as temperature, pressure, and flow rate can impact
the separation process [26]. Bellona et al. [42] and Mulyanti and Susanto [26] completely
reviewed the effective factors on NF process.

Rahimpour et al. [47] investigated the effect of operating variables including tem-
perature and trans-membrane pressure (TMP) on the permeate flux, COD, and electric
conductivity (EC) in NF treating the oily wastewater generated by the washing of gasoline
reserving tanks. The permeate flux, COD, and EC removal were enhanced with increas-
ing TMP. COD and EC removal were reduced with an increase in temperature, whereas
the permeate flux was increased. Pressures of 15–20 bar and temperatures of 20–30 ◦C
were reported as the optimum conditions for the permeate flux and COD removal [47].
Additionally, Salahi et al. [36] reported the optimum permeate flux of 180.1 L/m2·h at
feed temperature of 45 ◦C, TMP of 4 bar, the cross flow velocity of 1.3 m/s, pH of 10
and salt concentration of 11.2 g/L in NF treating the desalter effluent wastewater from
Tehran refinery using nano-porous membrane [36]. Furthermore, Hedayatipour et al. [93]
investigated the effect of temperature, pH and TMP on removal efficiency of Ba, Ni, Cr,
NaCl, and TDS from the effluent of the dewatering process in an oil and gas well drilling
industry by NF process. The temperature of 25 ◦C, the pressure of 170 psi and pH of 4 were
reported as optimum conditions which 85.3%, 77.4%, 58.5%, 79.6%, and 56.3% removal
efficiencies were obtained for Ba, Ni, Cr, NaCl, and TDS, respectively [93].

2.4. Fabrication and Modification of Nanofiltration Membranes

Surface chemistry, porosity, pore size distribution, physicochemical compatibility with
process feeds, lifetime, and cost are key factors to fabricate the NF membranes [49]. In recent
years, researchers have focused on fabricating and developing various polymeric, ceramic,
and hybrid ceramic-based NF membranes [94]. Each NF membrane type has advantages,
disadvantages, and specific applications; however, polymeric NF membranes have been
extensively studied due to their availability, easy modification [94], and good film-forming
property [95]. Recent advances and research trends in NF membranes fabrication and
modification have been reviewed (e.g., Mohammad et al. [50]; Paul and Jons [96]; Oatley-
Radcliffe et al. [97]; Ji et al. [95]; Rabbani Esfahani et al. [92]; and Merlet et al. [94]).

Material selection, additive concentrations, and modification techniques can play im-
portant roles in obtaining optimal NF membranes [52]. Different materials and techniques
have been used to fabricate NF membranes. Materials such as polymer, ceramic, or a hybrid
consisting of both may be used in the structure of a membrane from the active (selective)
layer to the porous support layer(s). The porous ceramics for NF are composed of oxide
materials [94]. Polysulfone (PSF) [98], polydimethylsiloxane (PDMS) [99], polyethersulfone
(PES) [100,101], poly(ether ether ketones) (PEEK) [102], poly(vinylidene fluoride) (PVDF),
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cellulose acetate (CA) [103], aromatic and semi aromatic polyamides [104,105], polybenz-
imidazole (PBI) [106], polyaniline (PANI) [107], and polyacrylonitrile (PAN) [52,108] have
been reported as applied polymers to prepare polymeric NF membranes. Note that both
polymeric and ceramic NF membranes used for treating wastewaters from the petroleum
industry are discussed in detail in Section 3.

Interfacial polymerization (IP), phase inversion, UV/photo-grafting, electron beam
irradiation, plasma treatment, layer-by-layer, etc. are several approaches to fabricate the
polymeric NF membranes [50,96]. IP is the common technique to prepare thin film com-
posite (TFC) NF membranes [44,109]. TFC membranes are made of one support layer
and one thin active layer on the top of the support layer [110,111]. They are the main
type of RO, NF, and forward osmosis (FO) membranes [112,113]. The incorporation of
nanoparticles into the TFC membranes results in thin-film nanocomposite (TFN) mem-
branes. Different techniques such as in-situ/interfacial polymerization [114–116] and dip
coating methods [117–119] have been reported for the fabrication of TFN membranes. In
order to prepare novel TFN membranes with specific characteristic, nanoparticles in the
range of 20–200 nm have been incorporated within the ultrathin active layer or support
layer during the fabrication process [120].

Plate and frame module, tubular membrane module, spiral wound module, and
hollow fiber membrane module are four configurations of NF membrane elements [49].

2.5. Fouling and Control

Membrane fouling is one of the important inevitable challenges in NF process that can
be because of blockage of the membrane surface and pores by colloidal, microbiological, and
chemical (organic and inorganic) components [26,27,45,47,49,50,121]. It may be reversible
or irreversible [56]. Generally, solutes adsorption on the membrane surface or in pores,
blockage of pores by solutes, cake layer formation and gel layer formation are forms of
fouling [50,122]. Fouling leads to reduction in NF process performance (e.g., flux decline)
and cost efficiency [26,50].

Physical, chemical, and hydrodynamical techniques may be used to control mem-
brane fouling [26]. Using pre-treatment processes (e.g., coagulation, flocculation, ozona-
tion, adsorption, MF, UF) upstream of NF, operating the system with high cross-flow
velocity, using a cleaning cycle, backwashing or backflushing, and changing the oper-
ating temperature are some strategies that may be considered to prevent and mitigate
the fouling [27,50,56,123,124]. Note that chemical cleaning may damage the membrane
structure [26,125] and suitable cleaning agent and conditions of the cleaning process should
be selected to maintain membrane performance [49,126].

Kim et al. [127] studied coagulation-flocculation-sedimentation with and without
coagulant and coagulant aids as pre-treatment methods of NF process to treat oil sands
process-affected water (OSPW), and concluded that the strategy improves the desalination
of OSPW using NF membrane [127]. Additionally, Moser et al. [23] used direct UV and hy-
drogen peroxide-assisted (UV/H2O2) photolysis as pre-treatment methods for NF treating
membrane bioreactor (MBR) permeate of a petroleum refinery to mitigate fouling. High
quality water was produced using a MBR-H2O2/UV-NF system that could be reused in
the refinery process (e.g., in cooling systems) [23].

3. Literature Review of Petroleum Industry Wastewater Treatment by Nanofiltration

The required discharge standards from the petroleum industry cannot be reached
by common treatment methods. In addition, the need for water reuse in the petroleum
industry drive attention to use effective technologies like membrane separation processes
(e.g., NF) for better performance and optimized cost [128,129]. However, membrane
fouling by oil, sulfides, or bacteria and generation of hazardous reject streams can be
drawbacks of these processes [17,129]. In general, several studies have revealed that
enhanced flux, minimized membrane fouling, simple cleaning strategy, and chemical and
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thermal stability of membranes are major issues/barriers for utilization of membrane
separation technologies in the petroleum industry wastewater treatment [1,17,130].

Over the last 30 years, NF technology has been used to treat various wastewater
streams from the petroleum industry [1,16,23,36,37,44,47,52,53,59,93,127,129–145]. A sum-
mary of recent NF treatment studies on various petroleum wastewaters and performance
evaluation is listed in Table 1. Various wastewater streams including produced wa-
ter, OSPW, desalter effluent wastewater from a refinery, MBR permeate from refinery
plant, refinery’s clarifier effluent, oily wastewater from washing of gasoline reserving
tanks, etc. have been successfully treated by NF. Both polymeric and ceramic NF mem-
branes have been applied. In other words, polymeric membranes, such as polyamide
(PA) TFC NF membrane (NF-90), piperazine-based semi-aromatic PA TFC NF membrane
(NF-270) [136], unmodified and poly(N-isopropylacrylamide) (PNIPAAm) and PNIPAAm-
block-poly(ethylene glycol methacrylate) (PPEGMA) modified PA TFC NF (NF-270) mem-
branes [137], nano-porous membrane (polyacrylonitrile) [36], PA-SiO2 nanocomposite
NF membrane [44], PSF-penta-block copolymer (PBC) composite NF membrane [37],
PAN NF membrane [52], NF membrane with graphene oxide (GO)/aminated GO (NGO)-
incorporated substrate [140], PES-poly acrylic acid (PAA)-ZrO2 NF membrane [142], etc.,
and ceramic NF membranes [130,141,143] have been used to treat wastewater streams
from the petroleum industry. As presented in Table 1, for instance, almost 100% removal
of total suspended solids (TSS), 44.4% removal of TDS, 99.9% removal of oil and grease
content, 80.3% removal of COD, 76.9% removal of biological oxygen demand (BOD5) [36],
72–89% rejection of soluble organics [53], 6–43.7% retention of benzene, 19–89.2% retention
of toluene, 48.5–98.5% retention of p-xylene, 48.5–98.5% retention of m-xylene, 30.7–98.7%
retention of o-xylene, 21 ≥ 99.9% retention of 2-isopropyl phenol, 19.6–99.5% retention of 4-
or 3-isopropyl phenol [132], higher than 95% rejection of total organic carbon (TOC), higher
than 95% rejection of naphthenic acids (NAs), 62–66% rejection of sodium, higher than 92%
rejection of calcium, higher than 90% rejection of magnesium, 95–98% rejection of sulfate,
20–39% rejection of chloride, 58–81% rejection of bicarbonate, and permeate flux of greater
than 15 L/m2/h [133] have been reported in different research studies using various NF
membranes.

Peng et al. [133] investigated the performance of three commercially available TFC
NF membranes (Deasl-5 from Osmonics/Desal; NF-45 and NF-90 from Dow Chemical)
for removal of TOC, NAs, and different ions from OSPW to improve water management
in oil sands operation. Among these membranes, Desal-5 was reported to be a suitable
membrane for this purpose. Incomplete rejection of monovalent ions of sodium, chloride
and bicarbonate (20–80%), higher than 95% rejection of divalent ions (calcium, magnesium,
and sulfate), TOC, and NAs were reported for Desal-5. Permeate flux decline of Desal-5
due to fouling was tested in experiments for about 18 h and flux maintaining at 15 L/m2/h
or higher at a pressure of 10.3 bar was reported [133]. In other work, the average efficiency
of salt removal from raw OSPW using PA TFC NF membrane (GE Osmonics) was reported
to be about 68.9%. The study revealed that OSPW components could bound to the NF
membrane surface; and chemical cleaning using both HCL (1 mM) and NaOH (1 mM)
showed similar flux recovery ratio (HCl had slightly higher recovery ratio) [127]. These
studies [127,133] did not investigate the fouling mechanisms of OSPW desalination by NF;
however, they addressed fouling.
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Table 1. Summary of recent NF treatment studies on various petroleum wastewaters and performance evaluation.

Membrane Wastewater Studied Parameters Influent Concentration Major Findings Reference

NF Offshore produced
water Soluble organics 176 mg/L 72–89% rejection of soluble organics

and 15–20% removal of salts [53]

NF Produced water

Oil, sodium, calcium,
magnesium, potassium,
ammonium, chloride, and
sulfate

<1 ppm oil, 9610 ppm sodium,
715 ppm calcium, 412 ppm
magnesium, 174 ppm
potassium, 110 ppm
ammonium, 8010 ppm chloride,
and 1090 ppm sulfate.

Concentrations in NF permeate were:
non-detectable oil, 5250 ppm sodium,
163 ppm calcium, 115 ppm
magnesium, 77 ppm potassium,
68 ppm ammonium, 4710 ppm
chloride, and non-detectable sulfate.
Recovery was 90–95%.

[16,131,145]

Membranes: UTC-60 (aromatic
polyamides) from Toray (Tokyo,
Japan); NRT-729HF (polyvinyl
alcohol/polyamides), ES-10C
(polyamides), and LF-10 (polyvinyl
alcohol/polyamides) from Nitto
Denko (Osaka, Japan)

Soluble organic
pollutants

Benzene, toluene, p-xylene,
m-xylene, o-xylene,
2-isopropyl phenol, 4- or
3-isopropyl phenol, etc.

Benzene, toluene, p-xylene,
m-xylene, and o-xylene
concentrations were 1.25 mg/L;
whereas 2-isopropyl phenol
and 4- or 3-isopropyl phenol
concentrations were 0.05 mg/L.

Retention rates for organic compounds
at 0.3 MPa varied among membranes:
Benzene, 6–43.7%; toluene, 19–89.2%;
p-xylene, 48.5–98.5%; m-xylene,
48.5–98.5%; o-xylene, 30.7–98.7%;
2-isopropyl phenol, 21 -> 99.9%; 4- or
3-isopropyl phenol, 19.6–99.5%, etc.
Approximately, retention rates for
UTC-60 < NTR-729HF < ES-10C <
LF-10.

[132]

TFC NF membranes (Deasl-5 from
Osmonics/Desal; NF-45 and NF-90
from Dow Chemical (Midland, MI,
USA))

OSPW
TOC, NAs, sodium, calcium,
magnesium, sulfate, chloride,
and bicarbonate

44 mg/L TOC, 30–57 mg/L
NAs, 434–1,170 mg/L sodium,
23.4–46 mg/L calcium,
13–33 mg/L magnesium,
94–1300 mg/L sulfate,
225–760 mg/L chloride, and
545–1040 mg/L bicarbonate +
carbonate

>95% rejection of TOC, >95% rejection
of NAs, 62–66% rejection of sodium,
>92% rejection of calcium, >90%
rejection of magnesium, 95–98%
rejection of sulfate, 20–39% rejection of
chloride, and 58–81% rejection of
bicarbonate. Permeate flux was
15 L/m2/h or higher at a pressure of
10.3 bar.

[133]
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Table 1. Cont.

Membrane Wastewater Studied Parameters Influent Concentration Major Findings Reference

NF-90 (Dow/Filmtec), TFC-S (Koch
(MA, USA)), and ESNA (Hydranautics
(Oceanside, CA, USA))

Methane produced
water

TOC, conductivity, and
iodide

TOC, conductivity, and iodide
concentrations were 5243 ±
561, 9647 ± 652 µs/cm, and
55.6 ± 10.8 mg/L, respectively.

TOC, conductivity, and iodide rejection
efficiencies of NF-90 > TFC-S > ESNA.
TOC, conductivity, and iodide rejection
efficiencies of NF-90 were 87.6 ± 0.6,
72.7 ± 5.4, and 78.3 ± 1.3, respectively.

[134]

NF-90 (Dow/Filmtec)
Produced water from a
natural gas production
site in Eastern Montana

TDS, TOC, barium, boron,
bromide, chloride, and iodide

5520 ± 718 mg/L TDS, 2 ± 0.5
mg/L barium, 3.8 ± 0.3 mg/L
boron, 51 ± 7 mg/L bromide,
3306 ± 854 mg/L chloride, and
50 ± 8 mg/L iodide

Salt rejection was 85.3–94.9%.
Concentrations in the NF final product
water were 566 mg/L TDS, 0.08 mg/L
TOC, 0.02 mg/L barium, 2.6 mg/L
boron, 14.0 mg/L bromide, 372 mg/L
chloride, and 22.9 mg/L iodide.

[135]

Piperazine-based semi-aromatic
polyamide TFC membrane (NF-270)
and polyamide TFC membrane
(NF-90) from Filmtec (MN, USA)

Produced water from
Colorado, USA TDS and TOC

TDS and TOC were
722–2090 ppm and
68.8–136.4 mg/L, respectively.

NF 270 had the largest membrane pore
size; the conductivity, TDS, and TOC
of the permeate were the highest.

[136]

NF-200 (Polyamide TFC from Filmtech
(MN, USA))

Vakiflar oil produced
water

COD, TDS, sodium, chloride,
and salinity

1483 mg/L COD, 6510 mg/L
TDS, 5169 mg/L sodium, 2949
mg/L chloride, and 6.7%
salinity

Effluent concentrations were: 137
mg/L COD, 2240 mg/L TDS, 1059
mg/L sodium, 1200 mg/L chloride,
and 2.3% salinity

[1]

Unmodified and
poly(N-isopropylacrylamide)
(PNIPAAm) and
PNIPAAm-block-poly(ethylene glycol
methacrylate) (PPEGMA) modified
NF-270 polyamide TFC membranes

Coal bed methane
produced water TDS and conductivity

TDS and conductivity were
722 ppm and 1448 µs,
respectively.

Effluent TDS and conductivity for
unmodified membrane were 648 ppm
and 1297 µs, respectively. Whereas
effluent TDS and conductivity for one
of the modified membrane were
342 ppm and 694 µs, respectively.

[137]

Ceramic NF membrane Oilfield produced water Oil and TOC Oil and TOC were 113 and
94 ppm, respectively.

Oil and TOC removals were 80% and
13%, respectively. [130]

Polyamide TFC NF membrane from
GE Osmonics (Fairfield, CT, USA) OSPW Salts The average efficiency of salt removal

from raw OSPW was about 68.9% [127]
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Table 1. Cont.

Membrane Wastewater Studied Parameters Influent Concentration Major Findings Reference

Polyamide TFC NF commercial
membrane (NE2540-90, SAEHAN
Corp., Korea) and self-made TFC NF
membrane

Oily wastewater from
washing of gasoline
reserving tanks

COD and EC
The COD and EC of pre-treated
wastewater were 2940 ppm and
73 µs/cm, respectively.

The COD and EC removals were 84%
and 88% for commercial membrane
and 79% and 93% for self-made
membrane, respectively.

[47]

NF-90 (Dow Filmtec)

The MBR permeate
from REGAP-Gabriel
Passos Refinery
Plant, Brazil

Ammonia, chloride, calcium,
nitrite, COD, TOC, and TDS

30 mg/L ammonia, 573 mg/L
chloride, 34 mg/L calcium,
0.66 mg/L nitrite, 440 mg/L
COD, 91 mg/L TOC, and
1575 mg/L TDS

98.60% removal of ammonia, 98.75%
removal of chloride, 100% removal of
calcium, 100% removal of COD, 99.36%
removal of TOC, and 98.35% removal
of TDS

[23]

Self-made polyacrylonitrile (PAN) NF
membrane

Synthetic produced
water oil and salts 10 ppm oil and 6000 ppm of

salts
Water flux and overall rejection were
78.8 (L/m2·h) and 46.2%, respectively. [52]

Self-made NF membrane with
graphene oxide (GO)/aminated GO
(NGO)-incorporated substrate

Petrochemical
wastewater and shale
gas produced water

Ions

Generally, better performance of
TFCNGO than TFCGO; remarkable
increase of water flux (higher than
24.8%) and similar divalent ion
rejection for petrochemical wastewater;
better performance in permeability and
divalent ion rejections (approximately
6% higher than pristine membrane) for
shale gas produced water

[140]

A commercial titania ceramic NF
membrane

Recycle water from a
Canadian oil sands
mine

Ions, TSS, and TOC
High rejection of divalent cations,
75–90% TOC rejection, and almost
100% TSS rejection

[141]

NF (GE Osmonics) Whiting refinery’s
clarifier effluent Mercury Effluent mercury concentration of

<1.3 ppt [138]

Self-made PA-SiO2 nanocomposite NF
membrane

Oily wastewater from
Daqing oilfield Salts Nearly 50% salts removal [44]

Nano-porous membrane
(polyacrylonitrile)

Desalter effluent
wastewater from Tehran
refinery

TSS, TDS, oil, and grease
content, COD and BOD5

250 mg/L TSS, 8200 mg/L TDS,
196 mg/L oil and grease, 456
mg/L COD and 321 mg/L
BOD5

100% removal of TSS, 44.4% removal
of TDS, 99.9% removal of oil and
grease, 80.3% removal of COD and
76.9% removal of BOD5

[36]
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Table 1. Cont.

Membrane Wastewater Studied Parameters Influent Concentration Major Findings Reference

NF1 from Amfor Inc. (Amei Ande
Membrane Technology Ltd., Beijing,
China)

Produced water TDS, oil and grease, TSS,
COD, and TOC

854 mg/L TDS, 2 mg/L oil and
grease, 10 mg/L TSS, 96 mg/L
COD, and 26.3 mg/L TOC

Effluent concentrations were 520 mg/L
TDS, <1 mg/L oil and grease, <1 mg/L
TSS, 60 mg/L COD, and 22.9 mg/L
TOC

[139]

TFC NF membrane (Sepro Membrane
Inc., Oceanside, CA, USA) Oily wastewater Oil and magnesium

Oil and magnesium
concentrations were 200–2000
and 40–403 ppm, respectively.

95–98% oil rejection and 56–99.8%
magnesium rejection [59]

TFC NF membranes (HL4040F) of
polyamide chemistry (GE/Osmonics) Oilfield produced water

TDS, hydrocarbons, oil
droplets, sulfate, silica, boron,
and SS

Concentrations of TDS,
organics including
hydrocarbons, oil droplets,
sulfate, silica, boron, and SS
were 96,472.6, 268.2, 120.4,
7087.5, 134.4, 29.3, and 20.2
ppm, respectively.

Intermittent
chlorination/coagulation/NF
combined unit efficiently rejected
sulfate, uranium, and other metal
cations and polished the removal of SS,
bacteria, and organics.

[129]

Self-made polysulphone
(PSF)-penta-block copolymer (PBC)
composite NF membrane

Engine oil in water
emulsion Oil 500–1000 ppm engine oil in

water emulsion
95.5–99.5% oil rejection; and flux
recovery of 89–95% [37]

NF (Polyamide, JCM-1812-50N, USA)

Produced wastewater
from dewatering unit of
an oil and gas well
drilling industry

Ba, Ni, Cr, NaCl and TDS
209 mg/L Ba, 6.2 mg/L Ni,
5.3 mg/L Cr, 14,180 mg/L
NaCl and 61,500 mg/L TDS

85.3% removal of Ba, 77.4% removal of
Ni, 58.5% removal of Cr, 79.6%
removal of NaCl and 56.3% removal of
TDS

[93]

Polyethersulfone (PES)-poly acrylic
acid (PAA)-ZrO2 NF membrane Synthetic wastewater Polycyclic aromatic

hydrocarbon (PAH) More than 90% PAH rejection rate [142]

Ceramic NF membranes with γ-Al2O3
support and ZrO2, Al2O3 and TiO2
selective layers (Rauschert Inopor,
Veilsdorf, Germany)

Produced water from
different SAGD
operations in Alberta,
Canada

Residual organic matter

Complete removal of non-polar oil
components including saturated and
aromatic hydrocarbons, approximately
80% removal of polar components, and
95.0–98.3% removal of total solvent
extracted material

[143]

BOD5—biochemical oxygen demand, COD—chemical oxygen demand, EC—electric conductivity, NF—nanofiltration, NAs—naphthenic acids, OSPW—oil sands process-affected water, PAH—polycyclic
aromatic hydrocarbon, SAGD—steam assisted gravity drainage, SS—suspended solids, TFC—thin film composite, TOC—total organic carbon, TDS—total dissolved solids, TSS—total suspended solids.
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Several studies have been reported for produced water treatment using
polymeric [1,16,53,93,129,131,134–136,139,140,145] and ceramic [130,143] NF membranes.
In general, application under extreme operating conditions beyond the operating range of
typical polymeric membranes, cleaning with aggressive reagents such as organic solvents
or hot water steam and long lifespan can be advantages of ceramic membranes [143]. Xu
et al. [135] used PA TFC NF membrane (NF-90) to treat produced water from a natural
gas production site in Eastern Montana for beneficial use of it by meeting potable and
irrigation water quality standards. Salt rejection was 85.3–94.9%. TDS, TOC, barium, boron,
bromide, chloride, and iodide concentrations in the NF-90 final product water were 566,
0.08, 0.02, 2.6, 14.0, 372, 22.9 mg/L, respectively. Effluent water from the NF-90 could
not meet US Environmental Protection Agency secondary drinking water standards with
regard to chloride and TDS [135]. Mondal and Wickramasinghe [136] reported that effluent
conductivity, TDS, and TOC of piperazine-based semi-aromatic PA TFC NF membrane
(NF-270) were higher than those of the PA TFC NF membrane (NF-90) in treating produced
water [136]. In a study [130], oilfield produced water was treated using a ceramic NF
membrane and oil and TOC removals were reported to be 80% and 13%, respectively [130].
In other work [143], produced water from different steam assisted gravity drainage (SAGD)
operations in Alberta, Canada was treated using ceramic NF membranes with γ-Al2O3
support and ZrO2, Al2O3 and TiO2 selective layers (Rauschert Inopor, Veilsdorf, Germany);
and complete removal of non-polar oil components including saturated and aromatic
hydrocarbons, approximately 80% removal of polar components, and 95.0–98.3% removal
of total solvent extracted material were reported [143].

NF has been used as an effective process for sulfate removal in the petroleum industry
especially in offshore oilfields [3,144]. In sulfate removal using NF process, cartridge filters
are utilized upstream of the system to reduce pre-treatment upsets [3]. A pilot study
(Figure 1) including membrane separation processes (cartridge filter, UF, NF, and two RO
units) was conducted by Osmonics Inc. (MN, USA) in 2001 to treat produced water in
northern California. Oil, sodium, calcium, magnesium, potassium, ammonium, chloride,
and sulfate concentration in influent feed were 10–50, 9610, 715, 412, 174, 110, 8010, and
1090 ppm, respectively. Whereas, oil, sodium, calcium, magnesium, potassium, ammonium,
chloride, sulfate concentrations in NF permeate and recovery percent were non-detectable,
5250, 163, 115, 77, 68, 4710 ppm, non-detectable, 90–95%, respectively. More than 80% was
reported as the overall system recovery [16,131,145].
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Kim et al. [127] used PA TFC NF membrane (GE Osmonics) for desalination of OSPW
and reported that coagulation-flocculation-sedimentation pretreatment of OSPW before
filtration with NF is an efficient technology to manage water in oil sands operation [127].
Moser et al. [23] studied the effect of AOP (UV/H2O2) pretreatment on NF (NF-90, Dow
Filmtec) process performance treating MBR permeate of REGAP-Gabriel Passos Refinery
Plant, Brazil. The pretreatment mitigated the flux decline because of membrane fouling
and improved membrane cleanability. Ammonia, chloride, calcium, COD, TOC, and TDS
removal efficiencies were reported to be 99.07%, 98.74%, 100%, 100%, 98.95%, and 98.22%,
respectively. They concluded that water produced using the MBR-H2O2/UV-NF system
could be reused in the refinery process [23]. Khedr [129] proposed the “intermittent chlori-
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nation/coagulation/NF” process using PA TFC NF membranes (HL4040F, GE/Osmonics)
to filter oilfield-produced water for reinjection; and reported that the process could effec-
tively reject sulfate, uranium, and other metal cations and polish the removal of suspended
solids, bacteria, and organics. In addition, the process could prevent the formation of scales
and biofilm as well as the related unwanted phenomena [129]. Thus, it seems that NF
process should be used in combination with the other separation processes to manage
petroleum industry wastewaters [2,129]. Depending on the pretreated oily wastewater
quality, this process may provide effluent water for reuse in the petroleum industry ap-
plications [19,23,144]. Although the separation efficiency of RO process is better than NF
process [19,127,145], the NF process can be cost-effective to reuse water in the petroleum
industry [19,144].

Commercially available NF membranes have widely been used for treating wastewater
streams from the petroleum industry. However, some studies have been carried out to
prepare self-made NF membrane for treatment of petroleum industry wastewaters: PA-
SiO2 nanocomposite NF membrane for desalination of oily wastewater from Daqing
oilfield [45]; PSF-PBC composite NF membrane for separation of oil-water emulsion [37];
PAN NF membrane for synthetic produced water treatment [52]; NF membrane with
GO/NGO-incorporated substrate for desalination of petrochemical wastewater and shale
gas produced water [140]; and PES-PAA-ZrO2 NF membrane for removal of polycyclic
aromatic hydrocarbon (PAH) from synthetic wastewater [142]. Limited information can
be found in the literature for modification of commercially available NF membranes for
petroleum industry wastewater treatment. In a study carried out by Tomer et al. [137],
PNIPAAm and PPEGMA nanolayers were grafted from NF-270 (Filmtec) via surface-
initiated atom transfer radical polymerization in order to mitigate fouling in treatment of
coal bed methane produced water. Improved permeate water quality and constant flux
for modified NF-270 were reported as compared to those of unmodified NF-270 during
filtration of produced water [137].

4. Conclusions and Future Perspectives

In this study, recent NF treatment studies on various petroleum wastewaters were
reviewed. Key findings of this review are:

• Approximately 100% removal of TSS, 44.4% removal of TDS, 99.9% removal of oil and
grease content, 80.3% removal of COD, 76.9% removal of BOD5 [36], higher than 95%
rejection of TOC, higher than 95% rejection of NAs, 62–66% rejection of sodium, higher
than 92% rejection of calcium, higher than 90% rejection of magnesium, 95–98% rejec-
tion of sulfate, 20–39% rejection of chloride, 58–81% rejection of bicarbonate [133], etc.
have been reported in different research studies for treating petroleum wastewaters
using various NF membranes.

• NF has the potential to replace RO membranes because of lower operating pres-
sure and/or energy consumption, relatively lower investment, and more economical
operation and maintenance costs.

• NF process should be used in combination with other separation processes (e.g., pre-
treatment processes) to manage petroleum industry wastewaters [2,129]. Depending
on the pretreated oily wastewater quality, this process may provide effluent water for
reuse in the petroleum industry applications [19,23,144]

• The mitigation of membrane fouling; selection of appropriate pre-treatment technique;
and selection of a suitable, cost-effective, non-hazardous cleaning strategy are the vital
items in designing of NF process [17].

Further investigations on the enhanced flux, minimized membrane fouling, simple
cleaning strategy, and chemical and thermal stability of membranes for long-term opera-
tions are still desirable to extensively/efficiently apply NF process for petroleum industry
wastewater treatment at full-scale. In particular, further studies on fouling mechanisms of
petroleum industry wastewaters (e.g., OSPW) desalination by NF [127] can be beneficial.
In addition, studies on the effect of membrane properties such as membrane molecular
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weight cut-off and surface properties [142,143] on its performance (e.g., NF separation
efficiency) in treating oily wastewater are of interest. For instance, incorporating stable
and inexpensive nanoparticles in NF membrane manufacturing technology [142] can result
in developing/fabricating high performance (e.g., enhanced surface hydrophilicity and
fouling resistance) membranes.
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