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Abstract: Retention time prediction, facilitated by advances in machine learning, has become a
useful tool in untargeted LC-MS applications. State-of-the-art approaches include graph neural
networks and 1D-convolutional neural networks that are trained on the METLIN small molecule
retention time dataset (SMRT). These approaches demonstrate accurate predictions comparable with
the experimental error for the training set. The weak point of retention time prediction approaches is
the transfer of predictions to various systems. The accuracy of this step depends both on the method
of mapping and on the accuracy of the general model trained on SMRT. Therefore, improvements to
both parts of prediction workflows may lead to improved compound annotations. Here, we evaluate
capabilities of message-passing neural networks (MPNN) that have demonstrated outstanding
performance on many chemical tasks to accurately predict retention times. The model was initially
trained on SMRT, providing mean and median absolute cross-validation errors of 32 and 16 s,
respectively. The pretrained MPNN was further fine-tuned on five publicly available small reversed-
phase retention sets in a transfer learning mode and demonstrated up to 30% improvement of
prediction accuracy for these sets compared with the state-of-the-art methods. We demonstrated that
filtering isomeric candidates by predicted retention with the thresholds obtained from ROC curves
eliminates up to 50% of false identities.

Keywords: retention time prediction; untargeted metabolomics; small molecules; message-passing
neural networks

1. Introduction

Liquid chromatography–mass spectrometry is the primary technique for untargeted
small molecule analysis. High-resolution tandem instruments annotate detected com-
pounds in untargeted metabolomics experiments that rely on experimental or in silico
fragmentation data. Mass spectral databases cover less than 1% of known organic com-
pounds [1,2]. In silico fragmentation predictors [3–5] may have a restricted applicability
domain due to being trained on small mass spectral datasets. Complementary retention
information may refine compound annotation, reduce the search space and eliminate
false identities.

In targeted assays, retention time of a detected peak is compared with the value
obtained for reference material in the same separation conditions. Wide-scope untargeted
experiments, such as forensic or environmental analysis, aim to cover as diverse a range
of molecular sets as possible, making such comparisons ineffective because of the lack
of experimental reference data. Retention time modeling techniques [6,7] provide an
opportunity for high-throughput retention prediction for thousands of candidates retrieved
by accurate mass search. These predicted values may be used as reference values to filter
false identities.

There have been numerous attempts to estimate retention times of small molecules
based on machine learning or non-learning approaches [8–25]. However, such models
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lack accuracy because of limited training data and the complicated nature of retention in
HPLC. The breakthrough in retention time prediction became possible due to significant
progress in developing deep learning techniques. The introduction of the METLIN Small
Molecule Retention Time (SMRT) dataset [26] made it possible to train deep learning models
to achieve unprecedented performance. Gradient boosting [27], deep neural networks
with fully connected layers [26], graph neural networks [28–30] and convolutional neural
networks have been deployed with the SMRT data. Recent works have indicated accuracy
comparable with the experimental error of retention time measurements [31].

The variety of experimental setups is the major problem associated with retention
prediction. Even though a model can provide very accurate predictions for SMRT, these
predictions should somehow be transferred to the separation conditions used in a par-
ticular experiment. The correlation of retention on various systems is usually unclear.
Changes in column dimensions, stationary phase or eluent composition may result in
shifted times or even retention order. Complicated regression models may be used to recal-
culate predictions between two systems, but this requires shared molecules between two
datasets [26,27,32–34]. A more intelligent way is to apply the two-step transfer learning
approach [35]. This includes model pretraining on a large dataset, and fine-tuning the
model for the task of interest on a smaller collection using weights obtained during the
first step. Recent work [36] demonstrated that a retention dataset of several hundreds of
compounds, not necessarily from SMRT, is needed for transfer learning. A deep learning
model is first pretrained on SMRT or even a non-labeled dataset [29,37]. At this step, the
model learns low-level molecular features common for different molecular tasks. Then,
the model is initialized for target training with pretrained first layers that correspond to
such features. Since these first layers are often frozen during fine-tuning, the generalization
ability of a model significantly influences the overall performance. Thus, overfitted models
may demonstrate low prediction error on the pretraining set but poor performance after
transfer learning. Indeed, the prediction error normalized to the chromatographic runtime
for small datasets is much worse than that obtained for the SMRT conditions.

Therefore, the evaluation of new architectures may contribute to accurate predictions
on small datasets. This work aims to evaluate the message-passing neural network (MPNN),
a kind of graph neural network, on retention data. MPNNs were initially designed for
handling molecular data [38] and demonstrated outstanding performance on various
chemical tasks [39–42]. To our knowledge, MPNN has only been used to model retention
time in liquid chromatography on a tiny dataset [43]. We implement a transfer learning
pipeline with pretraining MPNN on the SMRT dataset and fine-tuning on several available
and in-house retention collections. We also propose a workflow to eliminate false identities
based on predicted retention values.

2. Materials and Methods

Datasets. The METLIN SMRT dataset of 80,038 molecules was used for pretraining
and was processed with the rdkit library. Retention times were collected in reversed-
phase separation conditions with mean and median retention time variability of 36 and
18 s, respectively [26]. SMRT has a bimodal retention distribution (Figure S1) due to non-
retained molecules with less than 2 min retention time. Following previous work [30,31], we
excluded these molecules from the training set. The final set contained 77,977 compounds.

The model was fine-tuned and evaluated on small reversed-phase datasets from
the PredRet database [33] (FEM_long, LIFE_new, LIFE_old, Eawag_XBridgeC18) and
the RIKEN Retip dataset [12]. The retention distributions of these sets can be found
in Figure S1.

Message-passing neural network. Following the pipeline for constructing the message-
passing neural network from the original paper on MPNNs [38], our model included
a featurizing step, message-passing, readout and a set of fully-connected layers. We
took the implementation from the Keras tutorial on MPNNs with several changes of
molecular features and hyperparameters. First, molecules were converted into undirected
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graphs, with atoms as nodes and bonds as edges. Graph nodes and edges were encoded
with atom and bond features (Table S1) to generate input for the model. The message-
passing step updated the node state considering its neighborhood and edge features.
Previous states were handled with a gated recurrent unit (GRU) [44]. At the readout phase,
the highly-dimensional updated node states were reduced to embedded vectors with a
combination of a transformer and average pooling layers. These embeddings were then
passed through 3 dense layers with ReLU activation and a linear layer to get predictions.
The overview of the workflow is presented in Figure 1. The detailed model architecture
with all input/output layer dimensions can be found in Figure S2.
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Figure 1. A general scheme of a message-passing neural network.

Model training and evaluation. The model was trained with Adam optimizer, mean
absolute error as a loss function, batch size of 64 and initial learning rate 0.0002. The
learning rate was decreased by a factor of 0.25 if validation loss did not improve for ten
epochs. Overfitting was controlled via an early stopping mechanism. Fitting was stopped
if the validation loss did not improve for twenty epochs.

Model evaluation was performed with a 5-fold cross-validation protocol. Additionally,
a separate 20% test set was extracted randomly and was common for all cross-validation
iterations. Mean (MAE), median absolute error (MedAE), root mean squared error (RMSE),
mean absolute percentage errors (MAPE) and R2 score were used as metrics for evaluation.
Datasets were randomly split into training and validation sets at an 80:20 ratio to train the
final models. In the transfer learning mode, the weights of all the layers except the dense
and the linear were frozen and loaded from a pretrained model before training. The batch
size was reduced to 8. All other parameters were kept the same.

Elimination of false identities. To estimate the proposed approach’s practical utility,
we applied it to distinguish between the isomers of compounds in the evaluation sets
by predicted RT values. To choose the threshold to filter compounds, we plotted the
receiver–operating characteristic (ROC) curve. For that, for all the molecules in the test
sets that were unseen by the model, we downloaded all the isomers from PubChem using
PUG requests [45]. For each isomer, RT was predicted by the model and compared with
the experimental RT for the initial molecule from the test set to consider its isomer as a
true-negative or false-positive for a certain threshold.

For each threshold value taken from the range 0–200% with step 2.5%, we calculated
the number of true-positives (TP) (the correct identity’s predicted RT was within this
threshold from experimentally measured value), false-positives (FP) (the false identity’s
predicted RT was within this threshold from measured value), the total number of positive
cases (P) (equal to the total number of compounds in the evaluation set) and negative cases
(N) (total number of isomers of all compounds from test sets without positive cases).

For example, if the relative difference between the experimental and predicted values
for a molecule in the test set was 5%, it was considered TP for all thresholds above 5% and
FN for all bellow. Its isomers (that are presumed false identities) were considered FP and
TN, respectively, for the same thresholds.

To obtain ROC, we plotted TP/P vs. FP/N at different thresholds. The best threshold
corresponds to the highest value of TPR–FPR to compromise between the numbers of FN
and FP.

All the code was written in Python and is available with the pretrained models via the
following link https://github.com/osv91/MPNN-RT (Accessed on 3 October 2022).

https://github.com/osv91/MPNN-RT


Separations 2022, 9, 291 4 of 9

3. Results and Discussion

Message-passing neural network. Since their introduction in 2017, message-passing
neural networks have outperformed other deep neural networks and traditional machine
learning methods in many molecular regression and classification tasks [39]. MPNNs are
implemented in DeepChem, a popular chemistry-oriented deep learning framework [46].
They are available for general deep learning frameworks in official or non-official tutorials
or add-ins. We have chosen an MPNN implementation from Keras [47] code examples
and adjusted the model architecture, increasing the number of message-passing steps and
adding dense layers to the decoder part of the model.

The results of the 5-fold cross-validation (Figure 2) of the MPNN are listed in Ta-
ble 1. The MPNN outperforms the recently proposed state-of-the-art models based on
1D-CNN [31] and GNN [35] architectures. More importantly, it provides mean and me-
dian absolute errors less than the experimental values for the SMRT dataset, which were
reported to be 36 and 18 s, respectively. The difference between the test and the validation
metrics is minor, indicating moderate model overfitting.
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Table 1. Mean metrics for 5-fold cross-validation of MPNN on SMRT dataset compared with previ-
ously published results.

Model
MAE, s MedAE, s MAPE, % RMSE R2

Validation Test Validation Test Validation Test Validation Test Validation Test

MPNN 32.1 ± 0.6 31.5 ± 0.1 16.2 ± 0.2 16.0 ± 0.2 4.1 ± 0.1 4.0 ± 0.01 62.8 ± 1.9 60.5 ± 0.3 0.872 ± 0.008 0.879 ± 0.001

1D-CNN
[31] 34.7 ± 1.2 18.7 ± 1.3 4.3 ± 0.1 65.5 ± 2.7 No data

GNN [30] 39.87 25.24 5 No data No data

Transferring predictions to small datasets. Predictions made with a model trained on
the SMRT dataset cannot be directly applied for small molecule analysis because of the wide
variety of chromatographic setups. Changing a column or mobile phase gradient program
leads to substantial retention time changes for a given analyte. Therefore, a new collection
of retention times for the chosen separation conditions is required to get actual predicted
values. These retention times can be obtained with mappings between SMRT and the new
dataset, constructing a model from scratch with the new dataset, or using transfer learning.
The last approach is the most promising. To reduce overfitting and get more accurate
predictions, it may benefit to have a large data collection, such as SMRT or non-labeled
public chemistry databases. We estimated the capability of the MPNN pretrained on the
SMRT to improve predictions for five publicly available datasets and compared the results



Separations 2022, 9, 291 5 of 9

with MPNN trained from scratch and with some previously reported results. We reduced
the batch size and froze all the weights except dense and linear layers to account for small
dataset sizes. The results are summarized in Tables 2 and 3 and Figure 3. MPNN behaves
comparably with or better than 1D-CNN and GNN on most datasets. For example, for the
Eawag_XBridgeC18 dataset, the mean and median absolute errors improved by about 30%.
In total, MPNN outperforms GNN on 3 of 4 evaluated sets by median absolute error and
all datasets by mean absolute error. Only for the RIKEN Retip dataset the mean absolute
error of MPNN was higher by more than 2 s than that reported for 1D-CNN.

Table 2. Mean absolute error (in seconds) for 5-fold cross-validation of MPNN compared with
previously published results.

Model
RIKEN Retip FEM_long Eawag_XBridgeC18 LIFE_new LIFE_old

Validation Test Validation Test Validation Test Validation Test Validation Test

MPNN
Transfer
Learning

34.7 ± 3.3 38.2 ± 3.2 214.4 ± 25. 6 204.6 ± 23.0 79.5 ± 10.3 80.9 ± 6.5 23.3 ± 3.8 22.1 ± 3.3 16.9 ± 2.9 16.9 ± 2.0

MPNN
From

Scratch
56.2 ± 13.6 57.2 ± 13.2 299.4 ± 51.0 317.7 ± 25.8 137.1 ± 24.7 135.8 ± 14.1 37.5 ± 17.2 39.1 ± 15.2 27.2 ± 8.3 23.2 ± 2.1

1D-CNN
Transfer
learning

[31]

32.4 ± 3.0 No data No data 23.6 ± 5.1 15.5 ± 2.8

GNN
Transfer
learning

[30]

No data 235.01 112.78 29.38 17.10

Table 3. Median absolute error (in seconds) for 5-fold cross-validation of MPNN compared with
previously published results.

Model
RIKEN Retip FEM_long Eawag_XBridgeC18 LIFE_new LIFE_old

Validation Test Validation Test Validation Test Validation Test Validation Test

MPNN
Transfer
Learning

22.2 ± 2.4 25.0 ± 3.5 93.5 ± 14.9 125.2 ± 12.0 56.0 ± 4.7 57.4 ± 9.3 12.2 ± 1.1 9.7 ± 3.6 9.9 ± 3.1 9.5 ± 0.7

MPNN
From

Scratch
38.0 ± 9.5 40.8 ± 12.4 162.4 ± 51.2 193.1 ± 41.3 105.3 ± 20.7 115.1 ± 18.1 20.4 ± 21.5 24.0 ± 22.2 18.11 ± 8.6 19.5 ± 3.6

1D-CNN
Transfer
learning

[31]

22.2 ± 3.6 No data No data 14.7 ± 4.7 11.8 ± 4.2

GNN
Transfer
learning

[30]

No data 94.66 83.79 15.16 12.88

An example of eliminating false identities. The main goal of retention modeling is to
provide a filter for non-targeted LC-MS workflows. Compound annotation in untargeted
metabolomics is done by accurate mass, providing long isomeric candidates. Their frag-
mentation spectra may partially distinguish them, but MS/MS data are unavailable for
most isomers, and annotation relies on in silico fragmentation. Although these methods
are powerful, they require computational resources, and filtering the list of candidates by
retention times may reduce the overall time for data processing.
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For example, filtering candidates by retention time may be done using a simple filter
based on the prediction standard deviations. However, estimating thresholds from receiver–
operation characteristics (ROC) may reduce the number of false results. To test MPNN’s
ability to aid in compound annotation, we plotted ROC curves with the test splits of
small datasets to choose the optimum threshold and filtered out candidates using these
values. The results are shown in Figure 4. The best thresholds established for the Retip,
FEM_long, Eawag_XbridgeC18, LIFE_new and LIFE_old datasets were 22.5, 10, 20, 17.5
and 20%, respectively, and facilitated eliminating on average 53, 23, 35, 33 and 31% of false
identities. Although the average number of eliminated false positives is relatively small,
it was obtained for most complete lists of isomeric candidates from a general chemistry
database. Targeting the search space to more specific databases, such as HMDB [48], or
combining filtration by retention with in silico fragmentation [49] may improve the results.
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