Effective Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids from Honey with Reusable Organosilyl-Sulfonated Halloysite Nanotubes
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.1.1. Reagents and Standards
2.1.2. Honey Sample
2.1.3. Sample Preparation
2.1.4. Synthesis of Organosilyl-Sulfonated Halloysite Nanotubes
HNT-PhSO3H
HNT-MPTMS-SO3H
2.1.5. FT-ATR Analysis
2.1.6. Solid Phase Extraction
Pyrrolizidine Alkaloid Standard Mixture Extraction
Spiked Honey Sample
- Validation
Reusability Study
2.1.7. UHPLC-MS/MS Analysis
3. Results and Discussion
3.1. Synthesis of Organosilyl-Sulfonated Halloysite Nanotubes
MIR-ATR Analysis
3.2. Solid Phase Extraction
3.2.1. SPE with Unmodified Halloysite Nanotubes
3.2.2. Pyrrolizidine Alkaloid Standard Mixture
HNT-PhSO3H
HNT-MPTMS-SO3H
3.2.3. Spiked Honey Sample
HNT-PhSO3H
HNT-MPTMS-SO3H
- Validation
3.2.4. Reusability Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interests
References
- Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An Assembly of Organic-Inorganic Composites Using Halloysite Clay Nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Yuan, P.; Tan, D.; Annabi-Bergaya, F. Properties and Applications of Halloysite Nanotubes: Recent Research Advances and Future Prospects. Appl. Clay Sci. 2015, 112–113, 75–93. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef]
- El-Sheikhy, R. Exploring of New Natural Saudi Nanoparticles: Investigation and Characterization. Sci. Rep. 2020, 10, 21557. [Google Scholar] [CrossRef]
- Nicholson, J.; Weisman, J.; Boyer, C.; Wilson, C.; Mills, D. Dry Sintered Metal Coating of Halloysite Nanotubes. Appl. Sci. 2016, 6, 265. [Google Scholar] [CrossRef]
- Riahi-Madvaar, R.; Taher, M.A.; Fazelirad, H. Synthesis and Characterization of Magnetic Halloysite-Iron Oxide Nanocomposite and Its Application for Naphthol Green B Removal. Appl. Clay Sci. 2017, 137, 101–106. [Google Scholar] [CrossRef]
- Vergaro, V.; Abdullayev, E.; Lvov, Y.M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010, 11, 820–826. [Google Scholar] [CrossRef]
- Almasri, D.A.; Saleh, N.B.; Atieh, M.A.; McKay, G.; Ahzi, S. Adsorption of Phosphate on Iron Oxide Doped Halloysite Nanotubes. Sci. Rep. 2019, 9, 3232. [Google Scholar] [CrossRef]
- Chen, X.-G.; Li, R.-C.; Zhang, A.-B.; Lyu, S.-S.; Liu, S.-T.; Yan, K.-K.; Duan, W.; Ye, Y. Preparation of Hollow Iron/Halloysite Nanocomposites with Enhanced Electromagnetic Performances. R. Soc. Open Sci. 2018, 5, 171657. [Google Scholar] [CrossRef]
- Joo, Y.; Sim, J.H.; Jeon, Y.; Lee, S.U.; Sohn, D. Opening and Blocking the Inner-Pores of Halloysite. Chem. Commun. 2013, 49, 4519. [Google Scholar] [CrossRef]
- White, R.D.; Bavykin, D.V.; Walsh, F.C. The Stability of Halloysite Nanotubes in Acidic and Alkaline Aqueous Suspensions. Nanotechnology 2012, 23, 065705. [Google Scholar] [CrossRef]
- Fizir, M.; Dramou, P.; Dahiru, N.S.; Ruya, W.; Huang, T.; He, H. Halloysite Nanotubes in Analytical Sciences and in Drug Delivery: A Review. Microchim. Acta 2018, 185, 389. [Google Scholar] [CrossRef]
- Rawtani, D.; Pandey, G.; Tharmavaram, M.; Pathak, P.; Akkireddy, S.; Agrawal, Y.K. Development of a Novel ‘Nanocarrier’ System Based on Halloysite Nanotubes to Overcome the Complexation of Ciprofloxacin with Iron: An in Vitro Approach. Appl. Clay Sci. 2017, 150, 293–302. [Google Scholar] [CrossRef]
- Tabani, H.; Khodaei, K.; Moghaddam, A.Z.; Alexovič, M.; Movahed, S.K.; Zare, F.D.; Dabiri, M. Introduction of Graphene-Periodic Mesoporous Silica as a New Sorbent for Removal: Experiment and Simulation. Res. Chem. Intermed. 2019, 45, 1795–1813. [Google Scholar] [CrossRef]
- Moghaddam, A.Z.; Bameri, A.E.; Ganjali, M.R.; Alexovič, M.; Jazi, M.E.; Tabani, H. A Low-Voltage Electro-Membrane Extraction for Quantification of Imatinib and Sunitinib in Biological Fluids. Bioanalysis 2021, 13, 1401–1413. [Google Scholar] [CrossRef]
- Peixoto, A.F.; Fernandes, A.C.; Pereira, C.; Pires, J.; Freire, C. Physicochemical Characterization of Organosilylated Halloysite Clay Nanotubes. Microporous Mesoporous Mater. 2016, 219, 145–154. [Google Scholar] [CrossRef]
- Silva, S.M.; Peixoto, A.F.; Freire, C. HSO3-Functionalized Halloysite Nanotubes: New Acid Catalysts for Esterification of Free Fatty Acid Mixture as Hybrid Feedstock Model for Biodiesel Production. Appl. Catal. A Gen. 2018, 568, 221–230. [Google Scholar] [CrossRef]
- Schlappack, T.; Rainer, M.; Weinberger, N.; Bonn, G.K. Sulfonated Halloysite Nanotubes as a Novel Cation Exchange Material for Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids. Anal. Methods 2022, 14, 2689–2697. [Google Scholar] [CrossRef]
- Fragen und Antworten zu Pyrrolizidinalkaloiden in Lebensmitteln; Bundesinstitut für Risikobewertung: Berlin, Germany, 2020; Volume 15, pp. 1–7.
- Analytik und Toxizität von Pyrrolizidinalkaloiden Sowie Eine Einschätzung des Gesundheitlichen Risikos Durch Deren Vorkommen in Honig—Stellungnahme Nr. 038/2011 des BfR vom 11 August 2011, Ergänzt am 21 Januar 2013; Bundesinstitut für Risikobewertung: Berlin, Germany, 2013; pp. 1–37.
- Crews, C.; Berthiller, F.; Krska, R. Update on Analytical Methods for Toxic Pyrrolizidine Alkaloids. Anal. Bioanal. Chem. 2010, 396, 327–338. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Zhu, L.; Ji, H.; Song, X.; Guo, H.; Yi, T. Determination and Regulation of Hepatotoxic Pyrrolizidine Alkaloids in Food: A Critical Review of Recent Research. Food Chem. Toxicol. 2018, 119, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Schrenk, D.; Gao, L.; Lin, G.; Mahony, C.; Mulder, P.P.J.; Peijnenburg, A.; Pfuhler, S.; Rietjens, I.M.C.M.; Rutz, L.; Steinhoff, B.; et al. Pyrrolizidine Alkaloids in Food and Phytomedicine: Occurrence, Exposure, Toxicity, Mechanisms, and Risk Assessment—A Review. Food Chem. Toxicol. 2020, 136, 111107. [Google Scholar] [CrossRef]
- Wiedenfeld, H.; Edgar, J. Toxicity of Pyrrolizidine Alkaloids to Humans and Ruminants. Phytochem. Rev. 2011, 10, 137–151. [Google Scholar] [CrossRef]
- Brugnerotto, P.; Seraglio, S.K.T.; Schulz, M.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Pyrrolizidine Alkaloids and Beehive Products: A Review. Food Chem. 2021, 342, 128384. [Google Scholar] [CrossRef]
- Pyrrolizidinalkaloide in Kräutertees und Tees—Stellungnahme 018/2013 des BfR vom 5 Juli 2013; Bundesinstitut für Risikobewertung: Berlin, Germany, 2013; pp. 1–31.
- Casado, N.; Morante-Zarcero, S.; Sierra, I. The Concerning Food Safety Issue of Pyrrolizidine Alkaloids: An Overview. Trends Food Sci. Technol. 2022, 120, 123–139. [Google Scholar] [CrossRef]
- PAK und Pyrrolizidinalkaloide in Getrockneten Kräutern und Gewürzen., Bundesministerium für Arbeit, Soziales, Gesundheit und Konsumentenschutz & Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH, Vienna, Austria. 2019, pp. 1–4. Available online: www.ages.at (accessed on 12 September 2022).
- Wiedenfeld, H. Plants Containing Pyrrolizidine Alkaloids: Toxicity and Problems. Food Addit. Contam. Part A 2011, 28, 282–292. [Google Scholar] [CrossRef]
- Bestimmung von Pyrrolizidinalkaloiden (PA) in Honig Mittels SPE-LC-MS/MS: Methodenbeschreibung; Bundesinstitut für Risikobewertung: Berlin, Germany, 2013; Volume 1.0, pp. 1–17.
- European Commission. COMMISSION REGULATION (EU) 2020/2040 of 11 December 2020 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Pyrrolizidine Alkaloids in Certain Foodstuffs; Official Journal of the European Union; 2022; p. 5. Available online: eur-lex.europa.eu (accessed on 12 September 2022).
- Bestimmung von Pyrrolizidinalkaloiden (PA) in Pflanzenmaterial Mittels SPE-LC-MS/MS: Methodenbeschreibung; Bundesinstitut für Risikobewertung: Berlin, Germany, 2014; Volume 2.0, pp. 1–17.
- Chung, S.W.C.; Lam, C.-H. Development of an Analytical Method for Analyzing Pyrrolizidine Alkaloids in Different Groups of Food by UPLC-MS/MS. J. Agric. Food Chem. 2018, 66, 3009–3018. [Google Scholar] [CrossRef]
- Griffin, C.T.; Danaher, M.; Elliott, C.T.; Glenn Kennedy, D.; Furey, A. Detection of Pyrrolizidine Alkaloids in Commercial Honey Using Liquid Chromatography–Ion Trap Mass Spectrometry. Food Chem. 2013, 136, 1577–1583. [Google Scholar] [CrossRef]
- He, Y.; Zhu, L.; Ma, J.; Wong, L.; Zhao, Z.; Ye, Y.; Fu, P.P.; Lin, G. Comprehensive Investigation and Risk Study on Pyrrolizidine Alkaloid Contamination in Chinese Retail Honey. Environ. Pollut. 2020, 267, 115542. [Google Scholar] [CrossRef]
- Kowalczyk, E.; Sieradzki, Z.; Kwiatek, K. Determination of Pyrrolizidine Alkaloids in Honey with Sensitive Gas Chromatography-Mass Spectrometry Method. Food Anal. Methods 2018, 11, 1345–1355. [Google Scholar] [CrossRef]
- DIN 32645; Deutsches Institut für Normierung e.V. Beuth Verlag GmbH: Berlin, Germany, 2008.
- Nasiri, A.; Jahani, R.; Mokhtari, S.; Yazdanpanah, H.; Daraei, B.; Faizi, M.; Kobarfard, F. Overview, Consequences, and Strategies for Overcoming Matrix Effects in LC-MS Analysis: A Critical Review. Analyst 2021, 146, 6049–6063. [Google Scholar] [CrossRef]
- Peters, F.T.; Hartung, M.; Herbold, M.; Schmitt, G.; Daldrup, T. Anforderungen an Die Validierung von Analysenmethoden. Toxichem Krimtech 2009, 76, 185. [Google Scholar]
- Shabir Ghulam, A. Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry. J. Valid. Technol. 2005, 10, 314–325. [Google Scholar]
- Shabir Ghulam, A. A Practical Approach to Validation of HPLC Methods under Current Good Manufacturing Practices. J. Valid. Technol. 2004, 10, 210–218. [Google Scholar]
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Miniaturized and Modified QuEChERS Method with Mesostructured Silica as Clean-up Sorbent for Pyrrolizidine Alkaloids Determination in Aromatic Herbs. Food Chem. 2022, 380, 132189. [Google Scholar] [CrossRef]
- Ji, Y.-B.; Wang, Y.-S.; Fu, T.-T.; Ma, S.-Q.; Qi, Y.-D.; Si, J.-Y.; Sun, D.-A.; Liao, Y.-H. Quantitative Analysis of Pyrrolizidine Alkaloids in Gynura Procumbens by Liquid Chromatography–Tandem Quadrupole Mass Spectrometry after Enrichment by PCX Solid-Phase Extraction. Int. J. Environ. Anal. Chem. 2019, 99, 1090–1102. [Google Scholar] [CrossRef]
- Jeong, S.H.; Choi, E.Y.; Kim, J.; Lee, C.; Kang, J.; Cho, S.; Ko, K.Y. LC-ESI-MS/MS Simultaneous Analysis Method Coupled with Cation-Exchange Solid-Phase Extraction for Determination of Pyrrolizidine Alkaloids on Five Kinds of Herbal Medicines. J. AOAC Int. 2021, 104, 1514–1525. [Google Scholar] [CrossRef]
- Ko, K.Y.; Jeong, S.H.; Choi, E.Y.; Lee, K.; Hong, Y.; Kang, I.H.; Cho, S.; Lee, C. A LC–ESI–MS/MS Analysis Procedure Coupled with Solid Phase Extraction and MeOH Extraction Method for Determination of Pyrrolizidine Alkaloids in Tussilago Farfara and Lithospermi Erythrorhzion. Appl. Biol. Chem. 2021, 64, 53. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, G.; Li, X.; Wang, L.; Shu, H.; Cui, X.; Chang, C.; Zeng, A.; Fu, Q. Molecularly Imprinted Polymer Solid-phase Microextraction Coupled with Ultra High Performance Liquid Chromatography and Tandem Mass Spectrometry for Rapid Analysis of Pyrrolizidine Alkaloids in Herbal Medicine. J. Sep. Sci. 2019, 42, 3352–3362. [Google Scholar] [CrossRef]
- Bodi, D.; Ronczka, S.; Gottschalk, C.; Behr, N.; Skibba, A.; Wagner, M.; Lahrssen-Wiederholt, M.; Preiss-Weigert, A.; These, A. Determination of Pyrrolizidine Alkaloids in Tea, Herbal Drugs and Honey. Food Addit. Contam. Part A 2014, 31, 1886–1895. [Google Scholar] [CrossRef]
- Rizzo, S.; Celano, R.; Campone, L.; Rastrelli, L.; Piccinelli, A.L. Salting-out Assisted Liquid-Liquid Extraction for the Rapid and Simple Simultaneous Analysis of Pyrrolizidine Alkaloids and Related N-Oxides in Honey and Pollen. J. Food Compos. Anal. 2022, 108, 104457. [Google Scholar] [CrossRef]
- Celano, R.; Piccinelli, A.L.; Campone, L.; Russo, M.; Rastrelli, L. Determination of Selected Pyrrolizidine Alkaloids in Honey by Dispersive Liquid–Liquid Microextraction and Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 8689–8699. [Google Scholar] [CrossRef]
- Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and Validation of a QuEChERS Method Coupled to Liquid Chromatography and High Resolution Mass Spectrometry to Determine Pyrrolizidine and Tropane Alkaloids in Honey. Food Chem. 2017, 234, 295–302. [Google Scholar] [CrossRef]
- Ferrer Amate, C.; Unterluggauer, H.; Fischer, R.J.; Fernández-Alba, A.R.; Masselter, S. Development and Validation of a LC–MS/MS Method for the Simultaneous Determination of Aflatoxins, Dyes and Pesticides in Spices. Anal. Bioanal. Chem 2010, 397, 93–107. [Google Scholar] [CrossRef]
- Kaczyński, P.; Łozowicka, B. A Novel Approach for Fast and Simple Determination Pyrrolizidine Alkaloids in Herbs by Ultrasound-Assisted Dispersive Solid Phase Extraction Method Coupled to Liquid Chromatography–Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 187, 113351. [Google Scholar] [CrossRef]
Compound | Rt/min | Precursor Ion [M + H]+ | Product Ions | Cone Voltage/V | Collision Voltage/V |
---|---|---|---|---|---|
Monocrotaline | 2.0 | 326 | 94; 120; 194 | 58 | 42; 32; 34 |
Lycopsamine | 3.3 | 300 | 94; 138; 156 | 50 | 32; 22; 28 |
Caffeine (IS) | 4.0 | 195 | 41; 138 | 32 | 40; 18 |
Heliotrine | 4.5 | 314 | 94; 138; 156 | 44 | 44; 22; 30 |
Senecionine | 5.1 | 336 | 93(.5); 93(.9); 120 | 58 | 48; 34; 38 |
Recovery ± SD /% (N = 10; HNT-PhSO3H) | |||
---|---|---|---|
Monocrotaline | Lycopsamine | Heliotrine | Senecionine |
81.5 ± 3.4 | 98.3 ± 7.3 | 99.8 ± 5.1 | 92.1 ± 6.8 |
Recovery ± SD/% (N = 10; HNT-MPTMS-SO3H) | |||
Monocrotaline | Lycopsamine | Heliotrine | Senecionine |
78.3 ± 5.8 | 101.3 ± 5.9 | 99.1 ± 2.6 | 81.3 ± 5.7 |
Recovery ± SD/% (N = 10) | |||
---|---|---|---|
Monocrotaline | Lycopsamine | Heliotrine | Senecionine |
62.5 ± 4.4 | 35.8 ± 2.0 | 75.9 ± 3.2 | 86.8 ± 8.0 |
Matrix Effect/% | |||
Monocrotaline | Lycopsamine | Heliotrine | Senecionine |
98.3 | 101.8 | 100.1 | 93.3 |
Bias/% | ||||
---|---|---|---|---|
Concentration level/µg L−1 | Monocrotaline | Lycopsamine | Heliotrine | Senecionine |
4 | ±5.95 | ±2.07 | ±1.36 | ±10.0 |
8 | ±11.3 | ±2.47 | ±7.36 | ±2.85 |
12 | ±5.07 | ±0.03(4) | ±3.67 | ±1.89 |
Limit of detection and Limit of quantification/µg L−1 | ||||
Monocrotaline | Lycopsamine | Heliotrine | Senecionine | |
LOD | 1.0 | 0.7 | 0.6 | 1.2 |
LOQ | 3.2 | 2.3 | 1.9 | 3.6 |
Recovery ± SD/% (N = 10) | ||||
Monocrotaline | Lycopsamine | Heliotrine | Senecionine | |
87.8 ± 7.0 | 94.0 ± 6.0 | 95.0 ± 3.9 | 91.3 ± 9.9 | |
Repeatability RSD/% (N = 10) | ||||
Monocrotaline | Lycopsamine | Heliotrine | Senecionine | |
5.0 | 4.9 | 2.9 | 6.2 | |
Matrix Effect/% | ||||
Monocrotaline | Lycopsamine | Heliotrine | Senecionine | |
106.6 | 104.1 | 110.1 | 102.2 |
Sample Matrix | Recovery Range/% | Solid Phase Material | Literature |
---|---|---|---|
Gynura procumbens | 21.8–99.4 | PCX | [43] |
Gynura procumbens | 21.6–96.1 | SCX | [43] |
Gynura procumbens | 57.8–101.9 | C18 | [43] |
Gastrodia elata | 77.6–101.4 * | MCX | [44] |
Atractylodes japonica | 85.2–101.9 * | MCX | [44] |
Leonurus japonicus | 93.3–112.7 * | MCX | [44] |
Glycyrrhiza uralensis | 73.8–98.1 * | MCX | [44] |
Chrysanthemum morifolium | 70.6–103.5 * | MCX | [44] |
Tussilago farfara | 73.1–111.4 * | MCX | [45] |
Lithospermi erythrorhzion | 72.3–118.3 * | MCX | [45] |
Tussilago farfara | 92.5–103.5 | MIP | [46] |
Herbal teas (fennel, mixed tea and rooibos) | 72–122 | C18 | [47] |
Honey (cornflower and lavender) | 66–96 | C18 | [47] |
SPE Cycle No. | Recovery ± SD/% | |||
---|---|---|---|---|
Monocrotaline | Lycopsamine | Heliotrine | Senecionine | |
1 | 82.9 ± 7.6 | 95.1 ± 2.0 | 98.1 ± 4.1 | 89.2 ± 6.2 |
2 | 84.0 ± 10.9 | 102.3 ± 13.8 | 102.3 ± 5.0 | 96.3 ± 4.3 |
3 | 85.2 ± 10.9 | 104.5 ± 8.9 | 102.1 ± 5.3 | 93.2 ± 7.7 |
4 | 82.5 ± 7.0 | 96.3 ± 7.8 | 102.0 ± 8.6 | 88.5 ± 5.2 |
5 | 82.7 ± 4.2 | 95.9 ± 13.2 | 103.7 ± 1.1 | 97.4 ± 9.5 |
6 | 85.8 ± 13.3 | 103.1 ± 0.8 | 100.4 ± 4.8 | 95.5 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlappack, T.; Weidacher, N.; Huck, C.W.; Bonn, G.K.; Rainer, M. Effective Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids from Honey with Reusable Organosilyl-Sulfonated Halloysite Nanotubes. Separations 2022, 9, 270. https://doi.org/10.3390/separations9100270
Schlappack T, Weidacher N, Huck CW, Bonn GK, Rainer M. Effective Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids from Honey with Reusable Organosilyl-Sulfonated Halloysite Nanotubes. Separations. 2022; 9(10):270. https://doi.org/10.3390/separations9100270
Chicago/Turabian StyleSchlappack, Tobias, Nina Weidacher, Christian W. Huck, Günther K. Bonn, and Matthias Rainer. 2022. "Effective Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids from Honey with Reusable Organosilyl-Sulfonated Halloysite Nanotubes" Separations 9, no. 10: 270. https://doi.org/10.3390/separations9100270
APA StyleSchlappack, T., Weidacher, N., Huck, C. W., Bonn, G. K., & Rainer, M. (2022). Effective Solid Phase Extraction of Toxic Pyrrolizidine Alkaloids from Honey with Reusable Organosilyl-Sulfonated Halloysite Nanotubes. Separations, 9(10), 270. https://doi.org/10.3390/separations9100270