Determination of Formaldehyde Yields in E-Cigarette Aerosols: An Evaluation of the Efficiency of the DNPH Derivatization Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hemiacetal Behavior in Acidic DNPH Environment
3.1.1. Investigating Potential Intramolecular Cyclization for FA-Hemiacetal to Acetals
3.1.2. Investigating Potential Hydrolysis of FA-Hemiacetal Adducts to Release Formaldehyde
3.2. Acetal Reactivity and Formation Experiments
3.2.1. Investigating Hydrolysis of Cyclic Formaldehyde-Acetal Adducts (Gly-A and PG-A) Acidic DNPH Environment
3.2.2. Evaluation of Formaldehyde-Acetals (Gly-A and PG-A) Formation as a By-Product of the Aerosolization Process
3.3. Investigating Formation of PG-Acetal in PEE9 Aerosol: Formation during Aerosolization vs. Transfer from e-Liquid to Aerosol
3.4. Evaluation of the Efficiency of DNPH Derivatization Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- IARC. Monographs on the Identification of Carcinogenic Hazards to Humans; IARC: Lyon, France, 2012; Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 10 September 2021).
- Chris, J. Formaldehyde Resins Used in Industry, Manufacturing, and Construction; Bright Hub Engineering: Troy, NY, USA, 2010; Available online: https://www.brighthubengineering.com/manufacturing-technology/88542-formaldehyde-resins-as-engineering-materials/ (accessed on 10 September 2021).
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol; International Agency for Research on Cancer: Lyon, France, 2006. [Google Scholar]
- Kaden, D.A.; Mandin, C.; Nielsen, G.D.; Wolkoff, P. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK138711/ (accessed on 10 September 2021).
- Regulations Amending the Tobacco Reporting Regulations: SOR/2019-64. Can. Gaz. 2019, 153 Pt II, 6. Available online: https://canadagazette.gc.ca/rp-pr/p2/2019/2019-03-20/html/sor-dors64-eng.html (accessed on 10 September 2021).
- Wright, C. Standardized methods for the regulation of cigarette-smoke constituents. TrAC Trends Anal. Chem. 2015, 66, 118–127. [Google Scholar] [CrossRef] [Green Version]
- FDA. Reporting Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke Under Section 904(a)(3) of the Federal Food, Drug, and Cosmetic Act. Draft Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration: Rockville, MD, USA, 2012.
- FDA. Harmful and potentially harmful constituents in tobacco products and tobacco smoke; established list. Fed. Regist. 2012, 77, 20034–20037. [Google Scholar]
- FDA. Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems: Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Tobacco Products: Rockville, MD, USA, 2019.
- Reilly, S.M.; Goel, R.; Trushin, N.; Elias, R.J.; Foulds, J.; Muscat, J.; Liao, J.; Richie, J.P. Brand variation in oxidant production in mainstream cigarette smoke: Carbonyls and free radicals. Food Chem. Toxicol. 2017, 106, 147–154. [Google Scholar] [CrossRef]
- Counts, M.; Morton, M.; Laffoon, S.; Cox, R.; Lipowicz, P. Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regul. Toxicol. Pharmacol. 2005, 41, 185–227. [Google Scholar] [CrossRef]
- Roemer, E.; Stabbert, R.; Rustemeier, K.; Veltel, D.; Meisgen, T.; Reininghaus, W.; Carchman, R.; Gaworski, C.; Podraza, K. Chemical composition, cytotoxicity and mutagenicity of smoke from US commercial and reference cigarettes smoked under two sets of machine smoking conditions. Toxicology 2004, 195, 31–52. [Google Scholar] [CrossRef]
- Cheng, T. Chemical evaluation of electronic cigarettes. Tob. Control. 2014, 23 (Suppl S2), ii11–ii17. [Google Scholar] [CrossRef]
- Gillman, I.; Kistler, K.; Stewart, E.; Paolantonio, A. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 2016, 75, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Khlystov, A.; Samburova, V. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping. Environ. Sci. Technol. 2016, 50, 13080–13085. [Google Scholar] [CrossRef] [PubMed]
- Kosmider, L.; Sobczak, A.; Fik, M.; Knysak, J.; Zaciera, M.; Kurek, J.; Goniewicz, M. Carbonyl compounds in electronic cigarette vapors: Effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 2014, 16, 1319–1326. [Google Scholar] [CrossRef]
- Laino, T.; Tuma, C.; Curioni, A.; Jochnowitz, E.; Stolz, S. A revisited picture of the mechanism of glycerol dehydration. J. Phys. Chem. A 2011, 115, 3592–3595. [Google Scholar] [CrossRef]
- Ohta, K.; Uchiyama, S.; Inaba, Y.; Nakagome, H.; Kunugita, N. Determination of carbonyl compounds generated from the electronic cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. Anal. Sci. 2011, 60, 791–797. [Google Scholar]
- Paine, J.B.; Pithawalla, Y.B.; Naworal, J.D.; Thomas, C.E. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 1: The pyrolysis of glycerin: Discovery of competing fragmentation mechanisms affording acetaldehyde and formaldehyde and the implications for carbohydrate pyrolysis. J. Anal. Appl. Pyrolysis 2007, 80, 297–311. [Google Scholar] [CrossRef]
- Uchiyama, S.; Ohta, K.; Inaba, Y.; Kunugita, N. Determination of carbonyl compounds generated from the e-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Anal. Sci. 2013, 29, 1219–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Chen, W.; Liao, J.; Matsuo, T.; Ito, K.; Fowles, J.; Shusterman, D.; Mendell, M.; Kumagai, K. A Device-Independent Evaluation of Carbonyl Emissions from Heated Electronic Cigarette Solvents. PLoS ONE 2017, 12, e0169811. [Google Scholar] [CrossRef] [PubMed]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jabłońska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control. 2013, 23, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margham, J.; McAdam, K.; Forster, M.; Liu, C.; Wright, C.; Mariner, D.; Proctor, C. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem. Res. Toxicol. 2016, 29, 1662–1678. [Google Scholar] [CrossRef]
- Beauval, N.; Verriele, M.; Garat, A.; Fronval, I.; Dusautoir, R.; Anthérieu, S.; Garçon, G.; Lo-Guidice, J.M.; Allorge, D.; Locoge, N. Influence of puffing conditions on the carbonyl composition of e-cigarette aerosols. Int. J. Hyg. Environ. Health 2019, 222, 136–146. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Voudris, V.; Poulas, K. E-cigarettes generate high levels of aldehydes only in ‘dry puff’ conditions. Addiction 2015, 110, 1352–1356. [Google Scholar] [CrossRef]
- Flora, J.W.; Meruva, N.; Huang, C.B.; Wilkinson, C.T.; Ballentine, R.; Smith, D.C.; Werley, M.S.; McKinney, W.J. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul. Toxicol. Pharmacol. 2016, 74, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Geiss, O.; Bianchi, I.; Barrero-Moreno, J. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Int. J. Hyg. Environ. Health 2016, 219, 268–277. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Voudris, V.; Spyrou, A.; Poulas, K. E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: A replication study under verified realistic use conditions. Food Chem. Toxicol. 2017, 109, 90–94. [Google Scholar] [CrossRef]
- CORESTA. Recommended Method No. 74: Determination of Selected Carbonyls in Mainstream Cigarette Smoke by HPLC 2019. Available online: www.coresta.org/sites/default/files/technical_documents/main/CRM_74-Aug2019_0.pdf (accessed on 10 September 2021).
- Health Canada. Official Method T-104; Determination of Selected CarBonyls in Mainstream Tobacco Smoke 1999. Available online: https://www.healthycanadians.gc.ca/en/open-information/tobacco/t100/carbonyl (accessed on 1 May 2019).
- ISO 21160:2018. Cigarettes—Determination of Selected Carbonyls in the Mainstream Smoke of Cigarettes—Method Using High Performance Liquid Chromatography 2018. Available online: https://www.iso.org/standard/69993.html (accessed on 1 May 2019).
- Bao, M.; Joza, P.J.; Masters, A.; Rickert, W.S. Analysis of selected carbonyl compounds in tobacco samples by using pentafluorobenzylhydroxylamine derivatization and gas chromatography-mass spectrometry. Beitr. Tabakforsch. Int. 2014, 26, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Ogunwale, M.A.; Li, M.; Raju, M.V.R.; Chen, Y.; Nantz, M.H.; Conklin, D.J.; Fu, X.-A. Aldehyde Detection in Electronic Cigarette Aerosols. ACS Omega 2017, 2, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Sala, C.; Medana, C.; Pellegrino, R.; Aigotti, R.; Bello, F.D.; Bianchi, G.; Davoli, E. Dynamic measurement of newly formed carbonyl compounds in vapors from electronic cigarettes. Eur. J. Mass Spectrom. 2017, 23, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, J.C.; Munhenzva, I.; Escobedo, J.O.; Jensen, R.P.; Shaw, A.; Campbell, R.; Luo, W.; Peyton, D.H.; Strongin, R.M. Formaldehyde Hemiacetal Sampling, Recovery, and Quantification from Electronic Cigarette Aerosols. Sci. Rep. 2017, 7, 11044. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.P.; Luo, W.; Pankow, J.F.; Strongin, R.M.; Peyton, D.H. Hidden Formaldehyde in E-Cigarette Aerosols. N. Engl. J. Med. 2015, 372, 392–394. [Google Scholar] [CrossRef] [Green Version]
- Bates, C.D.; Farsalinos, K.E. Research letter on e-cigarette cancer risk was so misleading it should be retracted. Addiction 2015, 110, 1686–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitzkin, J.L.; Farsalinos, K.; Siegel, M. More on hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 2015, 372, 1575. [Google Scholar]
- Sleiman, M.; Logue, J.M.; Montesinos, N.; Russell, M.L.; Litter, M.I.; Gundel, L.A.; Destaillats, H. Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals. Environ. Sci. Technol. 2016, 50, 9644–9651. [Google Scholar] [CrossRef] [Green Version]
- Flora, J.W.; Wilkinson, C.T.; Wilkinson, J.W.; Lipowicz, P.J.; Skapars, J.A.; Anderson, A.; Miller, J.H. Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols. J. Chromatogr. Sci. 2017, 55, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology Q2(R1) 2005. Available online: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf (accessed on 1 May 2019).
- Knorr, A.; Gautier, L.; Debrick, A.; Tekeste, E.; Buchholz, C.; Almstetter, M.; Arndt, D.; Bentley, M. Formaldehyde-Glycerol Hemiacetal—Absence of “Hidden” Formaldehyde in THS 2.2. Aerosols; Presented at 3D Cell; DECHEMA: Zurich, Switzerland, 2012. [Google Scholar]
- Erythropel, H.C.; Jabba, S.V.; Dewinter, T.M.; Mendizabal, M.; Anastas, P.T.; Jordt, S.E.; Zimmerman, J.B. Formation of flavorant–propylene Glycol Adducts With Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids. Nicotine Tob. Res. 2019, 21, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
Device Type Brand ID | Flavor ID | Nicotine by Weight (%) | Product Code |
---|---|---|---|
Cig-a-like_A | E1 | 1.5 | CAE1 |
Cig-a-like_B | E2 E3 | 4.8 | CBE2 CBE3 |
Cig-a-like_C | E4 E5 E6 | 2.4 | CCE4 CCE5 CCE6 |
Cig-a-like_D | E7 E8 | 2.4 3.5 | CDE7 CDE8 |
Pod_E | E9 | 2.4 | PEE9 |
Pod_F | E10 | 5.0 | PFE10 |
Pod_G | E11 | 3.0 | PGE11 |
FA-Hemiacetal Adduct | [FA] Expected (µg/mL) | Average (n = 3) [FA] Measured (µg/mL) | % Hydrolysis of FA-HA Adducts in H+/DNPH |
---|---|---|---|
PGα-HA | 0.93 | 0.96 | 103 |
Glyα-HA | 1.44 | 1.50 | 104 |
e-Liquid | Unfortified Sample Concentration (µg/g) | Fortified Sample Concentration (µg/g) | Fortified Concentration (µg/g) | %Recovery (%) | |
---|---|---|---|---|---|
CDE 7 | Average | 2.72 | 23.50 | 19.78 | 105.1 |
SD | 0.032 | 2.13 | 10.8 | ||
%RSD | 1.2 | 9.1 | 10 | ||
CDE 8 | Average | 14.35 | 33.90 | 19.92 | 98.1 |
SD | 0.12 | 0.27 | 1.3 | ||
%RSD | 0.84 | 0.80 | 1.4 | ||
Aerosol | Unfortified Sample Concentration (µg/g e-Liquid Consumed) | Fortified Sample Concentration (µg/g e-Liquid Consumed) | Fortified Concentration (µg/g) | %Recovery (%) | |
CDE 7 | Average | 19.14 | 38.45 | 19.78 | 97.6 |
SD | 2.07 | 2.17 | 11.0 | ||
%RSD | 11 | 5.6 | 11.2 | ||
CDE 8 | Average | 22.39 | 41.75 | 19.92 | 97.1 |
SD | 0.67 | 0.51 | 2.6 | ||
%RSD | 3.0 | 1.2 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.C.; Ballentine, R.M.; Gardner, W.P.; Melvin, M.S.; Pithawalla, Y.B.; Wagner, K.A.; Avery, K.C.; Sharifi, M. Determination of Formaldehyde Yields in E-Cigarette Aerosols: An Evaluation of the Efficiency of the DNPH Derivatization Method. Separations 2021, 8, 151. https://doi.org/10.3390/separations8090151
Jin XC, Ballentine RM, Gardner WP, Melvin MS, Pithawalla YB, Wagner KA, Avery KC, Sharifi M. Determination of Formaldehyde Yields in E-Cigarette Aerosols: An Evaluation of the Efficiency of the DNPH Derivatization Method. Separations. 2021; 8(9):151. https://doi.org/10.3390/separations8090151
Chicago/Turabian StyleJin, Xiaohong C., Regina M. Ballentine, William P. Gardner, Matt S. Melvin, Yezdi B. Pithawalla, Karl A. Wagner, Karen C. Avery, and Mehran Sharifi. 2021. "Determination of Formaldehyde Yields in E-Cigarette Aerosols: An Evaluation of the Efficiency of the DNPH Derivatization Method" Separations 8, no. 9: 151. https://doi.org/10.3390/separations8090151
APA StyleJin, X. C., Ballentine, R. M., Gardner, W. P., Melvin, M. S., Pithawalla, Y. B., Wagner, K. A., Avery, K. C., & Sharifi, M. (2021). Determination of Formaldehyde Yields in E-Cigarette Aerosols: An Evaluation of the Efficiency of the DNPH Derivatization Method. Separations, 8(9), 151. https://doi.org/10.3390/separations8090151