Grafting of Acrylic Membrane Prepared from Fibers Waste for Dyes Removal: Methylene Blue and Congo Red
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Membrane Grafting
2.4. Dyes Preparation
2.5. Charcterzation of AFGM
2.5.1. Scanning Electron Microscope (SEM)
2.5.2. Fourier Transform Infrared (FT-IR)
2.5.3. Porosity
2.5.4. Swelling
2.6. Adsorption and Optimization Experiments
2.7. Full Factorial Design
2.8. Langmuir and Freundlich Isotherms
2.8.1. Langmuir Isotherm
2.8.2. Freundlich Isotherm
2.9. Kinetics Studies
2.9.1. Pseudo First-Order Model
2.9.2. Pseudo Second-Order Model
3. Results
3.1. Acrylic-Fiber Grafted Membrane (AFGM) Characterization
3.1.1. SEM
3.1.2. FT-IR
3.1.3. Grafting Percentage
3.1.4. Porosity
3.1.5. Swelling
3.2. Adsorption and Optimization Experiments Results
3.2.1. Effect of Contact Time
3.2.2. Effect of pH
3.2.3. Effect of Concentration
3.2.4. Factorial Design
The Main Effects
The Interaction Effects
Pareto Chart
Normal Probability Plot
Response Optimizer
3.3. Langmuir and Freundlich Isotherms
3.4. Kinetics
3.5. Regeneration Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aksakal, O.; Ucun, H. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. J. Hazard. Mater. 2010, 181, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Elkelish, A.; Souad, T.; Alhaithloul, H.; Farooq, M. Brassinosteroid Seed Priming with Nitrogen Supplementation Improves Salt Tolerance in Soybean. Physiol. Mol. Biol. Plants 2020. [Google Scholar] [CrossRef]
- Abdel-Azeem, A.; Nada, A.; O’Donovan, A.; Kumar Thakur, V.; Elkelish, A. Mycogenic Silver Nanoparticles from Endophytic Trichoderma Atroviride with Antimicrobial Activity. J. Renew. Mater. 2019, 7, 171–185. [Google Scholar] [CrossRef]
- Salem, S.S.; El-Belely, E.F.; Niedbała, G.; Alnoman, M.M.; Hassan, S.E.-D.; Eid, A.M.; Shaheen, T.I.; Elkelish, A.; Fouda, A. Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials 2020, 10, 2082. [Google Scholar] [CrossRef] [PubMed]
- Moghazy, R.M.; Labena, A.; Husien, S.; Mansor, E.S.; Abdelhamid, A.E. Neoteric approach for efficient eco-friendly dye removal and recovery using algal-polymer biosorbent sheets: Characterization, factorial design, equilibrium and kinetics. Int. J. Biol. Macromol. 2020, 157, 494–509. [Google Scholar] [CrossRef]
- Abdelhamid, A.E.; El-Sayed, A.A.; Khalil, A.M. Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater. J. Polym. Eng. 2020, 40, 833–841. [Google Scholar] [CrossRef]
- Husien, S.; Labena, A.; El-Belely, E.; Mahmoud, H.; Hamouda, A. Application of Nostoc sp. for hexavalent chromium [Cr(VI)] removal: Planktonic and biofilm. Int. J. Environ. Anal. Chem. 2020, 1–22. [Google Scholar] [CrossRef]
- Abd El-Ghaffar, M.; Elawady, M.M.; Rabie, A.M.; Abdelhamid, A.E.J.J.o.P.R. Enhancing the RO performance of cellulose acetate membrane using chitosan nanoparticles. J. Polym. Res. 2020, 27, 1–12. [Google Scholar]
- Badawi, A.K.; Zaher, K. Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation. J. Water Process Eng. 2021, 40, 101963. [Google Scholar] [CrossRef]
- Zhu, M.-X.; Lee, L.; Wang, H.-H.; Wang, Z. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard. Mater. 2007, 149, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhang, L.; Wang, R.; Chou, S.; Dong, Z. A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes. J. Hazard. Mater. 2016, 301, 462–470. [Google Scholar] [CrossRef]
- El-Shahat, M.; Abdelhamid, A.E.; Abdelhameed, R.M. Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan. Carbohydr. Polym. 2020, 231, 115742. [Google Scholar] [CrossRef]
- Elawwad, A.; Karam, A.; Zaher, K. Using an algal photo-bioreactor as a polishing step for secondary treated wastewater. Pol. J. Environ. Stud. 2017, 26, 1493–1500. [Google Scholar] [CrossRef]
- Karam, A.; Bakhoum, E.S.; Zaher, K. Coagulation/flocculation process for textile mill effluent treatment: Experimental and numerical perspectives. Int. J. Sustain. Eng. 2020, 1–13. [Google Scholar] [CrossRef]
- Patel, H.; Vashi, R. Removal of Congo Red dye from its aqueous solution using natural coagulants. J. Saudi Chem. Soc. 2012, 16, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Adhikari, S.; Kundu, P. Bioremediation of Wastewater Using Microalgae. In Environmental Biotechnology For Soil and Wastewater Implications on Ecosystems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 55–60. [Google Scholar]
- Karam, A.; Zaher, K.; Mahmoud, A.S. Comparative studies of using nano zerovalent iron, activated carbon, and green synthesized nano zerovalent iron for textile wastewater color removal using artificial intelligence, regression analysis, adsorption isotherm, and kinetic studies. Air Soil Water Res. 2020, 13, 1178622120908273. [Google Scholar] [CrossRef]
- Badawi, A.K.; Bakhoum, E.S.; Zaher, K. Engineering Sustainable Evaluation of Using Nano Zero-Valent Iron and Activated Carbon for Real Textile Effluent Remediation. Arab. J. Sci. Eng. 2021, 1–16. [Google Scholar] [CrossRef]
- Mansour, T.; Labena, A.; Maziad, N.; Hessin, S. Radiation Copolymerization of PVA/Malic acid/HEMA/Macro-algal (Sargassum sp.) Biomass for Removal of Hexavalent Chromium. Egypt. J. Chem. 2019. [Google Scholar] [CrossRef]
- Xia, L.; Zhou, S.; Zhang, C.; Fu, Z.; Wang, A.; Zhang, Q.; Wang, Y.; Liu, X.; Wang, X.; Xu, W. Environment-friendly Juncus effusus-based adsorbent with a three-dimensional network structure for highly efficient removal of dyes from wastewater. J. Clean. Prod. 2020, 259, 120812. [Google Scholar] [CrossRef]
- Zidan, T.; Abdelhamid, A.E.; Zaki, E. N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. Int. J. Biol. Macromol. 2020. [Google Scholar] [CrossRef]
- Mansor, E.S.; Labena, A.; Moghazy, R.M.; Abdelhamid, A.E. Advanced eco-friendly and adsorptive membranes based on Sargassum dentifolium for heavy metals removal, recovery and reuse. J. Water Process. Eng. 2020, 37, 101424. [Google Scholar] [CrossRef]
- Abdelhamid, A.E.; Labena, A.; Mansor, E.S.; Husien, S.; Moghazy, R.M. Highly efficient adsorptive membrane for heavy metal removal based on Ulva fasciata biomass. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Cseri, L.; Topuz, F.; Abdulhamid, M.A.; Alammar, A.; Budd, P.M.; Szekely, G. Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewater. Adv. Mater. Technol. 2021, 2000955. [Google Scholar] [CrossRef]
- Hardian, R.; Liang, Z.; Zhang, X.; Szekely, G. Artificial intelligence: The silver bullet for sustainable materials development. Green Chem. 2020, 22, 7521–7528. [Google Scholar] [CrossRef]
- Akbari, A. Novel membrane adsorbents prepared by waste fibers of mechanized carpet for Persian Orange X removal. Environ. Nanotechnol. Monit. Manag. 2017, 8, 209–218. [Google Scholar]
- Deng, S.; Bai, R.; Chen, J.P. Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 2003, 19, 5058–5064. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Miraftab, M.; Mohamed, M.; McMahon, P. Impact of carpet waste fibre addition on swelling properties of compacted clays. Geotech. Geol. Eng. 2013, 31, 173–182. [Google Scholar] [CrossRef]
- Orabi, A.H.; Abdelhamid, A.E.-S.; Salem, H.M.; Ismaiel, D.A.J.J.o.R.; Chemistry, N. New adsorptive composite membrane from recycled acrylic fibers and Sargassum dentifolium marine algae for uranium and thorium removal from liquid waste solution. J. Radioanal. Nucl. Chem. 2020, 326, 1233–1247. [Google Scholar] [CrossRef]
- Wang, B.; Chen, P.-Y.; Zhao, R.-X.; Zhang, L.; Chen, Y.; Yu, L.-P. Carbon-dot modified polyacrylonitrile fibers: Recyclable materials capable of selectively and reversibly adsorbing small-sized anionic dyes. Chem. Eng. J. 2020, 391, 123484. [Google Scholar] [CrossRef]
- Abdelhamid, A.E.; Khalil, A.M. Polymeric membranes based on cellulose acetate loaded with candle soot nanoparticles for water desalination. J. Macromol. Sci. Part A 2019, 56, 153–161. [Google Scholar] [CrossRef]
- Abdelhamid, A.E.; Elawady, M.M.; El-Ghaffar, M.A.A.; Rabie, A.M.; Larsen, P.; Christensen, M.L. Surface modification of reverse osmosis membranes with zwitterionic polymer to reduce biofouling. Water Sci. Technol. Water Supply 2015, 15, 999–1010. [Google Scholar] [CrossRef]
- Abdelwahab, N.; Al-Ashkar, E.; El-Ghaffar, M.A. Preparation and characterization of eco-friendly poly (p-phenylenediamine) and its composite with chitosan for removal of copper ions from aqueous solutions. Trans. Nonferrous Met. Soc. China 2015, 25, 3808–3819. [Google Scholar] [CrossRef]
- Rabiee, H.; Vatanpour, V.; Farahani, M.H.D.A.; Zarrabi, H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep. Purif. Technol. 2015, 156, 299–310. [Google Scholar] [CrossRef]
- Li, Y.; Su, Y.; Zhao, X.; He, X.; Zhang, R.; Zhao, J.; Fan, X.; Jiang, Z. Antifouling, high-flux nanofiltration membranes enabled by dual functional polydopamine. Acs Appl. Mater. Interfaces 2014, 6, 5548–5557. [Google Scholar] [CrossRef]
- Marrez, D.A.; Abdelhamid, A.E.; Darwesh, O.M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag. Shelf Life 2019, 20, 100302. [Google Scholar] [CrossRef]
- Cao, B.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano 2018, 12, 7434–7444. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über die adsorption in lösungen. Zeitschrift für physikalische Chemie 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Sarioglu, M.; Atay, U.J.G.N.J. Removal of Methylene blue by using biosolid. Glob. NEST J. 2006, 8, 113–120. [Google Scholar]
- Song, J.; Kong, H.; Jang, J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J. Colloid Interface Sci. 2011, 359, 505–511. [Google Scholar] [CrossRef]
- Pigorsch, E.; Elhaddaoui, A.; Turrell, S. Spectroscopic study of pH and solvent effects on the structure of Congo red and its binding mechanism to amyloid-like proteins. Spectrochim. Acta Part A Mol. Spectrosc. 1994, 50, 2145–2152. [Google Scholar] [CrossRef]
- Fu, Y.; Viraraghavan, T. Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv. Environ. Res. 2002, 7, 239–247. [Google Scholar] [CrossRef]
- El-Wakeel, S.; Moghazy, R.; Labena, A.; Husien, S. Algal biosorbent as a basic tool for heavy metals removal; the first step for further applications. J. Mater. Environ. Sci. 2019, 10, 75–87. [Google Scholar]
- Husien, S.; Labena, A.; El-Belely, E.; Mahmoud, H.M.; Hamouda, A.S. Adsorption studies of hexavalent chromium [Cr (VI)] on micro-scale biomass of Sargassum dentifolium, Seaweed. J. Environ. Chem. Eng. 2019, 7, 103444. [Google Scholar] [CrossRef]
- Husien, S.; Labena, A.; El-Belely, E.; Mahmoud, H.M.; Hamouda, A.S. Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: Live planktonic cells. Water Pract. Technol. 2019. [Google Scholar] [CrossRef]
- Moghazy, R.M. Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. Water SA 2019, 45, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Tuzen, M.; Sarı, A.; Saleh, T.A. Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J. Environ. Manag. 2018, 206, 170–177. [Google Scholar] [CrossRef]
- Saad, M.; Tahir, H.; Khan, J.; Hameed, U.; Saud, A. Synthesis of polyaniline nanoparticles and their application for the removal of Crystal Violet dye by ultrasonicated adsorption process based on Response Surface Methodology. Ultrason. Sonochem. 2017, 34, 600–608. [Google Scholar] [CrossRef]
- Saadat, S.; Karimi-Jashni, A. Optimization of Pb (II) adsorption onto modified walnut shells using factorial design and simplex methodologies. Chem. Eng. J. 2011, 173, 743–749. [Google Scholar] [CrossRef]
- Saad, M.; Tahir, H.; Ali, D. Green synthesis of Ag-Cr-AC nanocomposites by Azadirachta indica and its application for the simultaneous removal of binary mixture of dyes by ultrasonicated assisted adsorption process using Response Surface Methodology. Ultrason. Sonochem. 2017, 38, 197–213. [Google Scholar] [CrossRef]
- Ponnusami, V.; Krithika, V.; Madhuram, R.; Srivastava, S. Biosorption of reactive dye using acid-treated rice husk: Factorial design analysis. J. Hazard. Mater. 2007, 142, 397–403. [Google Scholar] [CrossRef]
- Woolard, C.; Strong, J.; Erasmus, C. Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams. Appl. Geochem. 2002, 17, 1159–1164. [Google Scholar] [CrossRef]
- Cengiz, S.; Cavas, L. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresour. Technol. 2008, 99, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Rouf, S.; Nagapadma, M.; Rao, R.R. Removal of harmful textile dye congo red from aqueous solution using chitosan and chitosan beads modified with CTAB. Int. J. Eng. Res. Appl. 2015, 5, 75–82. [Google Scholar]
- Sasmal, D.; Maity, J.; Kolya, H.; Tripathy, T. Study of congo red dye removal from its aqueous solution using sulfated acrylamide and N, N- dimethyl acrylamide grafted amylopectin. J. Water Process. Eng. 2017, 18, 7–19. [Google Scholar] [CrossRef]
- Li, G.; Zhu, W.; Zhang, C.; Zhang, S.; Liu, L.; Zhu, L.; Zhao, W. Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour. Technol. 2016, 206, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Seow, W.Y.; Hauser, C.A.E. Freeze–dried agarose gels: A cheap, simple and recyclable adsorbent for the purification of methylene blue from industrial wastewater. J. Environ. Chem. Eng. 2016, 4, 1714–1721. [Google Scholar] [CrossRef]
- Omar, H.; El-Gendy, A.; Al-Ahmary, K. Bioremoval of toxic dye by using different marine macroalgae. Turk. J. Bot. 2018, 42, 15–27. [Google Scholar] [CrossRef]
- Kavitha, D.; Namasivayam, C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 2007, 98, 14–21. [Google Scholar] [CrossRef]
Factor | Symbol | Statistical Code | Values of Coded Levels | |
---|---|---|---|---|
(Low)−1 | (High)+1 | |||
Time | Time (h) | A | 3 | 15 |
Dyes Concentration | Conc. (mg/L) | D | 50 | 200 |
Pollutant | Pollutant | C | MB | CR |
Std Order | Run Order | Pt Type | Blocks | Time (h) | Conc. (mg/L) | Pollutant | RE (%) * | FITS ** | RES *** |
---|---|---|---|---|---|---|---|---|---|
6 | 1 | 1 | 1 | 15 | 50 | CR | 86.00 | 92.69 | -6.693 |
4 | 2 | 1 | 1 | 3 | 200 | CR | 20.35 | 26.13 | -5.78 |
7 | 3 | 1 | 1 | 15 | 200 | MB | 23.25 | 28.18 | -4.931 |
1 | 4 | 1 | 1 | 3 | 50 | MB | 43.20 | 47.21 | -4.018 |
5 | 5 | 1 | 1 | 15 | 50 | MB | 61.00 | 56.06 | 4.931 |
2 | 6 | 1 | 1 | 3 | 50 | CR | 59.80 | 54.01 | 5.781 |
3 | 7 | 1 | 1 | 3 | 200 | MB | 23.35 | 19.33 | 4.018 |
8 | 8 | 1 | 1 | 15 | 200 | CR | 71.50 | 64.80 | 6.693 |
Membrane | Porosity (%) | Swelling (%) | Grafting (%) |
---|---|---|---|
Blank acrylic membrane | 23.1 | 420% | - |
Acrylic fiber grafted membrane (AFGM) | 15 | 354% | 14.5 |
Term | Effect | Coef | SE Coef | T-Value | p Value |
---|---|---|---|---|---|
Constant | 48.56 | 3.15 | 15.44 | 0.001 | |
Time (h) | 23.76 | 11.88 | 3.15 | 3.78 | 0.032 |
Conc. (mg/L) | −27.89 | −13.94 | 3.15 | −4.43 | 0.021 |
Pollutant | 21.71 | 10.86 | 3.15 | 3.45 | 0.041 |
Time (h)*Pollutant | 14.91 | 7.46 | 3.15 | 2.37 | 0.098 |
Model | Parameters | |||||
Langmuir | Qmax (mg/g) | b | R2 | |||
MB | CR | MB | CR | MB | CR | |
57.14 | 84.03 | 0.0235 | 0.011 | 0.989 | 0.9481 | |
Freundlich | N | K | R2 | |||
MB | CR | MB | CR | MB | CR | |
2.01 | 1.015 | 3.479 | 2.6 | 0.9942 | 0.8802 |
Sorbent Materials | Dye | Conc (mg/L) | Adsorption Capacity (Qe mg/g) | References |
---|---|---|---|---|
Acrylic fiber membrane | MB | 100 | 57.14 | Current study |
Acrylic fiber membrane | CR | 100 | 84.03 | Current study |
Zeolite | MB | - | 10.82 | [53] |
Rice husk | MB | 10-125 | 40.58 | [54] |
CB-CTAB | CR | 20 | 19.15 | [55] |
Sulfated AP | CR | 10 | 37.18 | [56] |
Wheat straw biochar powder | MB | 5–80 | 62.5 | [57] |
Freeze–dried agarose gel | MB | - | 10.4 | [58] |
Sulfated AP-g-PAM | CR | 10 | 66.97 | [56] |
Pinus brutia | CR | 50 | 35.3 | [59] |
Model | Parameters | |||||||
---|---|---|---|---|---|---|---|---|
1st order Kinetics | Qe calc. | Qe exper. | K | R2 | ||||
MB | CR | MB | CR | MB | CR | MB | CR | |
1788.9 | 1657.6 | 28.4 | 28.9 | 0.06149 | 0.258 | 0.7089 | 0.956 | |
2nd order kinetics | Qe calc. | Qe exper. | K | R2 | ||||
MB | CR | MB | CR | MB | CR | MB | CR | |
38.46 | 23.92 | 28.4 | 28.9 | 0.00092 | 0.02206 | 0.9932 | 0.9953 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labena, A.; Abdelhamid, A.E.; Husien, S.; Youssef, T.; Azab, E.; Gobouri, A.A.; Safwat, G. Grafting of Acrylic Membrane Prepared from Fibers Waste for Dyes Removal: Methylene Blue and Congo Red. Separations 2021, 8, 42. https://doi.org/10.3390/separations8040042
Labena A, Abdelhamid AE, Husien S, Youssef T, Azab E, Gobouri AA, Safwat G. Grafting of Acrylic Membrane Prepared from Fibers Waste for Dyes Removal: Methylene Blue and Congo Red. Separations. 2021; 8(4):42. https://doi.org/10.3390/separations8040042
Chicago/Turabian StyleLabena, Ahmed, Ahmed E. Abdelhamid, Shimaa Husien, Tarek Youssef, Ehab Azab, Adil A. Gobouri, and Gehan Safwat. 2021. "Grafting of Acrylic Membrane Prepared from Fibers Waste for Dyes Removal: Methylene Blue and Congo Red" Separations 8, no. 4: 42. https://doi.org/10.3390/separations8040042
APA StyleLabena, A., Abdelhamid, A. E., Husien, S., Youssef, T., Azab, E., Gobouri, A. A., & Safwat, G. (2021). Grafting of Acrylic Membrane Prepared from Fibers Waste for Dyes Removal: Methylene Blue and Congo Red. Separations, 8(4), 42. https://doi.org/10.3390/separations8040042