The Use of Ferrofluids in Analytical Sample Preparation: A Review
Abstract
:1. Introduction
2. FFs in Analytical Sample Preparation Methods
2.1. Alcohols and Water-Based FFs
2.2. IL-Based FFs
2.3. DES-Based FFs
2.4. SUPRAS-Based FFs
3. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA-LPME | air assisted liquid-phase microextraction |
ACN | acetonitrile |
ChCl | choline chloride |
DAD | diode array detection |
DESs | deep eutectic solvents |
DSDME | direct suspended droplet microextraction |
EG | ethylene glycol |
FAAS | flame atomic absorption spectroscopy |
FFs | ferrofluids |
FID | flame ionization detection |
GC | gas chromatograph |
GFAAS | graphite furnace atomic absorption |
HBA | hydrogen bonds acceptor |
HBD | hydrogen bond donor |
HPLC | high-performance liquid chromatography |
ICP-AES | inductively coupled plasma atomic emission spectroscopy |
ILs | ionic liquids |
LOQ | limit of quantification |
m-µ-dSPE | magnetic micro-dispersive solid-phase extraction |
MDLLME | magnetic dispersive liquid-liquid microextraction |
MeOH | methanol |
MLPME | magnetic liquid-phase microextraction |
MNPs | magnetic nanoparticles |
MS | mass spectrometer |
PAHs | polycyclic aromatic hydrocarbons |
RSD | relative standard deviation |
SDS | sodium dodecyl sulfate |
SEM | scanning electron microscopy |
SUPRASs | supramolecular solvents |
UV | ultraviolet |
References
- Socoliuc, V.; Peddis, D.; Petrenko, V.I.; Avdeev, M.V.; Susan-Resiga, D.; Szabó, T.; Turcu, R.; Tombácz, E.; Vékás, L. Magnetic nanoparticle systems for nanomedicine—A materials science perspective. Magnetochemistry 2020, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Odenbach, S. Ferrofluids and their applications. MRS Bull. 2013, 38, 921–924. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Yu, Y.; Zhao, Y. Flexible ferrofluids: Design and applications. Adv. Mater. 2019, 31, 1903497. [Google Scholar] [CrossRef] [PubMed]
- Krasia-Christoforou, T.; Socoliuc, V.; Knudsen, K.D.; Tombácz, E.; Turcu, R.; Vékás, L. From single-core nanoparticles in ferrofluids to multi-core magnetic nanocomposites: Assembly strategies, structure, and magnetic behavior. Nanomaterials 2020, 10, 2178. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-G.; Zhang, Y.; Lee, H.K. Ferrofluid-based liquid-phase microextraction. J. Chromatogr. A 2010, 1217, 7311–7315. [Google Scholar] [CrossRef] [PubMed]
- Asgharinezhad, A.A.; Mollazadeh, N.; Ebrahimzadeh, H.; Mirbabaei, F.; Shekari, N. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water. J. Chromatogr. A 2014, 1338, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, M.; Li, Y.; Li, Z.; Wang, F.; Li, Q.; Zhou, W.; Lu, R.; Gao, H. Application of ionic-liquid-supported magnetic dispersive solid-phase microextraction for the determination of acaricides in fruit juice samples. J. Sep. Sci. 2013, 36, 3249–3255. [Google Scholar] [CrossRef]
- Majidi, S.M.; Hadjmohammadi, M.R. Alcohol-based deep eutectic solvent as a carrier of SiO2@Fe3O4 for the development of magnetic dispersive micro-solid-phase extraction method: Application for the preconcentration and determination of morin in apple and grape juices, diluted and acidic extract of dried onion and green tea infusion samples. J. Sep. Sci. 2019, 42, 2842–2850. [Google Scholar]
- Shamsipur, M.; Zohrabi, P.; Hashemi, M. Application of a supramolecular solvent as the carrier for ferrofluid based liquid-phase microextraction for spectrofluorimetric determination of levofloxacin in biological samples. Anal. Methods 2015, 7, 9609. [Google Scholar] [CrossRef]
- Volmer, C.; Janiak, C. Naked metal nanoparticles from metal carbonyls in ionic liquids: Easy synthesis and stabilization. Coord. Chem. Rev. 2011, 255, 2039–2057. [Google Scholar] [CrossRef]
- Klekotka, U.; Satuła, D.; Basa, A.; Kalska-Szostko, B. Importance of surfactant quantity and quality on growth regime of iron oxide nanoparticles. Materials 2020, 13, 1747. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Liu, F.; Zhang, Q.; Gao, G. Synthesis of magnetite nanoparticle aqueous dispersions in anionic liquid containing acrylic acid anion. Colloid Surf. A-Physicochem. Eng. Asp. 2009, 332, 98–102. [Google Scholar] [CrossRef]
- Yang, D.; Li, G.; Wu, L.; Yang, Y. Ferrofluid-based liquid-phase microextraction: Analysis of four phenolic compounds in milks and fruit juices. Food Chem. 2018, 261, 96–102. [Google Scholar] [CrossRef]
- Firouzabadi, Z.D.; Shabani, A.M.H.; Dadfarnia, S.; Ehrampoush, M.H. Preconcentration and speciation of thallium by ferrofluid based dispersive solid phase extraction and flame atomic absorption spectrometry. Microchem. J. 2017, 130, 428–435. [Google Scholar] [CrossRef]
- Rastbood, S.; Hadjmohammadi, M.R.; Majidi, S.M. Development of a magnetic dispersive micro-solid-phase extraction method based on a deep eutectic solvent as a carrier for the rapid determination of meloxicam in biological samples. Anal. Methods 2020, 12, 2331. [Google Scholar] [CrossRef] [PubMed]
- Dil, E.A.; Ghaedi, M.; Asfaram, A. Application of hydrophobic deep eutectic solvent as the carrier for ferrofluid: A novel strategy for pre-concentration and determination of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization. Talanta 2019, 202, 526–530. [Google Scholar] [PubMed]
- Dil, E.A.; Ghaedi, M.; Asfaram, A.; Tayebi, L.; Mehrabi, F. A ferrofluidic hydrophobic deep eutectic solvent for the extraction of doxycycline from urine, blood plasma and milk samples prior to its determination by high-performance liquid chromatography-ultraviolet. J. Chromatogr. A 2020, 1613, 460695. [Google Scholar]
- Jouyban, A.; Farajzadeh, M.A.; Mogaddam, M.R.A.; Nemati, M.; Nabil, A.A.A. Ferrofluid-based dispersive liquid–liquid microextraction using a deep eutectic solvent as a support: Applications in the analysis of polycyclic aromatic hydrocarbons in grilled meats. Anal. Methods 2020, 12, 1522. [Google Scholar] [CrossRef]
- Jouyban, A.; Farajzadeh, M.A.; Nemati, M.; Nabil, A.A.A.; Mogaddam, M.R.A. Preparation of ferrofluid from toner powder and deep eutectic solvent used in air-assisted liquid-liquid microextraction: Application in analysis of sixteen polycyclic aromatic hydrocarbons in urine and saliva samples of tobacco smokers. Microchem. J. 2020, 154, 104631. [Google Scholar] [CrossRef]
- Mohebbi, A.; Farajzadeh, M.A.; Mogaddam, M.R.A.; Nemati, M. Development of a stirring-dependent magnetic dispersive solid phase extraction method coupled with ferrofluid-based dispersive liquid–liquid microextraction for the extraction of some pyrethroid pesticides from fruit juices. Food Anal. Methods 2021. [Google Scholar] [CrossRef]
- Alvand, M.; Shemirani, F. Fabrication of Fe3O4@graphene oxide core-shell nanospheres for ferrofluid-based dispersive solid phase extraction as exemplified for Cd(II) as a model analyte. Microchim. Acta 2016, 183, 1749–1757. [Google Scholar] [CrossRef]
- Montoro-Leal, P.; García-Mesa, J.C.; Cordero, M.T.S.; Guerrero, M.M.L.; Alonso, E.V. Magnetic dispersive solid phase extraction for simultaneous enrichment of cadmium and lead in environmental water samples. Microchem. J. 2020, 155, 104796. [Google Scholar] [CrossRef]
- Ramandi, N.F.; Shemirani, F.; Farahani, M.D. Dispersive solid phase extraction of lead(II) using a silica nanoparticle-based ionic liquid ferrofluid. Microchim. Acta 2014, 181, 1833–1841. [Google Scholar] [CrossRef]
- Farahani, M.D.; Shemirani, F.; Ramandi, N.F.; Gharehbaghi, M. Ionic liquid as a ferrofluid carrier for dispersive solid phase extraction of copper from food samples. Food Anal. Methods 2015, 8, 1979–1989. [Google Scholar] [CrossRef]
- Ramandi, N.F.; Shemirani, F. Surfacted ferrofluid based dispersive solid phase extraction; a novel approach to preconcentration of cationic dye in shrimp and water sample. Food Chem. 2015, 185, 398–404. [Google Scholar] [CrossRef]
- Yang, D.; Li, X.; Meng, D.; Yang, Y. Carbon quantum dots-modified ferrofluid for dispersive solid-phase extraction of phenolic compounds in water and milk samples. J. Mol. Liq. 2018, 261, 155–161. [Google Scholar] [CrossRef]
- Shen, Z.; He, Z.; Wang, P.; Wang, P.; Zhou, Z.; Sun, M.; Li, J.; Liu, D. Low-density magnetofluid dispersive liquid–liquid microextraction for the fast determination of organochlorine pesticides in water samples by GC-ECD. Anal. Chim. Acta 2013, 793, 37–43. [Google Scholar] [CrossRef]
- Adlnasab, L.; Ezoddin, M.; Shabanian, M.; Mahjoob, B. Development of ferrofluid mediated CLDH@Fe3O4@Tanic acid- based supramolecular solvent: Application in air-assisted dispersive micro solid phase extraction for preconcentration of diazinon and metalaxyl from various fruit juice samples. Microchem. J. 2019, 146, 1–11. [Google Scholar] [CrossRef]
- Gutiérrez-Serpa, A.; González-Martín, R.; Sajid, M.; Pino, V. Greenness of magnetic nanomaterials in miniaturized extraction techniques: A review. Talanta 2020, 225, 122053. [Google Scholar] [CrossRef]
- Timonen, J.V.I.; Latikka, M.; Leibler, L.; Ras, R.H.A.; Ikkala, O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 2013, 341, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Li, M.; Yang, Q.; Li, Y.; Liu, H.; Yang, H.; Xu, F. Magnetically actuated droplet manipulation and its potential biomedical applications. Appl. Mater. Interfaces 2017, 9, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Nayebi, R.; Shemirani, F. Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. TrAC Trends. Anal. Chem. 2021, 138, 116232. [Google Scholar] [CrossRef]
- Farahani, M.D.; Shemirani, F.; Gharehbaghi, M. Ferrofluid-based dispersive solid phase extraction of palladium. Talanta 2013, 109, 121–127. [Google Scholar] [CrossRef]
- Gharehbaghi, M.; Farahani, M.D.; Shemirani, F. Dispersive magnetic solid phase extraction based on an ionic liquid ferrofluid. Anal. Methods 2014, 6, 9258. [Google Scholar] [CrossRef]
- Ngomsik, A.-F.; Bee, A.; Talbot, D.; Cote, G. Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Sep. Purif. Technol. 2012, 86, 1–8. [Google Scholar] [CrossRef]
- Jalilian, N.; Asgharinezhad, A.A.; Ebrahimzadeh, H.; Molaei, K.; Karami, S. Magnetic solid phase extraction based on modified magnetite nanoparticles coupled with dispersive liquid–liquid microextraction as an efficient method for simultaneous extraction of hydrophobic and hydrophilic drugs. Chromatographia 2018, 81, 1569–1578. [Google Scholar] [CrossRef]
- Hui, B.Y.; Zain, N.N.M.; Mohamad, S.; Varanusupakul, P.; Osman, H.; Raoov, M. Poly(cyclodextrin-ionic liquid) based ferrofluid: A new class of magnetic colloid for dispersive liquid phase microextraction of polycyclic aromatic hydrocarbons from food samples prior to GC-FID analysis. Food Chem. 2020, 314, 126214. [Google Scholar] [CrossRef]
- Mohebbi, A.; Farajzadeh, M.A.; Nemati, M.; Reza, M.; Mogaddam, A. Development of a stirring–assisted ferrofluid–based liquid phase microextraction method coupled with dispersive liquid–liquid microextraction for the extraction of some widely used pesticides from herbal distillates. Int. J. Environ. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Ghasemi, A.; Jamali, M.R.; Es’haghi, Z. Ultrasound assisted ferrofluid dispersive liquid phase microextraction coupled with flame atomic absorption spectroscopy for the determination of cobalt in environmental samples. Anal. Lett. 2020. [Google Scholar] [CrossRef]
- Zohrabi, P.; Shamsipu, M.; Hashemi, M.; Hashemi, B. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 2016, 160, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Taherimaslak, Z.; Amoli-Diva, M.; Allahyari, M.; Pourghazi, K.; Manafi, M.H. Low density solvent based dispersive liquid–liquid microextraction followed by vortex-assisted magnetic nanoparticle based solid-phase extraction and surfactant enhanced spectrofluorimetric detection for the determination of aflatoxins in pistachio nuts. RSC Adv. 2015, 5, 12747. [Google Scholar] [CrossRef]
- Amoli-Diva, M.; Taherimaslak, Z.; Allahyari, M.; Pourghazi, K.; Manafi, M.H. Application of dispersive liquid–liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles basedsolid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry. Talanta 2015, 134, 98–104. [Google Scholar] [CrossRef]
- Rastegar, H.; Dadgarnejad, M.; Zolfaghari, F.; Taherimaslak, Z.; Amoli-Diva, M. Surfactant-enhanced spectrofluorimetric detection after magnetic nanoparticles-based micro-solid-phase extraction coupled with dispersive liquid–liquid micro-extraction for determination of ciprofloxacin in human plasma. Micro Nano Lett. 2018, 13, 1564–1569. [Google Scholar] [CrossRef]
- Zarei, A.R.; Nedaei, M.; Ghorbanian, S.A. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples. J. Chromatogr. A 2018, 1553, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Loussala, H.M.; Han, S.; Ji, X.; Li, C.; Sun, M. Recent advances of ionic liquids in sample preparation. TrAC Trends Anal. Chem. 2020, 125, 115833. [Google Scholar] [CrossRef]
- Gutiérrez-Serpa, A.; Napolitano-Tabares, P.I.; Šulc, J.; Pacheco-Fernández, I.; Pino, V. Role of ionic-liquids in composites in analytical sample preparation. Separations 2020, 7, 37. [Google Scholar] [CrossRef]
- Pacheco-Fernández, I.; Pino, V. Green solvents in analytical chemistry. Curr. Opin. Green Sustain. Chem. 2019, 18, 42–50. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Plastiras, O.-E.; Andreasidou, E.; Samanidou, V. Microextraction techniques with deep eutectic solvents. Molecules 2020, 25, 6026. [Google Scholar] [CrossRef]
- Santana-Mayor, A.; Rodríguez-Ramos, R.; Herrera-Herrera, A.; Socas-Rodríguez, B.; Rodríguez-Delgado, M.A. Deep eutectic solvents. The new generation of Green solvents in analytical chemistry. TrAC Trends Anal. Chem. 2021, 134, 116108. [Google Scholar] [CrossRef]
- Rubio, S. Twenty years of supramolecular solvents in sample preparation for chromatography: Achievements and challenges ahead. Anal. Bioanal. Chem. 2020, 412, 6037–6058. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Fernández, I.; González-Hernández, R.; Silva, F.A.E.; Freire, M.G.; Pino, V. Insights into coacervative and dispersive liquid-phase microextraction strategies with hydrophilic media–A review. Anal. Chim. Acta 2020, 1143, 225–249. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
Nanoparticle/Carrier | Amount of Ferrofluid (µL) | Analytes (Number) | Sample/Volume (mL) | Analytical Technique | LOQ | RSDmax * (%) | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Water-based FFs | ||||||||
γ-Fe2O3@citrate/water | – | metals (4) | water (–) | ICP-AES | – | – | – | [35] |
Fe3O4@decanoic acid/water | 1000 | drugs (2) | water, plasma and urine (5) | HPLC-UV | 10 µg·L−1 | 8.4 | 89.6–97.4 | [6] |
Fe3O4@oleic acid/water | 750 | aflatoxins (4) | MeOH/water extract of food (18) | spectrofluorimetry | 21 ng·L−1 ** | 4.6 | 91.6–99.6 | [41] |
Fe3O4@oleic acid/water | 500 | aflatoxin (1) | MeOH/water extract of food (18) | spectrofluorimetry | 13 ng·L−1 ** | 4.3 | 91.3–99.5 | [42] |
Fe3O4@decanoic acid/water | 1000 | drugs (3) | water and urine (20) | GC-FID | 10 µg·L−1 | 9.4 | 90.0–104 | [36] |
Fe3O4@oleic acid/water | 500 | drug (1) | plasma (5) | spectrofluorimetry | 0.21 µg·L−1 | 1.5 | 93.5–102 | [43] |
Alcohol-based FFs | ||||||||
Fe3O4@oleic acid/1-heptanol | 100 | phenolic compounds (4) | beverages (20) | HPLC-DAD | 0.66 µg·L−1 ** | 7.3 | 83.7–106 | [13] |
Fe3O4@SiO2/1-octanol | 28 (mg) | PAHs (16) | water (20) | GC-MS | 0.19 µg·L−1 | 12 | 59.2–93.3 | [5] |
Fe3O4@SiO2/1-octanol | 200 | metal (1) | soil and road dust after acid digestion (50) | FAAS | 0.35 µg·L−1 ** | 3.3 | 95.2–103 | [33] |
Fe3O4@SiO2/1-octanol | – | metal (1) | nail, hair, cabbage and iron after acid digestion (150) | FAAS | 0.21 µg·L−1 ** | 3.2 | 95.0–105 | [14] |
Fe3O4@poly(β-CD-IL)/1-octanol | – | PAHs (7) | water, beverages and ACN extract of food (15) | GC-FID | 0.21 µg·L−1 | 8.9 | 80.5–116 | [37] |
IL-based FFs | ||||||||
Fe3O4@SiO2/[C4MIm]+[BF4]− | 25 mg | metal (1) | water and food after wet digestion (150) | FAAS | 0.11 µg·L−1 ** | 4.0 | 97.5–103 | [34] |
Fe3O4@GO/[C4MIm]+[BF4]− | – | metal (1) | water, and vegetable and tobacco after acid digestion (250) | FAAS | 0.12 µg·L−1 ** | 1.4 | 98.2–101 | [21] |
Fe3O4@GO/[C4MIm]+[BF4]− | – | metals (2) | water (100) | GFAAS | 26 ng·L−1 | 6.5 | 83–117 | [22] |
Fe3O4@SiO2/[C6MIm]+[BF4]− | – | metal (1) | waters, and road dust and food after acid digestion (200) | FAAS | 1.7 µg·L−1 ** | 1.34 | 96.0–118 | [23] |
Fe3O4@SiO2/[C6MIm]+[BF4]− | – | metal (1) | water, beverages, and food after acid digestion (200) | FAAS | 0.32 µg·L−1 ** | 2.6 | 95.5–105 | [24] |
Fe3O4@SDS/[C6MIm]+[BF4]− | – | dye (1) | water and EtOH extract of food (175) | UV-Vis | 2.5 µg·L−1 ** | 2.9 | 99.0–109 | [25] |
BaFe/[C6MIm]+[NTF2]− | 50 | pesticides (5) | beverages (10) | HPLC-DAD | 0.53 µg·L−1 ** | 5.3 | 85.1–99.6 | [7] |
Fe3O4@CQD/[C8MIm]+[PF6]− | – | phenolic compounds (4) | water and beverage (20) | HPLC-DAD | 0.17 µg·L−1 ** | 4.1 | 94.5–102 | [26] |
DES-based FFs | ||||||||
Fe3O4@SiO2/ChCl:EG | 250 | drug (1) | plasma and urine (10) | HPLC-UV | 2.5 µg·L−1 ** | 6.2 | 92.8–98.4 | [15] |
Fe3O4@oleic acid/menthol:HAc | 60 | drug (1) | urine (10) | HPLC-UV | 4.6 µg·L−1 | 4.6 | 80.3–97.4 | [16] |
Fe3O4@oleic acid/menthol:octanoic acid | 150 | drug (1) | urine, blood plasma, and beverage (10) | HPLC-UV | 8.5 µg·L−1 | 5.7 | 86.7–97.5 | [17] |
Fe3O4@SiO2/PCHCl:menthol:decanoic acid | 90 | PAHs (16) | ACN extract of food (6) | GC-MS | 0.27 µg·kg−1 | 10 | 73–92 | [18] |
Fe3O4@Aliquat336/ChCl:stearic acid | 76 | PAHs (16) | saliva and urine (5) | GC-MS | 0.22 µg·L−1 | 9 | – | [19] |
Fe3O4@Aliquat336/ChCl:stearic acid | 85 | pesticides (6) | beverages (30) | GC-MS | 40 ng·L−1 | 5.3 | 89.0–105 | [20] |
Fe3O4@Aliquat336/ChCl:stearic acid | 225 | pesticides (7) | beverages (30) | GC-MS | 24 ng·L−1 | 7.9 | 82–94 | [38] |
Fe3O4@SiO2/Et4N+:EG | 150 | flavonoids (1) | beverages (10) | HPLC-UV | 3.0 µg·L−1 | 3.8 | 82–98 | [8] |
Fe3O4@clay/menthol:decanoic acid | 50 | explosives (11) | water and ACN extract of soil (10) | HPLC-UV | 0.91 µg·L−1 ** | 8 | 99–104 | [44] |
Fe3O4@SDBS/menthol:decanoic acid | 200 | metal (1) | water (50) | FAAS | 2.2 µg·L−1 | 2.6 | 96–99 | [39] |
SUPRAS-based FFs | ||||||||
Fe3O4@CLDH(Zn-Fe)/1-dodecanol:toluene | 8 | pesticides (2) | beverages (–) | GC-FID | 2 µg·L−1 | 6.5 | 85.0–96.6 | [28] |
Fe3O4@oleic acid/decanoid acid:Bu4N+ | 2000 | drug (1) | plasma and urine (30) | spectrofluorimetry | 0.2 µg·L−1 ** | 2.9 | 94.0–106 | [9] |
Fe3O4@oleic acid/decanoid acid:Bu4N+ | 2000 | pesticides (3) | water and beverages (10) | HPLC-UV | 0.35 µg·L−1 ** | 5.7 | 92.2–110 | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Martín, R.; Gutiérrez-Serpa, A.; Pino, V. The Use of Ferrofluids in Analytical Sample Preparation: A Review. Separations 2021, 8, 47. https://doi.org/10.3390/separations8040047
González-Martín R, Gutiérrez-Serpa A, Pino V. The Use of Ferrofluids in Analytical Sample Preparation: A Review. Separations. 2021; 8(4):47. https://doi.org/10.3390/separations8040047
Chicago/Turabian StyleGonzález-Martín, Raúl, Adrián Gutiérrez-Serpa, and Verónica Pino. 2021. "The Use of Ferrofluids in Analytical Sample Preparation: A Review" Separations 8, no. 4: 47. https://doi.org/10.3390/separations8040047
APA StyleGonzález-Martín, R., Gutiérrez-Serpa, A., & Pino, V. (2021). The Use of Ferrofluids in Analytical Sample Preparation: A Review. Separations, 8(4), 47. https://doi.org/10.3390/separations8040047