Static vs. Dynamic Electrostatic Repulsion Reversed Phase Liquid Chromatography: Solutions for Pharmaceutical and Biopharmaceutical Basic Compounds
Abstract
:1. Introduction
2. Static ERRP-HPLC
3. Dynamic ERRP-HPLC
4. Applying Static ERRP Approach at the Preparative Scale for Peptide Separation
- (i)
- Basing them on stationary phases RP, thus modifying the concentration of organic modifier;
- (ii)
- Working on the concentration of buffer used in the mobile phase, increasing (or decreasing) the concentration of counterions that shield the IEX groups makes it possible to modulate the retention of the charged analytes;
- (iii)
- Modulating the concentration of the IEX group on the surface of the silica particle during the synthesis of the stationary phase. The more groups present, the more the charged molecule is repulsed in attractive-repulsive mode.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Manallack, D.T. The acid–base profile of a contemporary set of drugs: Implications for drug discovery. SAR QSAR Environ. Res. 2009, 20, 611–655. [Google Scholar] [CrossRef] [PubMed]
- Manallack, D.T. The pKa Distribution of Drugs: Application to Drug Discovery. Perspect. Med. Chem. 2007, 1, 25–38. [Google Scholar] [CrossRef]
- McCalley, D.T. The challenges of the analysis of basic compounds by high performance liquid chromatography: Some possi-ble approaches for improved separations. J. Chromatogr. A 2010, 1217, 858–880. [Google Scholar] [CrossRef] [PubMed]
- Stadalius, M.A.; Berus, J.S.; Snyder, L.R. ReversedPhase HPLC of Basic Samples. LC–GC 1988, 6, 6494–6500. [Google Scholar]
- Neue, U.D.; Serowik, E.; Iraneta, P.; Alden, B.A.; Walter, T.H. Universal procedure for assessment of the reproducibility and the characterization of silica-based reversed phase packings I. Assessment of the reproducibility of reversed-phase packings. J. Chromatogr. A 1999, 849, 87–100. [Google Scholar] [CrossRef]
- Nawrocki, J. The silanol group and its role in liquid chromatography. J. Chromatogr. A 1997, 779, 29–71. [Google Scholar] [CrossRef]
- Galea, C.; Mangelings, D.; Vander-Heyden, Y. Characterization and classification of stationary phases in HPLC and SFC–a review. Anal. Chim. Acta 2015, 886, 1–15. [Google Scholar] [CrossRef]
- Poole, C.F. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography. J. Chromatogr. B 2018, 1092, 207–219. [Google Scholar] [CrossRef]
- Wyndham, K.D.; O’Gara, J.E.; Walter, T.H.; Glose, K.H.; Lawrence, N.L.; Alden, B.A.; Izzo, G.S.; Hudalla, C.J.; Iraneta, P.C. Characterization and Evaluation of C18HPLC Stationary Phases Based on Ethyl-Bridged Hybrid Organic/Inorganic Particles. Anal. Chem. 2003, 75, 6781–6788. [Google Scholar] [CrossRef]
- Pesek, J.J.; Matyska, M.T. Hydride-based silica stationary phases for HPLC: Fundamental properties and applications. J. Sep. Sci. 2005, 28, 1845–1854. [Google Scholar] [CrossRef]
- Grumbach, E.S.; Diehl, D.M.; Neue, U.D. The application of novel 1.7micron ethylene bridged hybrid particles for hydro-philic interaction chromatography. J. Sep. Sci. 2008, 31, 1511–1518. [Google Scholar] [CrossRef]
- Claessens, H.A. Trends and progress in the characterization of stationary phases for reversed-phase liquid chromatography. TrAC Trends Anal. Chem. 2001, 20, 563–583. [Google Scholar] [CrossRef]
- Alpert, A.J. Electrostatic Repulsion Hydrophilic Interaction Chromatography for Isocratic Separation of Charged Solutes and Selective Isolation of Phosphopeptides. Anal. Chem. 2008, 80, 62–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, P.; Ren, Y.; Dutta, B.; Sze, S.K. Comparative evaluation of electrostatic repulsion–hydrophilic interaction chromatography (ERLIC) and high-pH reversed phase (Hp-RP) chromatography in profiling of rat kidney proteome. J. Proteom. 2013, 82, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Guiochon, G. Adsorption behaviors of neutral and ionizable compounds on hybrid stationary phases in the absence (BEH-C18) and the presence (CSH-C18) of immobile surface charges. J. Chromatogr. A 2013, 1282, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.H.; Euerby, M.R.; McCalley, D.V. A study of retention and overloading of basic compounds with mixed-mode reversed-phase/cation-exchange columns in high performance liquid chromatography. J. Chromatogr. A 2007, 1138, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Iraneta, P.C.; Wyndham, K.D.; McCabe, D.R.; Walter, T.H. A Review of Waters Hybrid Particle Technology; Part 3; Waters Corporation: Milford, CT, USA, 2010. [Google Scholar]
- Wyndham, K.; Walter, T.H.; Iraneta, P.; Alden, B.; Bouvier, E.; Hudalla, C.; Lawrence, N.; Walsh, D. Synthesis and applica-tions of BEH particles in liquid chromatography. LC-GC N. Am. 2012, 30, 20–29. [Google Scholar]
- Gritti, F.; Guiochon, G. Effect of the pH and the ionic strength on overloaded band profiles of weak bases onto neutral and charged surface hybrid stationary phases in reversed-phase liquid chromatography. J. Chromatogr. A 2013, 1282, 113–126. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Effect of the ionic strength on the adsorption process of an ionic surfactant onto a C18-bonded charged surface hybrid stationary phase at low Ph. J. Chromatogr. A 2013, 1282, 46–57. [Google Scholar] [CrossRef]
- Gritti, F.; Guichon, G. Separation of peptides and intact proteins by electrostatic repulsion reversed phase liquid chromatog-raphy. J. Chromatogr. A 2014, 1374, 112–121. [Google Scholar] [CrossRef]
- Nováková, L.; Vlčková, H.; Petr, S. Evaluation of new mixed-mode UHPLC stationary phases and the importance of sta-tionary phase choice when using low ionic-strength mobile phase additives. Talanta 2012, 93, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liang, T.; Li, K.; Ke, Y.; Jin, Y.; Liang, X. Preparation of a stationary phase with quaternary ammonium embedded group for selective separation of alkaloids based on ion-exclusion interaction. J. Sep. Sci. 2012, 35, 2685–2692. [Google Scholar] [CrossRef] [PubMed]
- Progent, F.; Taverna, M.; Banco, A.; Tchapla, A.; Smadja, C. Chromatographic behaviour of peptides on a mixed-mode sta-tionary phase with an embedded charged group by capillary electrochromatography and high-performance liquid chroma-tography. J. Chromatogr. A 2006, 1136, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J.; Jin, J.; Sun, X.; Wang, L.; Chen, J. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. J. Chromatogr. A 2014, 1337, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wang, S.; Li, H.; Shan, Y.; Dou, A.; Shi, X.; Xu, G. A novel surface-confined glucaminium-based ionic liquid sta-tionary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. J. Chromatogr. A 2014, 1360, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Baker, G.A.; Baker, S.N.; Colón, L.A. Surface confined ionic liquid as a stationary phase for HPLC. Analyst 2006, 131, 1000–1005. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Chen, T.; Zhang, H. Imidazoline type stationary phase for hydrophilic interaction chromatography and re-versed-phase liquid chromatography. J Chromatogr. A 2011, 1218, 5987–5994. [Google Scholar] [CrossRef]
- Abbood, A.; Smadja, C.; Herrenknecht, C.; Alahmad, Y.; Tchapla, A.; Taverna, M. Retention mechanism of peptides on a sta-tionary phase embedded with a quaternary ammonium group: A liquid chromatography study. J. Chromatogr. A 2009, 1216, 3244–3251. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Mallik, A.K.; Takafuji, M.; Liu, X.; Jiang, S.; Ihara, H. A new imidazolium-embedded C18 stationary phase with enhanced performance in reversed-phase liquid chromatography. Anal. Chim. Acta 2012, 738, 95–101. [Google Scholar] [CrossRef]
- Shi, X.; Qiao, L.; Xu, G. Recent development of ionic liquid stationary phases for liquid chromatography. J. Chromatogr. A 2015, 1420, 1–15. [Google Scholar] [CrossRef]
- Walter, T.H.; Alden, B.A.; Field, J.A.; Lawrence, N.L.; Osterman, D.L.; Patel, A.V.; DeLoffi, M.A. Characterization of a highly stable mixed-mode reversed-phase/weak anion-exchange stationary phase based on hybrid organic/inorganic particles. J. Sep. Sci. 2021, 44, 1005–1014. [Google Scholar] [CrossRef]
- Qiao, L.; Lv, W.; Chang, M.; Shi, X.; Xu, G. Surface-bonded amide-functionalized imidazolium ionic liquid as stationary phase for hydrophilic interaction liquid chromatography. J. Chromatogr. A 2018, 1559, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, H.; Chen, J.; Guan, M.; Qiu, H. Preparation and evaluation of 2-methylimidazolium-functionalized silica as a mixed-mode stationary phase for hydrophilic interaction and anion-exchange chromatography. J. Chromatogr. A 2016, 1468, 79–85. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, K.; Gao, D.; Fu, Q.; Zeng, J.; Zhou, D.; Wanga, L.; Xia, Z. Mixed-mode liquid chromatography with a sta-tionary phase co-functionalized with ionic liquid embedded C18 and an aryl sulfonate group. J. Chromatogr. A 2018, 564, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Qiao, L.; Shi, X.; Xu, G. Preparation and evaluation of a novel hybrid monolithic column based on pentafluoro-benzyl imidazolium bromide ionic liquid. J. Chromatogr. A 2015, 1375, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Makarov, A.; LoBrutto, R.; Kazakevich, Y. Liophilic Mobile Phase Additives in Reversed Phase HPLC. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 1533–1567. [Google Scholar] [CrossRef]
- Bartha, A.; Vigh, G.; Billiet, A.H.; de Galan, L. Studies in reversed-phase ion-pair chromatography: IV. The role of the chain length of the pairing ion. J. Chromatogr. A 1984, 303, 29–38. [Google Scholar] [CrossRef]
- Bartha, A.; Vigh, G. Studies in reversed-phase ion-pair chromatography: V. Simultaneous effects of the eluent concentration of the inorganic counter ion and the surface concentration of the pairing ion. J. Chromatogr. A 1987, 396, 503–509. [Google Scholar] [CrossRef]
- Sokolowski, A. Zone formation in Ion-Pair HPLC. I. Effects of adsorption of organic ions on established column equilibria. Chromatographia 1986, 22, 168–176. [Google Scholar] [CrossRef]
- Sokolowski, A. Zone formation in Ion-Pair HPLC. II. System Peak retention and effects of desorption of organic ions on es-tablished column equilibria. Chromatographia 1986, 22, 177–182. [Google Scholar] [CrossRef]
- Manetto, S.; Mazzoccanti, G.; Ciogli, A.; Villani, C.; Gasparrini, F. Ultra-high performance separation of basic compounds on reversed-phase columns packed with fully/superficially porous silica and hybrid particles by using ultraviolet transparent hydrophobic cationic additives. J. Sep. Sci. 2020, 43, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Ubeda-Torres, M.T.; Ortiz-Bolsico, C.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Gaining insight in the behavior of im-idazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds. J. Chromatogr. A 2015, 1380, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Calabuig-Hernández, S.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Performance of amines as silanol suppressors in reversed-phase liquid chromatography. J. Chromatogr. A 2016, 1465, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Mai, X.-L.; Choi, Y.; Truong, Q.-K.; Nguyen, T.-N.-V.; Han, S.B.; Kim, K.H. Alternative chromatographic method for the assay test of terbutaline and salbutamol using ionic liquid assisted aqueous mobile phase. Anal. Sci. Technol. 2020, 33, 169–176. [Google Scholar]
- Mazzoccanti, G.; Manetto, S.; Bassan, M.; Foschini, A.; Orlandin, A.; Ricci, A.; Cabri, W.; Ismail, O.H.; Catani, M.; Cavazzi-ni, A.; et al. Boosting basic-peptide separation through dynamic electrostatic-repulsion reversed-phase (d-ERRP) liq-uid chromatography. RSC Adv. 2020, 10, 12604–12610. [Google Scholar] [CrossRef]
- Buszewska-Forajta, M.; Markuszewski, M.J.; Kaliszan, R. Free silanols and ionic liquids as their suppressors in liquid chro-matography. J. Chromatogr. A 2018, 1559, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Berthod, A.; Ruiz-Angel, M.J.; Huguet, S. Nonmolecular solvents in separation methods: Dual nature of room temperature ionic liquids. Anal. Chem. 2005, 77, 4071–4080. [Google Scholar] [CrossRef]
- Gritti, F.; Guichon, G. Hydrophilic interaction chromatography: A promising alternative to reversed-phase liquid chroma-tography systems for the purification of small protonated bases. J. Sep. Sci. 2015, 38, 1633–1641. [Google Scholar] [CrossRef]
- Aronoff, S.L.; Berkowitz, K.; Shreiner, B.; Want, L. Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectr. 2004, 17, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef]
- Bruckdorfer, T.; Marder, O.; Albericio, F. From production of peptides in milligram amounts for research to multi-tons quan-tities for drugs of the future. Curr. Pharm. Biotechnol. 2005, 5, 29–43. [Google Scholar] [CrossRef]
- Roque, A.C.A.; Lowe, C.R.; Taipa, M.Â. Antibodies and genetically engineered related molecules: Production and purifica-tion. Biotechnol. Prog. 2004, 20, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Gétaz, D.; Forrer, N.; Morbidelli, M. Modeling of mixed-mode chromatography of peptides. J. Chromatogr. A 2013, 1283, 46–52. [Google Scholar] [CrossRef]
- Sewald, N.; Jakubke, H.D. Verlag GmbH & Co KGaA. In Peptide: Chemistry and Biology; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Nogueir, R.; Lammerhofen, M.; Lindner, W. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J. Chromatogr. A 2005, 1089, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Crowther, J.B.; Hartwic, R.A. Chemically bonded multifunctional stationary phases for high-performance liquid chromatog-raphy. Chromatographia 1982, 16, 349–353. [Google Scholar] [CrossRef]
- Floyd, T.R.; Cicero, S.E.; Fazio, S.D.; Raglione, T.V.; Hsu, S.H.; Winkle, S.A.; Hartwick, R.A. Mixed-mode hydrophobic ion ex-change for the separation of oligonucleotides and DNA fragments using HPLC. Anal. Biochem. 1986, 154, 570–577. [Google Scholar] [CrossRef]
- Halan, V.; Maity, S.; Bhambure, R.; Rathore, A.S. Multimodal Chromatography for Purification of Biotherapeutics–A Re-view. Curr. Protein Pept. Sci. 2019, 20, 4–13. [Google Scholar] [CrossRef]
- Mclaughlin, L.W.; Bischoff, R. Nucleic acid resolution by mixed-mode chromatography. J. Chromatogr. A 1984, 296, 329–337. [Google Scholar]
- Kopaciewicz, W.; Rounds, M.A.; Regnier, F.E. Stationary phase contributions to retention in high-performance ani-on-exchange protein chromatography: Ligand density and mixed mode effects. J. Chromatogr. A 1985, 318, 157–172. [Google Scholar] [CrossRef]
- Walshe, M.; Kelly, M.T.; Smyth, M.R.; Ritchie, H. Retention studies on mixed-mode columns in high-performance liquid chro-matography. J. Chromatogr. A 1995, 708, 31–40. [Google Scholar] [CrossRef]
- Tsunoda, M.; Aoyama, C.; Nomura, H.; Toyoda, T.; Matsuki, N.; Funatsu, T. Simultaneous determination of dopamine and 3,4-dihydroxyphenylacetic acid in mouse striatum using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2010, 51, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Bergqvist, Y.; Hopstadius, C. Simultaneous separation of atovaquone, proguanil and its metabolites on a mixed mode high-performance liquid chromatographic column. J. Chromatogr. B 2000, 741, 189–193. [Google Scholar] [CrossRef]
- Gilar, M.; Yu, Y.Q.; Ahn, J.; Fournier, J.; Gebler, J.C. Mixed-mode chromatography for fractionation of peptides, phosphopep-tides, and sialylated glycopeptides. J. Chromatogr. A 2008, 1191, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Peng, G.; Li, F.; Shi, Q.; Sun, Y. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography. J. Chromatogr. A 2008, 1211, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fang, A.; Riley, C.; Wang, M.; Regnier, F.E.; Buck, C. Multi-dimensional liquid chromatography in proteomics—A review. Anal. Chim. Acta 2010, 664, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, R.; Forrer, N.; Buffolino, G.; Gétaz, D.; Bernardi, S.; Butté, A.; Morbidelli, M. Doping reversed-phase media for im-proved peptide purification. J. Chromatogr. A 2015, 1397, 11–18. [Google Scholar] [CrossRef]
- Kallberg, K.; Johansson, H.-O.; Bulow, L. Multimodal chromatography: An efficient tool in downstream processing of pro-teins. Biotechnol. J. 2012, 7, 1485–1495. [Google Scholar] [CrossRef]
- Johansson, B.-L.; Belew, M.; Eriksson, S.; Glad, G.; Lind, O.; Maloisel, J.-L.; Norrman, N. Preparation and characterization of prototypes for multi-modal separation aimed for capture of positively charged biomolecules at high-salt conditions. J. Chromatogr. A 2003, 1016, 35–49. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzoccanti, G.; Gasparrini, F.; Calcaterra, A.; Villani, C.; Ciogli, A. Static vs. Dynamic Electrostatic Repulsion Reversed Phase Liquid Chromatography: Solutions for Pharmaceutical and Biopharmaceutical Basic Compounds. Separations 2021, 8, 59. https://doi.org/10.3390/separations8050059
Mazzoccanti G, Gasparrini F, Calcaterra A, Villani C, Ciogli A. Static vs. Dynamic Electrostatic Repulsion Reversed Phase Liquid Chromatography: Solutions for Pharmaceutical and Biopharmaceutical Basic Compounds. Separations. 2021; 8(5):59. https://doi.org/10.3390/separations8050059
Chicago/Turabian StyleMazzoccanti, Giulia, Francesco Gasparrini, Andrea Calcaterra, Claudio Villani, and Alessia Ciogli. 2021. "Static vs. Dynamic Electrostatic Repulsion Reversed Phase Liquid Chromatography: Solutions for Pharmaceutical and Biopharmaceutical Basic Compounds" Separations 8, no. 5: 59. https://doi.org/10.3390/separations8050059
APA StyleMazzoccanti, G., Gasparrini, F., Calcaterra, A., Villani, C., & Ciogli, A. (2021). Static vs. Dynamic Electrostatic Repulsion Reversed Phase Liquid Chromatography: Solutions for Pharmaceutical and Biopharmaceutical Basic Compounds. Separations, 8(5), 59. https://doi.org/10.3390/separations8050059