Identification of Photodegradation Products of Escitalopram in Surface Water by HPLC-MS/MS and Preliminary Characterization of Their Potential Impact on the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
2.3. Standard Solutions and Sample Collecting
2.4. Photodegradation Experiments
2.5. Chromatographic and Mass Spectrometric Conditions
2.6. Preconcentration by Solid-Phase Extraction (SPE) Procedure
2.7. IC Conditions
2.8. Multivariate Data Analysis
3. Results
3.1. Development and Validation of the HPLC-MS/MS Method
3.2. Validation of the HPLC-MS/MS Method
3.3. Kinetics and Significant Factors of ESC Photodegradation
3.4. Identification of Photodegradation Products
3.5. River Water Analysis
3.6. Toxicity Assessment of TPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diaz-Camal, N.; Cardoso-Vera, J.D.; Islas-Flores, H.; Gómez-Oliván, L.M.; Mejía-García, A. Consumption and occurrence of antidepressants (SSRIs) in pre- and post-COVID-19 pandemic, their environmental impact and innovative removal methods: A review. Sci. Total Environ. 2022, 829, 154656. [Google Scholar] [CrossRef] [PubMed]
- Sindu, P. Management of depression with behavior therapy. Curr. Res. Behav. Sci. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Bavumiragira, J.P.; Ge, J.; Yin, H. Fate and transport of pharmaceuticals in water systems: A processes review. Sci. Total Environ. 2022, 823, 153635. [Google Scholar] [CrossRef]
- Gosetti, F.; Chiuminatto, U.; Mazzucco, E.; Mastroianni, R.; Bolfi, B.; Marengo, E. Ultra-high performance liquid chromatography tandem high-resolution mass spectrometry study of tricyclazole photodegradation products in water. Environ. Sci. Pollut. Res. 2015, 22, 8288–8295. [Google Scholar] [CrossRef] [PubMed]
- Gosetti, F.; Bolfi, B.; Chiuminatto, U.; Manfredi, M.; Robotti, E.; Marengo, E. Photodegradation of the pure and formulated alpha-cypermethrin insecticide gives different products. Environ. Chem. Lett. 2018, 16, 581–590. [Google Scholar] [CrossRef]
- Bottaro, M.; Frascarolo, P.; Gosetti, F.; Mazzucco, E.; Gianotti, V.; Polati, S.; Pollici, E.; Piacentini, L.; Pavese, G.; Gennaro, M.C. Hydrolytic and Photoinduced Degradation of Tribenuron Methyl Studied by HPLC-DAD-MS/MS. J. Am. Soc. Mass Spectrom. 2008, 19, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Gosetti, F.; Chiuminatto, U.; Zampieri, D.; Mazzucco, E.; Marengo, E.; Gennaro, M.C. A new on-line solid phase extraction high performance liquid chromatography tandem mass spectrometry method to study the sun light photodegradation of mono-chloroanilines in river water. J. Chromatogr. A 2010, 1217, 3427–3434. [Google Scholar] [CrossRef]
- Gosetti, F.; Belay, M.H.; Marengo, E.; Robotti, E. Development and validation of a UHPLC-MS/MS method for the identification of irinotecan photodegradation products in water samples. Environ. Pollut. 2020, 256, 113370. [Google Scholar] [CrossRef]
- Calza, P.; Jiménez-Holgado, C.; Coha, M.; Chrimatopoulos, C.; Dal Bello, F.; Medana, C.; Sakkas, V. Study of the photoinduced transformations of sertraline in aqueous media. Sci. Total Environ. 2021, 756, 143805. [Google Scholar] [CrossRef]
- Gornik, T.; Carena, L.; Kosjek, T.; Vione, D. Phototransformation study of the antidepressant paroxetine in surface waters. Sci. Total Environ. 2021, 774, 145380. [Google Scholar] [CrossRef]
- Gros, M.; Williams, M.; Llorca, M.; Rodriguez-Mozaz, S.; Barceló, D.; Kookana, R.S. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate. Sci. Total Environ. 2015, 530–531, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, C.D.; Chu, S.; Judt, C.; Li, H.; Oakes, K.D.; Servos, M.R.; Andrews, D.M. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010, 29, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, J.; Xiao, A.; Zheng, J.; Guan, S.; Guo, J.; Huang, M. Development and validation of UHPLC-MS/MS method for simultaneous quantification of escitalopram and its major metabolites in human plasma and its application in depressed patients. J. Pharm. Biomed. Anal. 2022, 217, 114810. [Google Scholar] [CrossRef] [PubMed]
- Osawa, R.A.; Carvalho, A.P.; Monteiro, O.C.; Oliveira, M.C.; Florêncio, M.H. Transformation products of citalopram: Identification, wastewater analysis and in silico toxicological assessment. Chemosphere 2019, 217, 858–868. [Google Scholar] [CrossRef]
- Gornik, T.; Shinde, S.; Lamovsek, L.; Klobar, M.; Heat, E.; Sellergren, B.; Kosjek, T. Molecularly Imprinted Polymers for the Removal of Antide-Pressants from Contaminated Wastewater. Polymers 2021, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Rejek, M.; Grzechulska-Damszel, J. Degradation of sertraline in water by suspended and supported TiO2. Pol. J. Chem. Technol. 2018, 20, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Verlicchi, P.; Aukidy, M.A.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Pivetta, R.C.; Rodrigues-Silva, C.; Ribeiro, A.R.; Rath, S. Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. Sci. Total Environ. 2020, 727, 138661. [Google Scholar] [CrossRef]
- Duan, S.; Fu, Y.; Dong, S.; Ma, Y.; Meng, H.; Guo, R.; Chen, J.; Liu, Y.; Li, Y. Psychoactive drugs citalopram and mirtazapine caused oxidative stress and damage of feeding behavior in Daphnia magna. Ecotoxicol. Environ. Saf. 2022, 230, 113147. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, D.; Li, C.; Wei, S.; Guo, R.; Li, Y.; Chen, J.; Liu, Y. Combined toxicity and toxicity persistence of antidepressants citalopram and mirtazapine to zooplankton Daphnia magna. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H. Influence of suspended sediment characteristics on the bioaccumulation and biological effects of citalopram in Daphnia magna. Chemosphere 2018, 207, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Fong, P.P.; Hoy, C.M. Antidepressants (venlafaxine and citalopram) cause foot detachment from the substrate in freshwater snails at environmentally relevant concentrations. Mar. Freshw. Behav. Physiol. 2012, 45, 145–153. [Google Scholar] [CrossRef]
- Calisto, V.; Esteves, V.I. Psychiatric pharmaceuticals in the environment. Chemosphere 2009, 77, 1257–1274. [Google Scholar] [CrossRef]
- Subedi, B.; Kannan, K. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA. Sci. Total Environ. 2015, 514, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S.; Scott, L.J.; PLoSker, G.L. Escitalopram. A Review of its Use in the Management of Anxiety Disorders. CNS Drugs 2003, 17, 343–362. [Google Scholar] [CrossRef]
- Rao, N. The Clinical Pharmacokinetics of Escitalopram. Clin. Pharmacokinet. 2007, 46, 281–290. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Y.; Li, N. Oxidation of Citalopram with Sodium Hypochlorite and Chlorine Dioxide: Influencing Factors and NDMA Formation Kinetics. Molecules 2019, 24, 3065. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Guo, Z.; Wang, J.; Ye, Z.; Zhang, L.; Niu, J. Photodegradation of three antidepressants in natural waters: Important roles of dissolved organic matter and nitrate. Sci. Total Environ. 2022, 802, 149825. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Holgado, C.; Calza, P.; Fabbri, D.; Dal Bello, F.; Medana, C.; Sakkas, V. Investigation of the Aquatic Photolytic and Photocatalytic Degradation of Citalopram. Molecules 2021, 26, 5331. [Google Scholar] [CrossRef]
- Kwon, J.-W.; Armbrust, K.L. Degradation of citalopram by simulated sunlight. Environ. Toxicol. Chem. 2005, 24, 1618–1623. [Google Scholar] [CrossRef]
- Pinto, B.V.; Ferreira, A.P.G.; Cavalheiro, E.T.G. Thermal degradation mechanism for citalopram and escitalopram. J. Therm. Anal. Calorim. 2018, 133, 1509–1518. [Google Scholar] [CrossRef]
- Frąckowiak, A.; Kamiński, B.; Urbaniak, B.; Dereziński, P.; Klupczyńska, A.; Darul-Duszkiewicz, M.; Kokot, Z.J. A study of ofloxacin and levofloxacin photostability in aqueous solutions. J. Med. Sci. 2016, 85, 238–244. [Google Scholar] [CrossRef]
- Arenas, M.; Martín, J.; Santis, J.L.; Aparicio, I.; Alonso, E. Enantioselective behavior of environmental chiral pollutants: A comprehensive review. Cri. Rev. Environ. Sci. Technol. 2022, 52, 2995–3034. [Google Scholar] [CrossRef]
- Dhaneshwar, S.R.; Mahadik, M.V. Column Liquid Chromatography-Ultraviolet and Column Liquid Chromatography/Mass Spectrometry Evaluation of Stress Degradation Behavior of Escitalopram Oxalate. J. AOAC Int. 2009, 92, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Raman, B.; Sharma, B.A.; Ghugare, P.D.; Nandavadekar, S.; Singh, D.; Karmuse, P.K.; Kumar, A. Structural elucidation of process-related impurities in escitalopram by LC/ESI-MS and NMR. J. Pham. Biomed. Anal. 2010, 53, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Holgado, C.; Sakkas, V.; Richard, C. Phototransformation of Three Psychoactive Drugs in Presence of SedimentalWater Extractable Organic Matter. Molecules 2021, 26, 2466. [Google Scholar] [CrossRef] [PubMed]
- Guideline ISO 5667-6:2014; Water quality—Sampling—Part 6: Guidance on sampling of rivers and streams. Available online: https://www.iso.org/standard/55451.html (accessed on 7 September 2022).
- Guideline ISO 5667-4:2016; Water quality—Sampling—Part 4: Guidance on sampling from lakes, natural and man-made. Available online: https://www.iso.org/obp/ui/#iso:std:iso:5667:-4:ed-2:v1:en (accessed on 7 September 2022).
- Surface Water: Nitrate Concentration, ARPAV. Available online: https://www.arpa.veneto.it/arpavinforma/indicatori-ambientali/indicatori_ambientali/idrosfera/qualita-dei-corpi-idrici/acque-superficiali-concentrazione-di-nitrati (accessed on 7 September 2022).
- Manahan, S.E. Fundamentals of Aquatic Chemistry. In Environmental Chemistry, 8th ed.; Manahan, S.E., Ed.; CRC Press: NewYork, NY, USA, 2005; pp. 60–63. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 7 September 2022).
- Hörsing, M.; Kosjek, T.; Andersen, H.R.; Heath, E.; Ledin, A. Fate of citalopram during water treatment with O3, ClO2, UV and fenton oxidation. Chemosphere 2012, 89, 129–135. [Google Scholar] [CrossRef]
- VEGA QSAR, ver. 1.2.0. Available online: https://www.vegahub.eu/portfolio-item/vega-qsar/ (accessed on 7 September 2022).
- Toxicity Estimation Software Tool (T.E.S.T.), Ver. 5.1.2. Available online: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test (accessed on 7 September 2022).
- Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for Generation of Unique SMILES Notation. J. Chem. Inf. Comput. Sci. 1989, 29, 97–101. [Google Scholar] [CrossRef]
- Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Available online: https://unece.org/sites/default/files/2021-09/GHS_Rev9E_0.pdf (accessed on 7 September 2022).
Photolysis Experiment | Nitrate (mg L−1) | Bicarbonate (mg L−1) | k (h−1) | t1/2 (h) | R2 * |
---|---|---|---|---|---|
UP Water 1 | - | - | 0.0111 (±0.0008) | 62.4 (±3.2) | 0.9904 |
FFD 2 | 1.0 | 1.0 | 0.0103 (±0.0005) | 67.3 (±2.2) | 0.9433 |
FFD | 20.0 | 1.0 | 0.0255 (±0.0022) | 27.2 (±1.6) | 0.9487 |
FFD | 1.0 | 100.0 | 0.0159 (±0.0011) | 43.6 (±2.1) | 0.9409 |
FFD | 20.0 | 100.0 | 0.0478 (±0.0052) | 14.5 (±1.1) | 0.9632 |
FFD | 10.0 | 50.0 | 0.0243 (±0.0023) | 28.5 (±1.9) | 0.9592 |
Lake water 3 | 0.60 | 0.22 | 0.0143 (±0.0006) | 48.4 (±1.5) | 0.9984 |
Compound Precursor Ion [M + H]+ | RT (min) | MS/MS Product ions (Relative Intensity, %) | Chemical Structure | Reference for Citalopram Degradation |
---|---|---|---|---|
Escitalopram 325 | 4.76 | 307 (6) 262 (33) 247 (18) 234 (30) 221 (9) 166 (9) 116 (19) 109 (100) | [14,29] | |
TP1 261 | 2.43 | 243 (100) 234 (20) 216 (38) 161 (77) | This study | |
TP2 245 | 2.52 | 227 (5) 200 (23) 182 (17) 158 (100) 154 (75) 141 (30) | [14,28,29] | |
TP3 357 | 2.64 | 339 (100) 321 (8) 315 (3) 294 (5) | [29] | |
TP4 247 | 2.83 | 229 (15) 202 (5) 189 (20) 166 (100) 156 (18) 127 (40) | [29] | |
TP5 337 | 3.06 | 309 (20) 294 (100) 274 (25) 238 (60) | [28,29] | |
TP6 327 | 3.11 | 309 (15) 291 (18) 278 (20) 262 (60) 220 (5) 116 (48) 109 (100) | This study | |
TP7 323 | 3.12 | 305 (3) 287 (2) 278 (3) 260 (31) 232 (26) 166 (13) 107 (100) | [28,29,36,43] | |
TP8 343 | 3.13 | 325 (35) 298 (5) 294 (45) 280 (22) 276 (30) 251 (52) 240 (100) 237 (70) 109 (60) | [14] | |
TP9 341 | 3.15 | 323 (14) 305 (17) 278 (5) 262 (72) 234 (45) 220 (18) 166 (8) 109 (100) | [14,29,36] | |
TP10 355 | 3.35 | 337 (13) 319 (100) 292 (10) 276 (49) 258 (77) 230 (25) 209 (12) | [14] | |
TP11 327 | 3.67 | 309 (19) 296 (8) 278 (33) 109 (100) | This study | |
TP12 341 | 3.73 | 323 (9) 296 (13) 278 (18) 240 (16) 234 (53) 221 (16) 109 (100) | [29] | |
TP13 355 | 3.94 | 337 (58) 310 (4) 292 (100) 274 (13) 264 (5) | [29,36] | |
TP14 339 | 4.21 | 321 (5) 294 (6) 276 (100) 258 (91) 248 (19) 172 (9) | [14,28,29,36,43] | |
TP15 311 | 4.63 | 293 (18) 262 (52) 247 (25) 234 (33) 221 (11) 166 (10) 116 (22) 109 (100) | [13,14,28,30] | |
TP16 341 | 4.65 | 280 (6) 262 (100) 247 (11) 234 (18) 166 (7) | [13,14,30] |
Sample | ESC (ng/L) | TP2-245 | TP5-337 | TP12-341b |
---|---|---|---|---|
Adda river | 45.8 ± (0.6) | detect | detect | detect |
Po river | 39.8 ± (1.4) | detect | detect | detect |
Serio river | n.d. | n.d. | n.d. | n.d. |
Sesia river | n.d. | n.d. | n.d. | n.d. |
Tanaro river | 12.5 ± (0.8) | n.d. | detect | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Termopoli, V.; Consonni, V.; Ballabio, D.; Todeschini, R.; Orlandi, M.; Gosetti, F. Identification of Photodegradation Products of Escitalopram in Surface Water by HPLC-MS/MS and Preliminary Characterization of Their Potential Impact on the Environment. Separations 2022, 9, 289. https://doi.org/10.3390/separations9100289
Termopoli V, Consonni V, Ballabio D, Todeschini R, Orlandi M, Gosetti F. Identification of Photodegradation Products of Escitalopram in Surface Water by HPLC-MS/MS and Preliminary Characterization of Their Potential Impact on the Environment. Separations. 2022; 9(10):289. https://doi.org/10.3390/separations9100289
Chicago/Turabian StyleTermopoli, Veronica, Viviana Consonni, Davide Ballabio, Roberto Todeschini, Marco Orlandi, and Fabio Gosetti. 2022. "Identification of Photodegradation Products of Escitalopram in Surface Water by HPLC-MS/MS and Preliminary Characterization of Their Potential Impact on the Environment" Separations 9, no. 10: 289. https://doi.org/10.3390/separations9100289
APA StyleTermopoli, V., Consonni, V., Ballabio, D., Todeschini, R., Orlandi, M., & Gosetti, F. (2022). Identification of Photodegradation Products of Escitalopram in Surface Water by HPLC-MS/MS and Preliminary Characterization of Their Potential Impact on the Environment. Separations, 9(10), 289. https://doi.org/10.3390/separations9100289