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Abstract: Thiophenic compounds constitute a class of sulfur compounds derived by thiophene,
containing at least one thiophenic ring. Their presence in fuels (crude oil, etc.) is important and
can reach 3% m/m. The combustion of fuels leads to the formation of sulfur oxides a severe source
of environmental pollution issues, such as acid rain with adverse effects both to humans and to
the environment. To reduce such problems, the EU and other regulatory agencies worldwide set
increasingly stringent regulations for sulfur content in fuels resulting in the necessity for intense
desulphurization processes. However, most of these processes are inefficient in the total removal of
sulfur compounds. Therefore, thiophenic compounds such as benzothiophenes and dibenzothio-
phenes are still present in heavier fractions of petroleum, therefore, their determination is of great
importance. Until now, all HPLC methods applied in similar studies use gradient elution programs
that may last more than 25 min with no validation results provided. To fill this gap, the aim of the
present study was to develop and validate a simple and fast HPLC-UV method in order to be used as
a useful monitoring tool in the evaluation studies of novel desulfurization technologies by means of
simultaneous determination of dibenzothiophene (DBT) and 4,6-dimethyl-dibenzothiophene and
dibenzothiophene sulfone in the desulfurization effluents.

Keywords: HPLC; thiophene compounds; fuels; desulphurization; dibenzothiophene (DBT);
4,6-dimethyl-dibenzothiophene; dibenzothiophene sulfone

1. Introduction

Organosulfur compounds such as sulfides, disulfides, thiophenes, benzothiophenes,
etc. contained in fossil fuels (e.g., petroleum, gasoline, diesel oil, etc.) can cause severe
environmental pollution issues upon combustion due to the formation of sulfur oxides,
which may cause air pollution and acid rain. Moreover, sulfur content may lead to the
poisoning of automotive catalysts used to reduce emissions of pollutant hydrocarbons,
carbon monoxide, and nitrogen oxides from gasoline- and diesel-fueled vehicles [1].

The growing environmental awareness resulted in a high necessity of efficient desulfu-
rization processes. Strict environmental regulations by the U.S. Environmental Protection
Agency (EPA) and other environmental regulatory agencies worldwide, require the total re-
moval of sulfur content which is not feasible to be achieved by conventional desulfurization
procedures [2,3].

European Community Member States shall ensure that gas oils are not used within
their territory if their sulfur content exceeds 0.10% by mass; heavy fuel oils are not used if
their sulfur content exceeds 3% by mass; marine fuels are not used within their territory
if their sulfur content exceeds 0.50% by mass, except for fuels supplied to ships using
emission abatement methods as reported in Directive (EU) 2016/802 [4] and Directive (EU)
2015/1513 [5].
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To that end, efficient desulfurization is an essential step in the petroleum refining
process. Hydrodesulfurization (HDS) is the main process widely used to eliminate sulfur
content. HDS processes are not economical and have a high energy demand since H2 and
catalysts such as CoMo/Al2O3 and/or NiMo/Al2O3 are used at temperatures from 300
to 400 ◦C and high pressures [6]. Besides, among thiophenic compounds that are derived
from thiophene containing at least one thiophenic ring, DBT and especially 4,6-DMDBT,
the sulfur-containing compounds in diesel oil that are considered as refractory species
since they resist ordinary methods of treatment, cannot be completely removed due to their
structure (their chemical structures are shown in Figure 1). This fact makes the current
target of a low level of 30 ppmw sulfur for diesel fuel, set by the Environmental Protection
Agency (EPA) requirements, to be a difficult task.
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Figure 1. Chemical structures of the studied thiophenic compounds: dibenzothiophene (DBT),
4,6-dimethyl-dibenzothiophene (4,6-DMDBT), and dibenzothiophene sulfone.

For these reasons, alternative and/or supplementary methods are needed, including
hydrodesulfurization on Co/Ni catalysts [7,8], oxidation/photo-oxidation [9,10], and
adsorption [11] with adsorptive desulfurization to be of great importance especially when
a removal target of a level less than 30 ppmw sulfur is considered.

Among adsorbent materials, activated carbons have been proven to be suitable adsor-
bents of dibenzothiophenic compounds [12–19]. Besides, their acidic oxygen functional
groups on their surface lead to specific adsorption of dibenzothiophenic species via oxygen–
sulfur interactions [20] and acid-base interactions with the slightly basic thiophenes [21].

Additionally, either oxygen of these carbons’ surface oxygen functional groups or
chemisorbed oxygen may take part in reactions that lead to the oxidation of adsorbed DBT
and 4,6-DMDBT on the carbon’s surface to their sulfoxides and finally sulfones with the
portion of 4,6-DMDBT oxidation to be less compared to DBT oxidation [17,18,20,22]. The
DBT sulfone is formed according to the oxidation reaction route shown in Figure 2 [23,24].
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For this reason, DBT, 4,6-DMDBT, and DBT-sulfone can be found in final effluent after
adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT)
in desulfurization studies, making their analytical determination during desulfurization
studies and the use of fast validated HPLC methods [25–27] of great importance.
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Therefore, in order to evaluate the effectiveness of new technologies, an analyt-
ical method is necessary to determine the concentration of initial as well as adsorp-
tion/oxidation products. Although these compounds have been determined in several
fuel samples during desulfurization studies there is a vacancy in the analytical field con-
cerning the development, optimization, and validation of a fast analytical method for their
monitoring [28–33]. Various GC and HPLC methods based on UV detection are reported
using gradient elution programs that may last more than 25 min. A comprehensive review
has listed most of the published methods. However, all these methods are reported as
monitoring tools where neither analytical performance characteristics are provided, nor
validation criteria are applied [25,34].

The aim of this study was to develop and validate a simple and fast HPLC method
for the simultaneous determination of DBT, DBT-sulfone, and 4,6-DMDBT in extracts after
the oxidative desulfurization process of fuels. To the best of our knowledge, there is no
published method for the determination of the examined thiophenic compounds.

2. Materials and Methods
2.1. Instrumentation

The separation of the target compounds was performed by the High-Performance
Liquid Chromatography (HPLC) method, using an HPLC column 250 × 4.6 mm (PerfectSil
Target ODS-3 5 µm, MZ-Analysentechnik GmbH, Wohlerstrasse, Mainz, Germany) with
a mobile phase consisted of a solution of acetonitrile and water (90% CH3CN: 10% H2O
v/v) delivered isocratically at a flow rate of 1.0 mL/min, using a Shimadzu (Kyoto, Japan)
LC-10AD pump. The pressure observed was 80 bar. Sample injection was performed via a
Rheodyne 7125 injection valve (Rheodyne, Cotati, CA, USA) with a 20 µL loop. Detection
was achieved by an SSI 500 UV-Vis detector (SSI, State College, PA, USA) at a wavelength
of 313 nm and a sensitivity setting of 0.002 AUFS. DAQ Software for Chemists, developed
by Emeritus Professor P. Nikitas (Dept. of Chemistry, Aristotle University of Thessaloniki).

The degassing of the mobile phase was performed in an ultrasonic bath Transonic
460/H (35 kHz, 170 W, Elma, Germany). All samples were filtered prior to HPLC analysis
using Q-Max RR Syringe Filters 0.22 µm Nylon, 13 mm Frisenette, Knebel, Denmark.

2.2. Chemicals and Reagents

HPLC grade acetonitrile and methanol were purchased from PanReac AppliChem (Ot-
toweg, Darmstadt, Germany). High purity water, obtained by a Milli-Q purification system
(Millipore, Bedford, MA, USA), was used throughout the entire study. Dibenzothiophene
sulfone 97%, 4,6-dimethyldibenzothiophene (4,6 DMDBT, C14H12S), and dibenzothiophene
(DBT, C12H8S) were supplied by JKchemical 1 (Beijing, China).

2.3. Preparation of Standard Solutions

Standard solutions of each analyte were prepared in acetonitrile (200 ng µL−1),
stored at 4 ◦C in the dark. Working standards solutions were prepared by further di-
lution in acetonitrile covering the linear range from 0.1 to 30 ng µL−1. Aliquots of 20 µL
were injected into the column and quantitative analysis was performed based on peak
area measurements.

2.4. Method Validation

Method validation was performed following the criteria set by Commission Decision
2002/657/EC [35].

In that aspect, selectivity, linearity, accuracy, precision (repeatability and between-day
precision), as well as limits of detection (LODs) and quantification (LOQs) were taken
into consideration. Calibration curves were constructed by three replicates of standard
solutions in the working interval of 0.1–30 ng µL−1.
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Limits of detection (LODs) were calculated based on the following equation LOD = 3.3 S/N,
where S = signal and N = noise. Limits of quantitation (LOQs) were calculated by the
equation LOQ = 10 S/N.

Accuracy was evaluated at three concentration levels of 0.5, 2, and 10 ng/µL. Precision
within-day (intra-day, n = 3) and between-day (inter-day n = 4 days by duplicate analyses)
was studied at three concentration levels 0.5, 2, and 10 ng/µL.

Peak purity was checked by standard addition of respective standards.

2.5. Adsorption of DBT and 4,6-DMDBT

For the adsorption experiments a solution containing the same concentrations of DBT
and 4,6-DMDBT in acetonitrile, was prepared. The concentration of each compound in
solution was 20 ppmwS. The corresponding total sulfur concentration was 40 ppmwS. The
mass of the carbon adsorbent was 1.25 g/L and the adsorption process was carried out at
ambient temperature. The remaining concentrations of thiophenes after adsorption were
determined by HPLC at a wavelength of 231 nm.

3. Results
3.1. HPLC Method

Isocratic elution was optimized in terms of mobile phase constituents and ratios.
Acetonitrile as the organic modifier led to better peak shape. The ratio of 90:10 v/v of
acetonitrile and water mixture provided the sufficient peak resolution and fast analysis.

A typical HPLC chromatogram at two mobile phase ratios is illustrated in Figure 3.
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v/v, peaks: DBT-sulfone 3.89 min, DBT 9.59 min, and 4,6-DMDBT 18.26 min) and (80% CH3CN: 20%
H2O v/v, peaks: DBT-sulfone 3.33 min, DBT 6.25 min, and 4,6-DMDBT 10.20 min).

3.2. Calibration Curves

Calibration curves were constructed by least-squares linear regression analysis. All
calibration data obtained by standard solution analyses are shown in Table 1. Regression
equations presented satisfactory correlation coefficients ranging between 0.9925 and 0.9993
over the examined range.

Table 1. Linearity data of developed method.

Analyte Slope Intercept Correlation Coefficient (R)

DBT 0.0136 0.009 0.9925
4,6-DMDBT 0.0135 0.0019 0.9953
DBT Sulfone 0.0670 −0.0414 0.9993
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The limit of detection was found to be 0.16 ng/µL, while the limit of quantitation was
found 0.5 ng/µL.

Selectivity was studied by the absence of peaks in the same Rt of analytes.
Accuracy and precision data at three concentration levels are summarised in Tables 2 and 3

with regards to within-day and between-day repeatability respectively.

Table 2. Accuracy and repeatability using CH3CN-H2O 90:10 v/v as mobile phase n = 3.

Analyte Added (ng/µL) Found ± SD (ng/µL) R% RSD%

0.5 0.46 ± 0.04 92.0 8.7
DBT 2 1.94 ± 0.20 97.0 10.3

10 9.8 ± 1.1 98.0 11.2
0.5 0.47 ± 0.05 94.0 10.6

4,6-DMDBT 2 2.0 ± 0.2 100.0 10.0
10 10.2 ± 0.87 102.0 8.5
0.5 0.52 ± 0.06 104.0 11.5

DBT Sulfone 2 1.88 ± 1.3 94.0 6.9
10 9.8 ± 1.1 98.0 11.2

Table 3. Accuracy and between-day precision using CH3CN-H2O 90:10 v/v as mobile phase (dupli-
cate analyses in four days).

Analyte Added (ng/µL) Found ± SD (ng/µL) R% RSD%

0.5 0.53 ± 0.06 106.0 11.3
DBT 2 2.08 ± 0.25 104.0 12.0

10 9.49 ± 0.84 94.9 8.8
0.5 0.5 ± 0.06 100.0 12.0

4,6-DMDBT 2 2.16 ± 0.3 108.0 13.9
10 9.79 ± 0.7 97.9 7.2
0.5 0.49 ± 0.05 98.0 10.2

DBT Sulfone 2 1.92 ± 0.15 96.0 7.8
10 9.4 ± 0.8 94.0 8.5

3.3. Application in Real Sample

The method was applied to samples derived from desulfurization studies as described
in the experimental part.

A typical chromatogram of sample obtained as described in Section 2.5 after 24 h
is shown in Figure 4, which illustrates the peaks of remaining DBT and 4,6 DMDBT
compounds, as well as the peak of the polar DBT sulfone, which is present in the effluent
eluted in the polar acetonitrile solvent.
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3.4. Comparison with Other Methods

So far various GC and HPLC methods based on UV detection are reported using
gradient elution programs that may last more than 25 min. All previously reported methods
were applied as monitoring tools where neither analytical performance characteristics are
provided, nor validation criteria are applied. The herein developed method is faster since
the analysis is completed within 10 min and no equilibration time is necessary in the
intervals as a benefit of isocratic elution. Therefore, six samples can be analyzed per hour
increasing the productivity of the method. The cost of the analysis is also lower since no
highly sophisticated instrumentation is needed.

4. Conclusions

It is vital to reduce the content of benzothiophene in liquid fuels—a process known
as desulfurization. Adsorption and catalytic oxidation can be used for the removal of
dibenzothiophene (DBT). Since this process is not complete, some amounts are still present
in the final product, thus, it is necessary to quantitate the remaining as well as other
thiophenic products in the final result.

Herein, a fast HPLC method was developed and validated to serve as an analytical
tool in desulfurization studies. The analysis is completed in ca 10 min and gives results for
three thiophenic compounds. The proposed method has been proved to be a useful tool in
the environmental technology field providing accurate, repeatable, and reliable analytical
results when applied in the respective evaluation studies.
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