Multilinear Mathematical Separation in Chromatography
Abstract
:1. Introduction
2. Multilinear Models and Algorithms
2.1. Trilinear Model
2.2. Trilinear Decomposition Algorithms
2.3. Three-Way Analysis
2.3.1. Three-Way Calibration Method
2.3.2. Three-Way Standard Additions Method
2.3.3. Three-Way Internal Standard Method
2.4. Quadrilinear Model
2.5. Quadrilinear Decomposition Algorithms
2.6. Four-Way Analysis
2.7. Multilinear Model
2.8. Analytical Figures of Merit
2.9. Software
3. Chromatography with Mathematical Separations
3.1. HPLC–DAD
3.2. HPLC–FD and HPLC–EEMF
3.3. LC–MS
3.4. GC–MS
3.5. LC×LC–UV, LC×LC–DAD, and LC×LC–MS
3.6. GC×GC–FID and GC×GC–MS
4. Conclusions
5. Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Harris, D.C. Quantitative Chemical Analysis, 8th ed.; W. H. Freeman and Company: New York, NY, USA, 2010. [Google Scholar]
- Christian, G.D.; Dasgupta, P.K.; Schug, K.A. Analytical Chemistry, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Fundamentals of Analytical Chemistry, 9th ed.; Cengage Learning: Belmont, MA, USA, 2014. [Google Scholar]
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment for extracts clean up in PCB analysis from sediments. Talanta 2013, 103, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis, 7th ed.; Cengage Learning: Boston, MA, USA, 2018. [Google Scholar]
- Barreca, S.; Busetto, M.; Vitelli, M.; Colzani, L.; Clerici, L.; Dellavedova, P. Online solid-phase extraction LC-MS/MS: A rapid and valid method for the determination of perfluorinated compounds at sub ng L−1 level in natural water. J. Chem. 2018, 2018, 3780825. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.W.; Wu, H.L.; Yin, X.L.; Li, S.S.; Liu, Y.J.; Xia, H.; Xie, L.X.; Yu, R.Q.; Yang, P.Y.; Lu, H.J. Solving signal instability to maintain the second-order advantage in the resolution and determination of multi-analytes in complex systems by modeling liquid chromatography-mass spectrometry data using alternating trilinear decomposition method assisted with piecewise direct standardization. J. Chromatogr. A 2015, 1407, 157–168. [Google Scholar] [CrossRef]
- Brown, S.D.; Tauler, R.; Walczak, B. Comprehensive Chemometrics: Chemical and Biochemical Data Analysis; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Gemperline, P.J. Practical Guide to Chemometrics, 2nd ed.; CRC Press: Boca Raton, MA, USA, 2006. [Google Scholar]
- Muñoz de la Peña, A.; Goicoechea, H.C.; Escandar, G.M.; Olivieri, A.C. Fundamentals and Analytical Applications of Multiway Calibration; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Olivieri, A.C.; Escandar, G.M. Practical Three-Way Calibration; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Smilde, A.; Bro, R.; Geladi, P. Multi-Way Analysis with Applications in the Chemical Sciences; Wiley: Chichester, UK, 2005. [Google Scholar]
- Cattell, R.B. Parallel proportional profiles and other principles for determining the choice of factors by rotation. Psychometrika 1944, 9, 267–283. [Google Scholar] [CrossRef]
- Harshman, R.A. Foundations of the PARAFAC Procedure: Models and Conditions for an “Explanatory” Multimodal Factor Analysis. Ucla Work. Pap. Phon. 1970, 16, 1–84. Available online: https://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf (accessed on 24 October 2020).
- Carroll, J.D.; Chang, J.J. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 1970, 35, 283–319. [Google Scholar] [CrossRef]
- Ho, C.N.; Christian, G.D.; Davidson, E.R. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video fluorometer. Anal. Chem. 1978, 50, 1108–1113. [Google Scholar] [CrossRef]
- Appellof, C.J.; Davidson, E.R. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Anal. Chem. 1981, 53, 2053–2056. [Google Scholar] [CrossRef]
- Kiers, H.A.; Krijnen, W.P. An efficient algorithm for PARAFAC of three-way data with large numbers of observation units. Psychometrika 1991, 56, 147–152. [Google Scholar] [CrossRef]
- Booksh, K.S.; Muroski, A.R.; Myrick, M.L. Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 2. Calibration and quantitation of naphthalene and styrene. Anal. Chem. 1996, 68, 3539–3544. [Google Scholar] [CrossRef]
- Muroski, A.R.; Booksh, K.S.; Myrick, M.L. Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 1. Instrumentation and background correction. Anal. Chem. 1996, 68, 3534–3538. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Booksh, K.S.; Kowalski, B.R. Theory of analytical chemistry. Anal. Chem. 1994, 66, 782–791. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. Siam. Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Meyers, R.A.; Albani, J.R. Encyclopedia of Analytical Chemistry; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Geladi, P. Analysis of multi-way (multi-mode) data. Chemom. Intell. Lab. Syst. 1989, 7, 11–30. [Google Scholar] [CrossRef]
- Smilde, A.K. Three-way analyses problems and prospects. Chemom. Intell. Lab. Syst. 1992, 15, 143–157. [Google Scholar] [CrossRef]
- Escandar, G.M.; Olivieri, A.C.; Faber, N.K.M.; Goicoechea, H.C.; Muñoz de la Peña, A.; Poppi, R.J. Second- and third-order multivariate calibration: Data, algorithms and applications. Trac Trends Anal. Chem. 2007, 26, 752–765. [Google Scholar] [CrossRef]
- Gómez, V.; Callao, M.P. Analytical applications of second-order calibration methods. Anal. Chim. Acta 2008, 627, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.C. Analytical advantages of multivariate data processing. One, two, three, infinity? Anal. Chem. 2008, 80, 5713–5720. [Google Scholar] [CrossRef]
- Olivieri, A.C. Recent advances in analytical calibration with multi-way data. Anal. Methods 2012, 4, 1876–1886. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef] [Green Version]
- Escandar, G.M.; Goicoechea, H.C.; Muñoz de la Peña, A.; Olivieri, A.C. Second- and higher-order data generation and calibration: A tutorial. Anal. Chim. Acta 2014, 806, 8–26. [Google Scholar] [CrossRef]
- Olivieri, A.C. Analytical figures of merit: From univariate to multiway calibration. Chem. Rev. 2014, 114, 5358–5378. [Google Scholar] [CrossRef]
- Wu, H.L.; Long, W.J.; Wang, T.; Dong, M.Y.; Yu, R.Q. Recent applications of multiway calibration methods in environmental analytical chemistry: A review. Microchem. J. 2020, 159, 105575. [Google Scholar] [CrossRef]
- Wu, H.L.; Nie, J.F.; Yu, Y.J.; Yu, R.Q. Multi-way chemometric methodologies and applications: A central summary of our research work. Anal. Chim. Acta 2009, 650, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Mas, S.; de Juan, A.; Tauler, R.; Olivieri, A.C.; Escandar, G.M. Application of chemometric methods to environmental analysis of organic pollutants: A review. Talanta 2010, 80, 1052–1067. [Google Scholar] [CrossRef]
- Faber, N.M.; Bro, R.; Hopke, P.K. Recent developments in CANDECOMP/PARAFAC algorithms: A critical review. Chemom. Intell. Lab. Syst. 2003, 65, 119–137. [Google Scholar] [CrossRef]
- Nahorniak, M.L.; Cooper, G.A.; Kim, Y.C.; Booksh, K.S. Three- and four-way parallel factor (PARAFAC) analysis of photochemically induced excitation-emission kinetic fluorescence spectra. Analyst 2005, 130, 85–93. [Google Scholar] [CrossRef]
- Tomasi, G.; Bro, R. PARAFAC and missing values. Chemom. Intell. Lab. Syst. 2005, 75, 163–180. [Google Scholar] [CrossRef]
- Jiang, J.H.; Wu, H.L.; Li, Y.; Yu, R.Q. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. J. Chemom. 1999, 13, 557–578. [Google Scholar] [CrossRef]
- Chen, Z.P.; Wu, H.L.; Jiang, J.H.; Li, Y.; Yu, R.Q. A novel trilinear decomposition algorithm for second-order linear calibration. Chemom. Intell. Lab. Syst. 2000, 52, 75–86. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Cramer, J.; Kim, Y.-C.; Vogt, F.; Booksh, K. Accelerating the analyses of 3-way and 4-way PARAFAC models utilizing multi-dimensional wavelet compression. J. Chemom. 2005, 19, 593–606. [Google Scholar] [CrossRef]
- Xia, A.L.; Wu, H.L.; Fang, D.M.; Ding, Y.J.; Hu, L.Q.; Yu, R.Q. Alternating penalty trilinear decomposition algorithm for second-order calibration with application to interference-free analysis of excitation-emission matrix fluorescence data. J. Chemom. 2005, 19, 65–76. [Google Scholar] [CrossRef]
- Lozano, V.A.; Ibañez, G.A.; Olivieri, A.C. Second-order analyte quantitation under identical profiles in one data dimension. A dependency-adapted partial least-squares/residual bilinearization method. Anal. Chem. 2010, 82, 4510–4519. [Google Scholar] [CrossRef]
- De la Peña, A.M.; Mansilla, A.E.; Gómez, D.G.; Olivieri, A.C.; Goicoechea, H.C. Interference-free analysis using three-way fluorescence data and the parallel factor model. Determination of fluoroquinolone antibiotics in human serum. Anal. Chem. 2003, 75, 2640–2646. [Google Scholar] [CrossRef] [PubMed]
- Nahorniak, M.L.; Booksh, K.S. Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices. Analyst 2006, 131, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, H.L.; Ding, Y.J.; Xia, A.L.; Cui, H.; Yu, R.Q. Simultaneous determination of cortisol and prednisolone in body fluids by using HPLC–DAD coupled with second-order calibration based on alternating trilinear decomposition. J. Chromatogr. B 2006, 840, 116–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.L.; Xia, A.L.; Zhu, S.H.; Han, Q.J.; Yu, R.Q. Fluorescence determination of metoprolol in human plasma by trilinear decomposition-based calibration techniques. Anal. Bioanal. Chem. 2006, 386, 1741–1748. [Google Scholar] [CrossRef]
- Tan, Y.X.; Jiang, J.H.; Wu, H.L.; Cui, H.; Yu, R.Q. Resolution of kinetic system of simultaneous degradations of chlorophyll a and b by PARAFAC. Anal. Chim. Acta 2000, 412, 195–202. [Google Scholar] [CrossRef]
- Li, S.F.; Wu, H.L.; Huang, L.; Li, Y.N.; Nie, J.F.; Zhang, S.R.; Yu, R.Q. Quantitative analysis of fluphenazine hydrochloride in human urine using excitation-emission matrix fluorescence based on oxidation derivatization and combined with second-order calibration methods. Anal. Methods 2010, 2, 1069–1077. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wu, H.L.; Nie, J.F.; Wang, J.Y.; Ouyang, L.Q.; Yu, R.Q. Simultaneous determination of dextromethorphan and its metabolite dextrorphan in plasma samples using second-order calibration coupled with excitation-emission matrix fluorescence. Anal. Sci. 2010, 27, 663–666. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.T.; Deng, J.; An, L.; Liang, J.; Chen, F.; Wang, H. Spectrophotometric determination of melamine in milk by rank annihilation factor analysis based on pH gradual change-UV spectral data. Food Chem. 2011, 126, 745–750. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, H.L.; Chen, Y.; Sun, Y.M.; Yu, Y.J.; Zhang, X.H.; Yu, R.Q. Fast analysis of synthetic antioxidants in edible vegetable oil using trilinear component modeling of liquid chromatography–diode array detection data. J. Chromatogr. A 2012, 1264, 63–71. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, H.L.; Wang, J.Y.; Chen, Y.; Yu, Y.J.; Nie, C.C.; Kang, C.; Tu, D.Z.; Yu, R.Q. Second-order calibration applied to quantification of two active components of Schisandra chinensis in complex matrix. J. Pharm. Anal. 2012, 2, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.R.; Wu, H.L.; Chen, Y.; Zhang, X.H.; Wang, J.Y.; Li, Y.; Yu, R.Q. An investigation on hydrogen bonding between 3-methylindole and ethanol using trilinear decomposition of fluorescence excitation–emission matrices. Chemom. Intell. Lab. Syst. 2013, 121, 9–14. [Google Scholar] [CrossRef]
- Nie, J.F.; Wu, H.L.; Wang, X.M.; Zhang, Y.; Zhu, S.H.; Yu, R.Q. Determination of testosterone propionate in cosmetics using excitation-emission matrix fluorescence based on oxidation derivatization with the aid of second-order calibration methods. Anal. Chim. Acta 2008, 628, 24–32. [Google Scholar] [CrossRef]
- Yuan, J.T.; Liao, L.F.; Lin, Y.W.; Deng, C.A.; He, B. Determination of Sudan I in chilli powder from solvent components gradual change–visible spectra data using second order calibration algorithms. Anal. Chim. Acta 2008, 607, 160–167. [Google Scholar] [CrossRef]
- Zhu, S.H.; Wu, H.L.; Xia, A.L.; Han, Q.J.; Zhang, Y.; Yu, R.Q. Quantitative analysis of hydrolysis of carbaryl in tap water and river by excitation–emission matrix fluorescence coupled with second-order calibration. Talanta 2008, 74, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.C.; Arancibia, J.A.; Muñoz de la Peña, A.; Duran-Meras, I.; Mansilla, A.E. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Anal. Chem. 2004, 76, 5657–5666. [Google Scholar] [CrossRef]
- Goicoechea, H.C.; Yu, S.; Olivieri, A.C.; Campiglia, A.D. Four-way data coupled to parallel factor model applied to environmental analysis: Determination of 2, 3, 7, 8-tetrachloro-dibenzo-para-dioxin in highly contaminated waters by solid-liquid extraction laser-excited time-resolved Shpol’skii spectroscopy. Anal. Chem. 2005, 77, 2608–2616. [Google Scholar] [CrossRef]
- Arancibia, J.A.; Olivieri, A.C.; Gil, D.B.; Mansilla, A.E.; Durán-Merás, I.; de la Peña, A.M. Trilinear least-squares and unfolded-PLS coupled to residual trilinearization: New chemometric tools for the analysis of four-way instrumental data. Chemom. Intell. Lab. Syst. 2006, 80, 77–86. [Google Scholar] [CrossRef]
- De la Peña, M.A.; Durán Merás, I.; Jiménez Girón, A. Four-way calibration applied to the simultaneous determination of folic acid and methotrexate in urine samples. Anal. Bioanal. Chem. 2006, 385, 1289–1297. [Google Scholar] [CrossRef]
- García-Reiriz, A.; Damiani, P.C.; Olivieri, A.C.; Cañada-Cañada, F.; Muñoz de la Peña, A. Nonlinear four-way kinetic-excitation-emission fuorescence data processed by a variant of parallel factor analysis and by a neural network model achieving the second-order advantage: Malonaldehyde determination in olive oil samples. Anal. Chem. 2008, 80, 7248–7256. [Google Scholar] [CrossRef]
- Zhu, S.H.; Wu, H.L.; Xia, A.L.; Nie, J.F.; Bian, Y.C.; Cai, C.B.; Yu, R.Q. Excitation-emission-kinetic fluorescence coupled with third-order calibration for quantifying carbaryl and investigating the hydrolysis in effluent water. Talanta 2009, 77, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, H.C.; Yu, S.; Moore, A.F.T.; Campiglia, A.D. Four-way modeling of 4.2 K time-resolved excitation emission fluorescence data for the quantitation of polycyclic aromatic hydrocarbons in soil samples. Talanta 2012, 101, 330–336. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wu, H.L.; Kang, C.; Gu, H.W.; Nie, J.F.; Li, S.S.; Su, Z.Y.; Yu, R.Q. Four-way self-weighted alternating normalized residue fitting algorithm with application for the analysis of serotonin in human plasma. Anal. Sci. 2012, 28, 1097–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivieri, A.C.; Faber, K. New developments for the sensitivity estimation in four-way calibration with the quadrilinear parallel factor model. Anal. Chem. 2012, 84, 186–193. [Google Scholar] [CrossRef]
- Kang, C.; Wu, H.L.; Xie, L.X.; Xiang, S.X.; Yu, R.Q. Direct quantitative analysis of aromatic amino acids in human plasma by four-way calibration using intrinsic fluorescence: Exploration of third-order advantages. Talanta 2014, 122, 293–301. [Google Scholar] [CrossRef]
- Xie, L.X.; Wu, H.L.; Fang, Y.; Kang, C.; Xiang, S.X.; Zhu, L.; Yin, X.L.; Gu, H.W.; Liu, Z.; Yu, R.Q. Simultaneous determination of tyrosine and levodopa in human plasma using enzyme-induced excitation-emission-kinetic third-order calibration method. Chemom. Intell. Lab. Syst. 2015, 148, 9–19. [Google Scholar] [CrossRef]
- Kang, C.; Wu, H.L.; Zhou, C.; Xiang, S.X.; Zhang, X.H.; Yu, Y.J.; Yu, R.Q. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage. Anal. Chim. Acta 2016, 910, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Wu, H.L.; Yin, X.L.; Li, Y.; Qing, X.D.; Gu, H.W.; Kang, C.; Yu, R.Q. Exploiting third-order advantage using four-way calibration method for direct quantitative analysis of active ingredients of Schisandra chinensis in DMEM by processing four-way excitation-emission-solvent fluorescence data. Chemom. Intell. Lab. Syst. 2016, 155, 46–53. [Google Scholar] [CrossRef]
- Kang, C.; Wu, H.L.; Xu, M.L.; Yan, X.F.; Liu, Y.J.; Yu, R.Q. Simultaneously quantifying intracellular FAD and FMN using a novel strategy of intrinsic fluorescence four-way calibration. Talanta 2019, 197, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.H.; Zhai, H.L.; Zhao, B.Q.; Yin, B.; Zhu, L. A novel approach to the analysis of chemical third-order data. J. Chem. Inf. Modeling 2020, 60, 4750–4756. [Google Scholar] [CrossRef]
- Booksh, K.; Henshaw, J.M.; Burgess, L.W.; Kowalski, B.R. A second-order standard addition method with application to calibration of a kinetics-spectroscopic sensor for quantitation of trichloroethylene. J. Chemom. 1995, 9, 263–282. [Google Scholar] [CrossRef]
- Samari, F.; Hemmateenejad, B.; Shamsipur, M. Spectrophotometric determination of carminic acid in human plasma and fruit juices by second order calibration of the absorbance spectra–pH data matrices coupled with standard addition method. Anal. Chim. Acta 2010, 667, 49–56. [Google Scholar] [CrossRef]
- Zhu, S.H.; Wu, H.L.; Li, B.R.; Xia, A.L.; Han, Q.J.; Zhang, Y.; Bian, Y.C.; Yu, R.Q. Determination of pesticides in honey using excitation–emission matrix fluorescence coupled with second-order calibration and second-order standard addition methods. Anal. Chim. Acta 2008, 619, 165–172. [Google Scholar] [CrossRef]
- Arancibia, J.A.; Damiani, P.C.; Escandar, G.M.; Ibañez, G.A.; Olivieri, A.C. A review on second- and third-order multivariate calibration applied to chromatographic data. J. Chromatogr. B 2012, 910, 22–30. [Google Scholar] [CrossRef]
- Escandar, G.M.; Olivieri, A.C. Multi-way chromatographic calibration—A review. J. Chromatogr. A 2019, 1587, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Anzardi, M.B.; Arancibia, J.A.; Olivieri, A.C. Processing multi-way chromatographic data for analytical calibration, classification and discrimination: A successful marriage between separation science and chemometrics. Trac Trends Anal. Chem. 2021, 134, 116128. [Google Scholar] [CrossRef]
- Fang, D.M.; Wu, H.L.; Ding, Y.J.; Hu, L.Q.; Xia, A.L.; Yu, R.Q. Interference-free determination of fluoroquinolone antibiotics in plasma by using excitation–emission matrix fluorescence coupled with second-order calibration algorithms. Talanta 2006, 70, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, H.L.; Xia, A.L.; Han, Q.J.; Cui, H.; Yu, R.Q. Interference-free determination of Sudan dyes in chilli foods using second-order calibration algorithms coupled with HPLC-DAD. Talanta 2007, 72, 926–931. [Google Scholar] [CrossRef]
- Qing, X.D.; Zhou, H.B.; Zhang, X.H.; Wu, H.L.; Chen, C.Y.; Xu, S.W.; Li, S.S. Alternating trilinear decomposition of highly overlapped chromatograms for simultaneously targeted quantification of 15 PAHs in samples of pollution source. Microchem. J. 2019, 146, 742–752. [Google Scholar] [CrossRef]
- Cabrera-Bañegil, M.; Lavado Rodas, N.; Prieto Losada, M.H.; Blanco Cipollone, F.; Moñino Espino, M.J.; Muñoz de la Peña, A.; Durán-Merás, I. Evolution of polyphenols content in plum fruits (Prunus salicina) with harvesting time by second-order excitation-emission fluorescence multivariate calibration. Microchem. J. 2020, 158, 105299. [Google Scholar] [CrossRef]
- Dinç, E.; Ünal, N.; Ertekin, Z.C. Novel three-dimensional resolution of a pH and ultraviolet-visible absorption spectral dataset for the determination of desloratadine in a pharmaceutical product and its acid dissociation constant. Anal. Lett. 2020, 53, 1871–1887. [Google Scholar] [CrossRef]
- Ouyang, Y.Z.; Wu, H.L.; Fang, H.; Wang, T.; Sun, X.D.; Chang, Y.Y.; Ding, Y.J.; Yu, R.Q. Rapid and simultaneous determination of three fluoroquinolones in animal-derived foods using excitation-emission matrix fluorescence coupled with second-order calibration method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117458. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Cai, W.S.; Shao, X.G. Direct non-trilinear decomposition for analyzing high-dimensional data with imperfect trilinearity. Chemom. Intell. Lab. Syst. 2021, 210, 104244. [Google Scholar] [CrossRef]
- Bravo, M.A.; Gonzalez, L.A.; Valverde, O.B.; Quiroz, V.W.; Toledo-Neira, C. Evaluation of three-way fluorescence data-based for simultaneous determination of polycyclic aromatic hydrocarbons in tea infusion samples at sub-ppb levels by second-order multivariate calibration. Microchem. J. 2019, 151, 104208. [Google Scholar] [CrossRef]
- Yan, X.F.; Wu, H.L.; Qing, X.D.; Sun, Y.M.; Yu, R.Q. Interference-free determination of indole-3-acetic acid in two real systems using second-order calibration method coupled with excitation-emission matrix fluorescence. Anal. Sci. 2014, 30, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wu, H.L.; Yin, X.L.; Gu, H.W.; Kang, C.; Xiang, S.X.; Xia, H.; Yu, R.Q. Chemometrics-assisted determination of amiloride and triamterene in biological fluids with overlapped peaks and unknown interferences. Bioanalysis 2015, 7, 1685–1697. [Google Scholar] [CrossRef]
- Xie, L.X.; Wu, H.L.; Kang, C.; Xiang, S.X.; Yin, X.L.; Gu, H.W.; Zuo, Q.; Yu, R.Q. Quantitative investigation of the dynamic interaction of human serum albumin with procaine using a multi-way calibration method coupled with three-dimensional fluorescence spectroscopy. Anal. Methods 2015, 7, 6552–6560. [Google Scholar] [CrossRef]
- Ouyang, L.Q.; Wu, H.L.; Nie, J.F.; Zhang, Y.; Zou, H.Y.; Fu, H.Y.; Yu, R.Q. Simultaneous determination of psoralen and isopsoralen in plasma and chinese medicine Xian Ling Gu Bao capsule by using HPLC-DAD coupled with alternating trilinear decomposition algorithm. Anal. Chim. Acta 2009, 650, 160–166. [Google Scholar] [CrossRef]
- Zou, H.Y.; Wu, H.L.; OuYang, L.Q.; Zhang, Y.; Nie, J.F.; Fu, H.Y.; Yu, R.Q. Fluorescent quantification of terazosin hydrochloride content in human plasma and tablets using second-order calibration based on both parallel factor analysis and alternating penalty trilinear decomposition. Anal. Chim. Acta 2009, 650, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.N.; Wu, H.L.; Qing, X.D.; Nie, C.C.; Li, S.F.; Yu, Y.J.; Zhang, S.R.; Yu, R.Q. The maintenance of the second-order advantage: Second-order calibration of excitation–emission matrix fluorescence for quantitative analysis of herbicide napropamide in various environmental samples. Talanta 2011, 85, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kenny, J.E. Application of PARAFAC to a two-component system exhibiting fluorescence resonance energy transfer: From theoretical prediction to experimental validation. Analyst 2012, 137, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.N.; Gu, Y.; Kokot, S. Multiway calibrations based on spectrofluorimetric data derived from kinetic analysis of the hydrolysis reaction of nitrofurans—A comparison of prediction performance. Chemom. Intell. Lab. Syst. 2012, 112, 55–64. [Google Scholar] [CrossRef]
- Tu, D.Z.; Wu, H.L.; Li, Y.N.; Zhang, J.; Li, Y.; Nie, C.C.; Zhang, X.H.; Yu, R.Q. Measuring estriol and estrone simultaneously in liquid cosmetic samples using second-order calibration coupled with excitation–emission matrix fluorescence based on region selection. Anal. Methods 2012, 4, 222–229. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, H.L.; Chen, Y.; Zhai, M.; Qing, X.D.; Yu, R.Q. Quantitative determination of butylated hydroxyanisole and n-propyl gallate in cosmetics using three-dimensional fluorescence coupled with second-order calibration. Talanta 2013, 116, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Wu, H.L.; Yin, X.L.; Li, L.H.; Wang, J.Y.; Chen, Y.; Kang, C.; Yu, R.Q. A combined theoretical and experimental study for the chiral discrimination of naproxen enantiomers by molecular modeling and second-order standard addition method. Anal. Methods 2013, 5, 710–717. [Google Scholar] [CrossRef]
- Kang, C.; Wu, H.L.; Xiang, S.X.; Xie, L.X.; Liu, Y.J.; Yu, Y.J.; Sun, J.J.; Yu, R.Q. Simultaneous determination of aromatic amino acids in different systems using three-way calibration based on the PARAFAC-ALS algorithm coupled with EEM fluorescence: Exploration of second-order advantages. Anal. Methods 2014, 6, 6358–6368. [Google Scholar] [CrossRef]
- Nie, J.F.; Wu, H.L.; Zhu, S.H.; Han, Q.J.; Fu, H.Y.; Li, S.F.; Yu, R.Q. Simultaneous determination of 6-methylcoumarin and 7-methoxycoumarin in cosmetics using three-dimensional excitation–emission matrix fluorescence coupled with second-order calibration methods. Talanta 2008, 75, 1260–1269. [Google Scholar] [CrossRef]
- Zhou, P.R.; Tang, Z.F.; Wei, K.S.; Wan, Y.; Gao, Y.M.; Liang, Y.M.; Yan, X.F.; Bin, J.; Kang, C. Enhanced selectivity of ultraviolet-visible absorption spectroscopy with trilinear decomposition on spectral pH measurements for the interference-free determination of rutin and isorhamnetin in Chinese herbal medicine. Anal. Lett. 2021. [Google Scholar] [CrossRef]
- Kruskal, J.B. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 1977, 18, 95–138. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, N.D.; Bro, R. On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 2000, 14, 229–239. [Google Scholar] [CrossRef]
- Sanchez, E.; Kowalski, B.R. Generalized rank annihilation factor analysis. Anal. Chem. 1986, 58, 496–499. [Google Scholar] [CrossRef]
- Sanchez, E.; Kowalski, B.R. Tensorial resolution: A direct trilinear decomposition. J. Chemom. 1990, 4, 29–45. [Google Scholar] [CrossRef]
- Wu, H.L.; Shibukawa, M.; Oguma, K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. J. Chemom. 1998, 12, 1–26. [Google Scholar] [CrossRef]
- Linder, M.; Sundberg, R. Second-order calibration: Bilinear least squares regression and a simple alternative. Chemom. Intell. Lab. Syst. 1998, 42, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, A.C. On a versatile second-order multivariate calibration method based on partial least-squares and residual bilinearization: Second-order advantage and precision properties. J. Chemom. 2005, 19, 253–265. [Google Scholar] [CrossRef]
- Yu, Y.J.; Wu, H.L.; Niu, J.F.; Zhao, J.; Li, Y.N.; Kang, C.; Yu, R.Q. A novel chromatographic peak alignment method coupled with trilinear decomposition for three dimensional chromatographic data analysis to obtain the second-order advantage. Analyst 2013, 138, 627–634. [Google Scholar] [CrossRef]
- Kumar, K. Discrete wavelet assisted correlation optimised warping of chromatograms: Optimizing the computational time for correcting the drifts in peak positions. Anal. Methods 2017, 9, 2049–2058. [Google Scholar] [CrossRef]
- Kumar, K. Chemometric assisted correlation optimized warping of chromatograms: Optimizing the computational time for correcting the drifts in chromatographic peak positions. Anal. Methods 2018, 10, 1006–1014. [Google Scholar] [CrossRef]
- Kumar, K. Optimizing the process of reference selection for correlation optimised warping (COW) and interval correlation shifting (icoshift) analysis: Automating the chromatographic alignment procedure. Anal. Methods 2018, 10, 190–203. [Google Scholar] [CrossRef]
- Kumar, K. Introducing an integral optimised warping (IOW) approach for achieving swift alignment of drifted chromatographic peaks: An optimisation of the correlation optimised warping (COW) technique. Anal. Methods 2018, 10, 2764–2774. [Google Scholar] [CrossRef]
- Kumar, K. Anchor assisted warping of the chromatograms: A novel procedure to correct the drifts in the chromatographic peak positions. Talanta 2019, 195, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.A.; Bro, R. The N-way toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Qing, X.D.; Wu, H.L.; Yan, X.F.; Li, Y.; Ouyang, L.Q.; Nie, C.C.; Yu, R.Q. Development of a novel alternating quadrilinear decomposition algorithm for the kinetic analysis of four-way room-temperature phosphorescence data. Chemom. Intell. Lab. Syst. 2014, 132, 8–17. [Google Scholar] [CrossRef]
- Xia, A.L.; Wu, H.L.; Li, S.F.; Zhu, S.H.; Hu, L.Q.; Yu, R.Q. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays. J. Chemom. 2007, 21, 133–144. [Google Scholar] [CrossRef]
- Fu, H.Y.; Wu, H.L.; Yu, Y.J.; Yu, L.L.; Zhang, S.R.; Nie, J.F.; Li, S.F.; Yu, R.Q. A new third order calibration method with application for analysis of four way data arrays. J. Chemom. 2011, 25, 408–429. [Google Scholar] [CrossRef]
- Kang, C.; Wu, H.L.; Yu, Y.J.; Liu, Y.J.; Zhang, S.R.; Zhang, X.H.; Yu, R.Q. An alternative quadrilinear decomposition algorithm for four-way calibration with application to analysis of four-way fluorescence excitation-emission-pH data array. Anal. Chim. Acta 2013, 758, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Wu, H.L.; Song, J.J.; Xu, H.; Liu, Y.J.; Yu, Y.J.; Zhang, X.H.; Yu, R.Q. A flexible trilinear decomposition algorithm for three-way calibration based on the trilinear component model and a theoretical extension of the algorithm to the multilinear component model. Anal. Chim. Acta 2015, 878, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, A.C.; Faber, N.K.M. Standard error of prediction in parallel factor analysis of three-way data. Chemom. Intell. Lab. Syst. 2004, 70, 75–82. [Google Scholar] [CrossRef]
- Olivieri, A.C.; Wu, H.L.; Yu, R.Q. MVC2: A MATLAB graphical interface toolbox for second-order multivariate calibration. Chemom. Intell. Lab. Syst. 2009, 96, 246–251. [Google Scholar] [CrossRef]
- Olivieri, A.C.; Wu, H.L.; Yu, R.Q. MVC3: A MATLAB graphical interface toolbox for third-order multivariate calibration. Chemom. Intell. Lab. Syst. 2012, 116, 9–16. [Google Scholar] [CrossRef]
- Yu, Y.J.; Wu, H.L.; Shao, S.Z.; Kang, C.; Zhao, J.; Wang, Y.; Zhu, S.H.; Yu, R.Q. Using second-order calibration method based on trilinear decomposition algorithms coupled with high performance liquid chromatography with diode array detector for determination of quinolones in honey samples. Talanta 2011, 85, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Wu, H.L.; Zhu, S.H.; Kang, C.; Xu, H.; Su, Z.Y.; Gu, H.W.; Yu, R.Q. Rapid determination of costunolide and dehydrocostuslactone in human plasma sample and chinese patent medicine Xiang Sha Yang Wei capsule using HPLC-DAD coupled with second-order calibration. Chin. J. Chem. 2012, 30, 1137–1143. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, H.L.; Niu, J.F.; Yu, Y.J.; Yu, L.L.; Kang, C.; Li, Q.; Zhang, X.H.; Yu, R.Q. Chemometric resolution of coeluting peaks of eleven antihypertensives from multiple classes in high performance liquid chromatography: A comprehensive research in human serum, health product and Chinese patent medicine samples. J. Chromatogr. B 2012, 902, 96–107. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, H.L.; Wang, J.Y.; Tu, D.Z.; Kang, C.; Zhao, J.; Chen, Y.; Miu, X.X.; Yu, R.Q. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm. Food Chem. 2013, 138, 62–69. [Google Scholar] [CrossRef]
- Yu, Y.J.; Wu, H.L.; Fu, H.Y.; Zhao, J.; Li, Y.N.; Li, S.F.; Kang, C.; Yu, R.Q. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: Quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector. J. Chromatogr. A 2013, 1302, 72–80. [Google Scholar] [CrossRef]
- Xiang, S.X.; Wu, H.L.; Kang, C.; Xie, L.X.; Yin, X.L.; Gu, H.W.; Yu, R.Q. Fast quantitative analysis of four tyrosine kinase inhibitors in different human plasma samples using three-way calibration-assisted liquid chromatography with diode array detection. J. Sep. Sci. 2015, 38, 2781–2788. [Google Scholar] [CrossRef]
- Yin, X.L.; Wu, H.L.; Gu, H.W.; Hu, Y.; Wang, L.; Xia, H.; Xiang, S.X.; Yu, R.Q. Chemometrics-assisted high performance liquid chromatography-diode array detection strategy to solve varying interfering patterns from different chromatographic columns and sample matrices for beverage analysis. J. Chromatogr. A 2016, 1435, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, H.L.; Li, Y.; Gu, H.W.; Yin, X.L.; Xie, L.X.; Yu, R.Q. Rapid and simultaneous determination of five vinca alkaloids in Catharanthus roseus and human serum using trilinear component modeling of liquid chromatography–diode array detection data. J. Chromatogr. B 2016, 1026, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, H.L.; Xie, L.X.; Hu, Y.; Fang, H.; Sun, X.D.; Wang, T.; Xiao, R.; Yu, R.Q. Direct and interference-free determination of thirteen phenolic compounds in red wines using a chemometrics-assisted HPLC-DAD strategy for authentication of vintage year. Anal. Methods 2017, 9, 3361–3374. [Google Scholar] [CrossRef]
- Vosough, M.; Ghafghazi, S.; Moini Zanjani, T.; Sabetkasaei, M. Interference-free determination of carbamazepine in human serum using high performance liquid chromatography: A comprehensive research with three-way calibration methods. Iran. J. Pharm. Res. 2017, 16, 120–131. [Google Scholar] [CrossRef]
- Wang, T.; Wu, H.L.; Xie, L.X.; Zhu, L.; Liu, Z.; Sun, X.D.; Xiao, R.; Yu, R.Q. Fast and simultaneous determination of 12 polyphenols in apple peel and pulp by using chemometrics-assisted high-performance liquid chromatography with diode array detection. J. Sep. Sci. 2017, 40, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, H.L.; Liu, Z.; Xiao, R.; Wang, T.; Hu, Y.; Ding, Y.J.; Yu, R.Q. Chemometrics-assisted HPLC-DAD as a rapid and interference-free strategy for simultaneous determination of 17 polyphenols in raw propolis. Anal. Methods 2018, 10, 5577–5588. [Google Scholar] [CrossRef]
- Yin, X.L.; Gu, H.W.; Jalalvand, A.R.; Liu, Y.J.; Chen, Y.; Peng, T.Q. Dealing with overlapped and unaligned chromatographic peaks by second-order multivariate calibration for complex sample analysis: Fast and green quantification of eight selected preservatives in facial masks. J. Chromatogr. A 2018, 1573, 18–27. [Google Scholar] [CrossRef]
- Mortera, P.; Zuljan, F.A.; Magni, C.; Bortolato, S.A.; Alarcón, S.H. Multivariate analysis of organic acids in fermented food from reversed-phase high-performance liquid chromatography data. Talanta 2018, 178, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Teglia, C.M.; Azcarate, S.M.; Alcaráz, M.R.; Goicoechea, H.C.; Culzoni, M.J. Exploiting the synergistic effect of concurrent data signals: Low-level fusion of liquid chromatographic with dual detection data. Talanta 2018, 186, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Zhou, Q.; Liu, Z.; Qing, X.D.; Zheng, J.J.; Mu, S.T.; Liu, P.H. Comparison of three second-order multivariate calibration methods for the rapid identification and quantitative analysis of tea polyphenols in Chinese teas using high-performance liquid chromatography. J. Chromatogr. A 2020, 1618, 460905. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.Y.; Tan, C.; Zhao, A.P.; Li, M.L. Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. J. Agric. Food Chem. 2011, 59, 10839–10847. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, H.L.; Sun, Y.M.; Gu, H.W.; Liu, Z.; Liu, Y.J.; Yu, R.Q. Simultaneous determination of phenolic antioxidants in edible vegetable oils by HPLC–FLD assisted with second-order calibration based on ATLD algorithm. J. Chromatogr. B 2014, 947, 32–40. [Google Scholar] [CrossRef]
- Alcaráz, M.R.; Bortolato, S.A.; Goicoechea, H.C.; Olivieri, A.C. A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection. Quantitation of fluoroquinolones in water samples. Anal. Bioanal. Chem. 2015, 407, 1999–2011. [Google Scholar] [CrossRef]
- Bortolato, S.A.; Lozano, V.A.; de la Peña, A.M.; Olivieri, A.C. Novel augmented parallel factor model for four-way calibration of high-performance liquid chromatography–fluorescence excitation–emission data. Chemom. Intell. Lab. Syst. 2015, 141, 1–11. [Google Scholar] [CrossRef]
- Lozano, V.A.; Muñoz de la Peña, A.; Durán-Merás, I.; Espinosa Mansilla, A.; Escandar, G.M. Four-way multivariate calibration using ultra-fast high-performance liquid chromatography with fluorescence excitation–emission detection. Application to the direct analysis of chlorophylls a and b and pheophytins a and b in olive oils. Chemom. Intell. Lab. Syst. 2013, 125, 121–131. [Google Scholar] [CrossRef]
- Montemurro, M.; Pinto, L.; Véras, G.; de Araújo Gomes, A.; Culzoni, M.J.; Ugulino de Araújo, M.C.; Goicoechea, H.C. Highly sensitive quantitation of pesticides in fruit juice samples by modeling four-way data gathered with high-performance liquid chromatography with fluorescence excitation-emission detection. Talanta 2016, 154, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Carabajal, M.D.; Arancibia, J.A.; Escandar, G.M. On-line generation of third-order liquid chromatography–excitation-emission fluorescence matrix data. Quantitation of heavy-polycyclic aromatic hydrocarbons. J. Chromatogr. A 2017, 1527, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; Busetto, M.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P.; Balzamo, S.; Calabretta, E.; Ubaldi, V. Determination of estrogenic endocrine disruptors in water at sub-ng L−1 levels in compliance with Decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2019, 147, 1186–1191. [Google Scholar] [CrossRef]
- Gu, H.W.; Wu, H.L.; Yin, X.L.; Li, Y.; Liu, Y.J.; Xia, H.; Zhang, S.R.; Jin, Y.F.; Sun, X.D.; Yu, R.Q.; et al. Multi-targeted interference-free determination of ten β-blockers in human urine and plasma samples by alternating trilinear decomposition algorithm-assisted liquid chromatography–mass spectrometry in full scan mode: Comparison with multiple reaction monitoring. Anal. Chim. Acta 2014, 848, 10–24. [Google Scholar] [CrossRef]
- Gu, H.W.; Wu, H.L.; Li, S.S.; Yin, X.L.; Hu, Y.; Xia, H.; Fang, H.; Yu, R.Q.; Yang, P.Y.; Lu, H.J. Chemometrics-enhanced full scan mode of liquid chromatography-mass spectrometry for the simultaneous determination of six co-eluted sulfonylurea-type oral antidiabetic agents in complex samples. Chemom. Intell. Lab. Syst. 2016, 155, 62–72. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, H.L.; Xie, L.X.; Hu, Y.; Fang, H.; Sun, X.D.; Wang, T.; Xiao, R.; Yu, R.Q. Chemometrics-enhanced liquid chromatography-full scan-mass spectrometry for interference-free analysis of multi-class mycotoxins in complex cereal samples. Chemom. Intell. Lab. Syst. 2017, 160, 125–138. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, H.L.; Yin, X.L.; Gu, H.W.; Xiao, R.; Xie, L.X.; Liu, Z.; Fang, H.; Wang, L.; Yu, R.Q. Rapid and interference-free analysis of nine B-group vitamins in energy drinks using trilinear component modeling of liquid chromatography-mass spectrometry data. Talanta 2018, 180, 108–119. [Google Scholar] [CrossRef]
- Sun, X.D.; Wu, H.L.; Liu, Z.; Xie, L.X.; Hu, Y.; Fang, H.; Wang, T.; Xiao, R.; Ding, Y.J.; Yu, R.Q. Chemometrics-assisted liquid chromatography-full scan mass spectrometry for simultaneous determination of multi-class estrogens in infant milk powder. Anal. Methods 2018, 10, 1459–1471. [Google Scholar] [CrossRef]
- Long, W.J.; Wu, H.L.; Wang, T.; Xie, L.X.; Hu, Y.; Fang, H.; Cheng, L.; Ding, Y.J.; Yu, R.Q. Chemometrics-assisted liquid chromatography with full scan mass spectrometry for the interference-free determination of glucocorticoids illegally added to face masks. J. Sep. Sci. 2018, 41, 3527–3537. [Google Scholar] [CrossRef]
- Yan, X.F.; Liang, Y.M.; Zhou, B.; Bin, J.; Kang, C. Enhancing the selectivity of liquid chromatography–mass spectrometry by using trilinear decomposition on LC-MS data: An application to three-way calibration of coeluting analytes in human plasma. J. Sep. Sci. 2020, 43, 2718–2727. [Google Scholar] [CrossRef]
- Khayamian, T.; Tan, G.H.; Sirhan, A.; Siew, Y.F.; Sajjadi, S.M. Comparison of three multi-way models for resolving and quantifying bifenthrin and tetramethrin using gas chromatography–mass spectrometry. Chemom. Intell. Lab. Syst. 2009, 96, 149–158. [Google Scholar] [CrossRef]
- Yang, S.; Nadeau, J.S.; Humston-Fulmer, E.M.; Hoggard, J.C.; Lidstrom, M.E.; Synovec, R.E. Gas chromatography–mass spectrometry with chemometric analysis for determining 12C and 13C labeled contributions in metabolomics and 13C flux analysis. J. Chromatogr. A 2012, 1240, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Oca, M.L.; Ortiz, M.C.; Herrero, A.; Sarabia, L.A. Optimization of a GC/MS procedure that uses parallel factor analysis for the determination of bisphenols and their diglycidyl ethers after migration from polycarbonate tableware. Talanta 2013, 106, 266–280. [Google Scholar] [CrossRef]
- Fraga, C.G.; Corley, C.A. The chemometric resolution and quantification of overlapped peaks form comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 2005, 1096, 40–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.-L.; Xia, A.L.; Hu, L.-H.; Zou, H.-F.; Yu, R.-Q. Trilinear decomposition method applied to removal of three-dimensional background drift in comprehensive two-dimensional separation data. J. Chromatogr. A 2007, 1167, 178–183. [Google Scholar] [CrossRef]
- Porter, S.E.G.; Stoll, D.R.; Rutan, S.C.; Carr, P.W.; Cohen, J.D. Analysis of four-way two-dimensional liquid chromatography-diode array data: Application to metabolomics. Anal. Chem. 2006, 78, 5559–5569. [Google Scholar] [CrossRef]
- Navarro-Reig, M.; Jaumot, J.; van Beek, T.A.; Vivó-Truyols, G.; Tauler, R. Chemometric analysis of comprehensive LC×LC-MS data: Resolution of triacylglycerol structural isomers in corn oil. Talanta 2016, 160, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Van Mispelaar, V.G.; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; van Asten, A.C. Quantitative analysis of target components by comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2003, 1019, 15–29. [Google Scholar] [CrossRef]
- Hoggard, J.C.; Synovec, R.E. Automated resolution of nontarget analyte signals in GC × GC-TOFMS data using parallel factor analysis. Anal. Chem. 2008, 80, 6677–6688. [Google Scholar] [CrossRef] [PubMed]
- Skov, T.; Hoggard, J.C.; Bro, R.; Synovec, R.E. Handling within run retention time shifts in two-dimensional chromatography data using shift correction and modeling. J. Chromatogr. A 2009, 1216, 4020–4029. [Google Scholar] [CrossRef] [PubMed]
- Hoggard, J.C.; Siegler, W.C.; Synovec, R.E. Toward automated peak resolution in complete GC × GC–TOFMS chromatograms by PARAFAC. J. Chemom. 2009, 23, 421–431. [Google Scholar] [CrossRef]
- Hoggard, J.C.; Wahl, J.H.; Synovec, R.E.; Mong, G.M.; Fraga, C.G. Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics. Anal. Chem. 2010, 82, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Snyder, L.R.; Hoggard, J.C.; Montine, T.J.; Synovec, R.E. Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of l-β-methylamino-alanine in human tissue. J. Chromatogr. A 2010, 1217, 4639–4647. [Google Scholar] [CrossRef] [Green Version]
Analyte | Sample | Model | Algorithm | Validation | Ref. |
---|---|---|---|---|---|
p-chlorotoluene, o-chlorotoluene | Mixtures of p-chlorotoluene, o-chlorotoluene, and o-dichlorobenzene | LC–DAD-S trilinear | PARAFAC ATLD | Analysis of synthetic samples | [108] |
Twelve quinolones | Honey samples with spike | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [126] |
Costunolide, dehydrocostuslactone | Human plasma and a Chinese medicine real samples. | LC–DAD-S trilinear | ATLD | By LC–MS/MS | [127] |
Eleven antihypertensives | Human serum, health product, and Chinese patent medicine samples with spike | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [128] |
Nine polyphenols | Honey samples with spike | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [129] |
Eleven antibiotics | Tap water samples with spike | LC–DAD-S trilinear | PARAFAC | Analysis of spiked samples | [130] |
Four tyrosine kinase inhibitors | Human plasma samples with spike | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [131] |
Six synthetic colorants | Beverage samples | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [132] |
Five vinca alkaloids | Catharanthus roseus real samples and human serum spiked samples | LC–DAD-S trilinear | ATLD | By HPLC | [133] |
Thirteen phenolic compounds | Red wine samples with spike | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [134] |
Carbamazepine | Human serum samples | LC–DAD-S trilinear | PARAFAC ATLD SWATLD APTLD | Analysis of spiked samples | [135] |
Twelve polyphenols | Apple peel and pulp real samples | LC–DAD-S trilinear | ATLD | By HPLC | [136] |
Seventeen polyphenols | Raw propolis real samples | LC–DAD-S trilinear | ATLD | By LC–MS/MS | [137] |
Eight preservatives | Facial mask samples | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [138] |
Eleven organic acids | Yogurt, culture milk, cheese, and wine real samples | LC–DAD-S trilinear | PARAFAC | By HPLC | [139] |
Fifteen veterinary active ingredients | Real samples of poultry litter from five farms | LC–DAD-S trilinear | PARAFAC | Analysis of synthetic samples | [140] |
Fifteen polyphenols | Real samples of pu-erh tea, green tea, black tea, and clinacanthus nutans tea | LC–DAD-S trilinear | ATLD | Analysis of spiked samples | [141] |
Analyte | Sample | Instrument | Model | Algorithm | Validation | Ref. |
---|---|---|---|---|---|---|
Twenty amino acids | Real samples of green tea, oolong tea, black tea, and pu-erh tea | HPLC–FD | LC–EM-S trilinear | APTLD | Analysis of spiked samples | [142] |
Seven phenolic antioxidants | Edible vegetable oil samples with spike | HPLC–FD | LC–EM-S trilinear | ATLD | Analysis of spiked samples | [143] |
Difloxacin, enrofloxacin, flumenique, albendazole | Real samples of poultry litter from five farms | HPLC–FD | LC–EM-S trilinear | PARAFAC | Analysis of synthetic samples | [140] |
Ofloxacin, ciprofloxacin, danofloxacin | Tap water, mineral water, and well water samples with spike | HPLC–EEMF | LC&S–EX–EM trilinear | PARAFAC | Analysis of synthetic samples | [144] |
Chlorophylls, pheophytins | Olive oil samples with and without spike | HPLC–EEMF | LC&S–EX–EM trilinear | PARAFAC | Analysis of synthetic samples | [145] |
Analyte | Sample | Instrument | Model | Algorithm | Validation | Ref. |
---|---|---|---|---|---|---|
Chlorophylls, pheophytins | Olive oil samples with and without spike | HPLC–EEMF | LC–EX–EM-S quadrilinear | Four-way PARAFAC | Analysis of synthetic samples | [146] |
Six pesticides | Real samples of fruit juice from apple, pear, and plum | HPLC–EEMF | LC–EX–EM-S quadrilinear | Four-way PARAFAC | Analysis of spiked samples | [147] |
Eight polycyclic aromatic hydrocarbons | Underground water and stream water samples with spike | HPLC–EEMF | LC–EX–EM-S quadrilinear | Four-way PARAFAC | Analysis of synthetic samples | [148] |
Analyte | Sample | Instrument | Model | Algorithm | Validation | Ref. |
---|---|---|---|---|---|---|
Ten β-blockers | Human urine and plasma samples with spike | LC–MS | LC–MS-S trilinear | ATLD | By LC–MS (MRM mode) | [150] |
Six sulfonylurea oral antidiabetic agents | Health tea and human plasma samples with spike | LC–MS | LC–MS-S trilinear | ATLD | Analysis of spiked samples | [151] |
Ten mycotoxins | Maize and rice samples with spike | LC–MS | LC–MS-S trilinear | ATLD | By LC–MS/MS | [152] |
Nine B-group vitamins | Real samples of energy drinks samples | LC–MS | LC–MS-S trilinear | ATLD APTLD | By LC–MS/MS | [153] |
Seven estrogens | Infant milk powder samples with spike | LC–MS | LC–MS-S trilinear | ATLD | By LC–MS/MS | [154] |
Fifteen glucocorticoids | Face mask samples with spike | LC–MS | LC–MS-S trilinear | ATLD | By LC–MS/MS | [155] |
Aromatic amino acids | Real samples of human plasma | LC–MS | LC–MS-S trilinear | CATLD | By LC–MS/MS | [156] |
Analyte | Sample | Instrument | Model | Algorithm | Validation | Ref. |
---|---|---|---|---|---|---|
Bifenthrin, tetramethrin | Mixture of analytes | GC–MS | GC–MS-S trilinear | PARAFAC | Analysis of mixture of analytes | [157] |
Eleven metabolites | Methylobacterium extorquens AM1 samples | GC–MS | GC–MS-S trilinear | PARAFAC | Analysis of spiked samples | [158] |
Two bisphenols and their diglycidyl ethers | Polycarbonate tableware samples with spike | GC–MS | GC–MS-S trilinear | PARAFAC | Analysis of spiked samples | [159] |
Analyte | Sample | Instrument | Model | Algorithm | Validation | Ref. |
---|---|---|---|---|---|---|
Three analytes | Mixture of analytes | LC×LC–UV | LC-LC-S trilinear | PARAFAC | Analysis of mixture of analytes | [160] |
Background drift | Samples of Chinese medicine Rhizoma chuanxiong | LC–LC–DAD | LC-LC–DAD trilinear | ATLD | / | [161] |
Indoles | Maize seedling digests samples | LC–LC–DAD | LC-LC–DAD-S quadrilinear | Four-way PARAFAC | / | [162] |
Triacylglycerol structural isomers | Corn oil samples | LC–LC–MS | LC-LC–MS&S trilinear | PARAFAC | / | [163] |
Analyte | Sample | Instrument | Model | Algorithm | Validation | Ref. |
---|---|---|---|---|---|---|
Six essential-oil markers | Perfume real samples | GC×GC-FID | GC-GC-S trilinear | PARAFAC | By conventional integration | [164] |
Nontarget Analyte | Kerosene sample | GC×GC–MS | GC-GC–MS trilinear | PARAFAC | / | [165] |
Bromobenzene, dimethyl phosphite | Kerosene sample | GC×GC–MS | GC-GC–MS trilinear | PARAFAC | / | [166] |
Thirty-two compounds | Diesel and urine samples | GC×GC–MS | GC-GC–MS trilinear | PARAFAC | / | [167] |
Twenty-nine chemical impurity | Six dimethyl methylphosphonate samples | GC×GC–MS | GC-GC–MS trilinear | PARAFAC | [168] | |
L-β-methylamino-alanine | Human tissue sample | GC×GC–MS | GC-GC–MS trilinear | PARAFAC | / | [169] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zou, C.M.; Bin, J.; Yang, M.; Kang, C. Multilinear Mathematical Separation in Chromatography. Separations 2021, 8, 31. https://doi.org/10.3390/separations8030031
Chen Y, Zou CM, Bin J, Yang M, Kang C. Multilinear Mathematical Separation in Chromatography. Separations. 2021; 8(3):31. https://doi.org/10.3390/separations8030031
Chicago/Turabian StyleChen, Yi, Cong Ming Zou, Jun Bin, Min Yang, and Chao Kang. 2021. "Multilinear Mathematical Separation in Chromatography" Separations 8, no. 3: 31. https://doi.org/10.3390/separations8030031
APA StyleChen, Y., Zou, C. M., Bin, J., Yang, M., & Kang, C. (2021). Multilinear Mathematical Separation in Chromatography. Separations, 8(3), 31. https://doi.org/10.3390/separations8030031