Plant Poisons in the Garden: A Human Risk Assessment
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Preparation of Stock Solutions and Samples
2.4. Data Mining
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebissa, E. Khat in the Horn of Africa: Historical perspectives and current trends. J. Ethnopharmacol. 2010, 132, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, T.; Khondkar, P.; Gibbons, S. The psychostimulant drug khat (Catha edulis): A mini-review. Phytochem. Lett. 2015, 13, 127–133. [Google Scholar] [CrossRef]
- Halpern, J.H. Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol. Ther. 2004, 102, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.Y. Aconitum alkaloid content and the high toxicity of aconite tincture. Forensic Sci. Int. 2012, 222, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Singhuber, J.; Zhu, M.; Prinz, S.; Kopp, B. Aconitum in Traditional Chinese Medicine—A valuable drug or an unpredictable risk? J. Ethnopharmacol. 2009, 126, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, L.; Zhu, S.; Liu, Q. Case reports of aconite poisoning in mainland China from 2004 to 2015: A retrospective analysis. J. Forensic Leg. Med. 2016, 42, 68–73. [Google Scholar] [CrossRef]
- Yin, X.F.; Li, Z.; Zhang, S.H.; Wu, C.X.; Wang, C.; Wang, Z. Determination of strychnine and brucine in traditional Chinese medicine preparations by capillary zone electrophoresis with micelle to solvent stacking. Chin. Chem. Lett. 2011, 22, 330–333. [Google Scholar] [CrossRef]
- Lachenmeier, D.W. Wormwood (Artemisia absinthium L.)—A curious plant with both neurotoxic and neuroprotective properties? J. Ethnopharmacol. 2010, 131, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Cornara, L.; Smeriglio, A.; Frigerio, J.; Labra, M.; Di Gristina, E.; Denaro, M.; Mora, E.; Trombetta, D. The problem of misidentification between edible and poisonous wild plants: Reports from the Mediterranean area. Food Chem. Toxicol. 2018, 119, 112–121. [Google Scholar] [CrossRef]
- Jograna, M.B.; Patil, D.S.; Kotwal, S.V. Digitalis Species a Potent Herbal Drug. Curr. Pharm. Res. 2010, 10, 3821–3831. [Google Scholar]
- Al, B. The Source-Synthesis- History and Use of Atropine. J. Acad. Emerg. Med. 2014, 13, 2–3. [Google Scholar] [CrossRef]
- The BBC News. Curry Poison Killer Lakhvir Singh Jailed for Life. Available online: http://news.bbc.co.uk/1/hi/england/london/8509798.stm (accessed on 18 April 2021).
- Taylor, M. Poison curry killer jailed for 23 years. The Guardian, 11 February 2010. Available online: https://www.theguardian.com/uk/2010/feb/11/poison-curry-killer-sentenced (accessed on 9 October 2022).
- Edwards, R. Poison-tip umbrella assassination of Georgi Markov reinvestigated. The Telegraph, 19 June 2008. Available online: https://www.telegraph.co.uk/news/2158765/Poison-tip-umbrella-assassination-of-Georgi-Markov-reinvestigated.html (accessed on 9 October 2022).
- Nelsson, R. The Poison-Tipped Umbrella: The Death of Georgi Markov in 1978-Archive. The Guardian, 9 September 2020. Available online: https://www.theguardian.com/world/from-the-archive-blog/2020/sep/09/georgi-markov-killed-poisoned-umbrella-london-1978 (accessed on 9 October 2022).
- Weisberg, D.F.; Becker, W.C.; Fiellin, D.A.; Stannard, C. Prescription opioid misuse in the United States and the United Kingdom: Cautionary lessons. Int. J. Drug Policy 2014, 25, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, S. Audit further exposes UK’s worst serial killer. Lancet 2001, 357, 123–124. [Google Scholar] [CrossRef]
- Roper, M. Sinister tale of the teen ‘Teacup Poisoner’ who killed 2-and made hundreds ill. Mirror, 12 November 2019. Available online: https://www.mirror.co.uk/news/uk-news/teacup-poisoner-made-hundreds-ill-20869584 (accessed on 9 October 2022).
- Akama Friday, O. Plant Toxins. Am. J. Biomed. Sci. Res. 2019, 4, 173–175. [Google Scholar] [CrossRef]
- Teke, G.N.; Kuete, V. 5-Acute and Subacute Toxicities of African Medicinal Plants. In Toxicological Survey of African Medicinal Plants, 1st ed.; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 63–98. [Google Scholar]
- Banasik, M.; Stedeford, T. Plants, Poisonous (Humans). In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 970–978. [Google Scholar]
- Zhao, Y.; Bu, Q.; Zhou, Y.; Lv, L.; Yan, G.; Chen, B.; Wang, L.; Cen, X. Mechanism study of Aconitum-induced neurotoxicity in PC12 cells: Involvement of dopamine release and oxidative damage. NeuroToxicology 2010, 31, 752–757. [Google Scholar] [CrossRef] [PubMed]
- The National Health Service. Colchicine. Available online: https://www.nhs.uk/medicines/colchicine/#:~:text=Colchicine%20is%20a%20medicine%20for,manage%20your%20condition%20long%20term (accessed on 7 March 2021).
- Ramirez-Muroz, J. Determination of digitoxin in pharmaceutical oral dosages by automatic discrete-sample analysis. Anal. Chim. Acta 1974, 73, 167–172. [Google Scholar] [CrossRef]
- Jagielska, J.; Salguero, G.; Schieffer, B.; Bavendiek, U. Digitoxin elicits anti-inflammatory and vasoprotective properties in endothelial cells: Therapeutic implications for the treatment of atherosclerosis? Atherosclerosis 2009, 206, 390–396. [Google Scholar] [CrossRef]
- Kevin, K.L.; Kimball, B.A.; Johnston, J.J. Quantitation of digitoxin, digoxin, and their metabolites by high-performance liquid chromatography using pulsed amperometric detection. J. Chromatogr. A 1995, 711, 289–295. [Google Scholar]
- Bremer-Streck, S.; Kiehntopf, M.; Ihle, S.; Boeer, K. Evaluation of a straightforward and rapid method for the therapeutic drug monitoring of digitoxin by LC-MS/MS. Clin. Biochem. 2013, 46, 1728–1733. [Google Scholar] [CrossRef]
- Whayne, T.F., Jr. Clinical Use of Digitalis: A State of the Art Review. Am. J. Cardiovasc. Drugs 2018, 18, 427–440. [Google Scholar] [CrossRef]
- Bartosova, J.; Kuzelova, K.; Pluskalova, M.; Marinov, I.; Halada, P.; Gasova, Z. UVA-activated 8-methoxypsoralen (PUVA) causes G2/M cell cycle arrest in Karpas 299 T-lymphoma cells. J. Photochem. Photobiol. B 2006, 85, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, J.M.; Plana, A.; Ferrandiz, C. Effectiveness and safety of psoralen-UVA (PUVA) topical therapy in palmoplantar psoriasis: A report on 48 patients. Actas Dermo-Sifiliogr. 2013, 104, 418–425. [Google Scholar] [CrossRef]
- Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. 2017, 96, 515–529. [Google Scholar] [CrossRef]
- Kato, H.; Saito, C.; Ito, E.; Furuhashi, T.; Nishida, E.; Ishida, T.; Ueda, R.; Inagaki, H.; Morita, A. Bath-PUVA therapy decreases infiltrating CCR4-expressing tumor cells and regulatory T cells in patients with mycosis Fungoides. Clin. Lymphoma Myeloma Leuk. 2013, 13, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Tippisetty, S.; Goudi, D.; Mohammed, A.W.; Jahan, P. Repair efficiency and PUVA therapeutic response variation in patients with vitiligo. Toxicol. In Vitro 2013, 27, 438–440. [Google Scholar] [CrossRef]
- Vongthongsri, R.; Konschitzky, R.; Seeber, A.; Treitl, C.; Honigsmann, H.; Tanew, A. Randomized, double-blind comparison of 1 mg/L versus 5 mg/L methoxsalen bath-PUVA therapy for chronic plaque-type psoriasis. J. Am. Acad. Dermatol. 2006, 55, 627–631. [Google Scholar] [CrossRef]
- Freitas, E.M.S.; Fagian, M.M.; da Cruz Hofling, M.A. Effects of veratrine and veratridine on oxygen consumption and electrical membrane potential of isolated rat skeletal muscle and liver mitochondria. Toxicon 2006, 47, 780–787. [Google Scholar] [CrossRef]
- Beyer, J.; Drummer, O.H.; Maurer, H.H. Analysis of toxic alkaloids in body samples. Forensic Sci. Int. 2009, 185, 1–9. [Google Scholar] [CrossRef]
- Romera-Torres, A.; Romero-González, R.; Vidal, J.L.M.; Frenich, A.G. Analytical methods, occurrence and trends of tropane alkaloids and calystegines: An update. J. Chromatogr. A 2018, 1564, 1–15. [Google Scholar] [CrossRef]
- Beike, J.; Frommherz, L.; Wood, M.; Brinkmann, B.; Köhler, H. Determination of aconitine in body fluids by LC-MS-MS. Int. J. Legal Med. 2004, 118, 289–293. [Google Scholar] [CrossRef]
- Reilly, C.A.; Crouch, D.J.; Yost, G.S.; Fatah, A.A. Determination of Capsaicin, Nonivamide, and Dihydrocapsaicin in Blood and Tissue by Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2002, 26, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhabbah, A.M. Determination of chiral cathinone in fresh samples of Catha edulis. Forensic Sci. Int. 2020, 307, 110105. [Google Scholar] [CrossRef] [PubMed]
- Gambaro, V.; Arnoldi, S.; Colombo, M.L.; Dell’Acqua, L.; Guerrini, K.; Roda, G. Determination of the active principles of Catha Edulis: Quali-quantitative analysis of cathinone, cathine, and phenylpropanolamine. Forensic Sci. Int. 2012, 217, 87–92. [Google Scholar] [CrossRef]
- Ohta, H.; Seto, Y.; Tsunoda, N. Determination of Aconitum alkaloids in blood and urine samples. I. High-performance liquid chromatographic separation, solid-phase extraction and mass spectrometric confirmation. J. Chromatogr. B 1997, 691, 351–356. [Google Scholar] [CrossRef]
- Zang, X.; Fukuda, E.K.; Rosen, J.D. Method for the Determination of Veratridine and Cevadine, Major Components of the Natural Insecticide Sabadilla, in Lettuce and Cucumbers. J. Agric. Food Chem. 1997, 45, 1758–1761. [Google Scholar] [CrossRef]
- Taniguchi, M.; Minatani, T.; Miyazaki, H.; Tsuchihashi, H.; Zaitsu, K. A highly sensitive quantification method for 12 plant toxins in human serum using liquid chromatography tandem mass spectrometry with a quick solid-phase extraction technique. J. Pharm. Biomed. Anal. 2021, 192, 113676. [Google Scholar] [CrossRef] [PubMed]
- Remane, D.; Wissenbach, D.K.; Peters, F.T. Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology-An update. Clin. Biochem. 2016, 49, 1051–1071. [Google Scholar] [CrossRef]
- Wirngo, F.E.; Lambert, M.N.; Jeppesen, P.B. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes. Rev. Diabet. Stud. 2016, 13, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Díaz, K.; Espinoza, L.; Madrid, A.; Pizarro, L.; Chamy, R. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents. Evid.-Based Complement. Altern. Med. 2018, 2018, 2706417. [Google Scholar] [CrossRef] [Green Version]
- Biel, W.; Jaroszewska, A.; Łysoń, E.; Telesiński, A. The chemical composition and antioxidant properties of common dandelion leaves compared with sea buckthorn. Can. J. Plant Sci. 2017, 97, 1165–1174. [Google Scholar] [CrossRef]
- Environment Protection Agency, Exposure Assessment Tool-Ingestion. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-routes-ingestion (accessed on 31 May 2021).
- United States Environment Protection Agency. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/efh-chapter08.pdf (accessed on 10 September 2022).
- United States Environment Protection Agency. Available online: https://www.epa.gov/sites/default/files/2018-08/documents/efh_-_chapter_9_update.pdf (accessed on 10 September 2022).
- United States Environment Protection Agency. Available online: https://www.epa.gov/sites/default/files/2018-01/documents/efh-chapter05_2017.pdf (accessed on 10 September 2022).
- Sigma Aldrich. 5-Methoxypsoralen Safety Data Sheet. Available online: https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=275727&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3D5-methoxypsoralen%26interface%3DAll%26N%3D0%26mode%3Dmatch%2520partialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct (accessed on 18 April 2021).
- Sigma Aldrich. 8-Methoxypsoralen Safety Data Sheet. Available online: https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=M3501&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3D8-methoxypsoralen%26interface%3DAll%26N%3D0%26mode%3Dmatch%2520partialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct (accessed on 18 April 2021).
- Sigma Aldrich. α-Thujone Safety Data Sheet. Available online: https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=89231&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3Dthujone%26interface%3DAll%26N%3D0%26mode%3Dmatch%2520partialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct (accessed on 18 April 2021).
- Drug Bank. Cathinone. Available online: https://go.drugbank.com/drugs/DB01560 (accessed on 18 April 2021).
- Drug Bank. Colchicine. Available online: https://go.drugbank.com/drugs/DB01394 (accessed on 18 April 2021).
- Sigma Aldrich. Veratridine Product Information Sheet. Available online: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/1/v5754pis.pdf (accessed on 18 April 2021).
- Drug Bank. Digitoxin. Available online: https://go.drugbank.com/drugs/DB01396 (accessed on 18 April 2021).
- Drug Bank. Digoxin. Available online: https://go.drugbank.com/drugs/DB00390 (accessed on 18 April 2021).
- Royal Society of Chemistry, Hellebrin. Available online: http://www.chemspider.com/Chemical-Structure.390435.html (accessed on 18 April 2021).
- Sigma Aldrich. Aconitine Safety Data Sheet. Available online: https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=A8001&brand=SIGMA&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3DAconitine%26interface%3DAll%26N%3D0%26mode%3Dmatch%2520partialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct (accessed on 18 April 2021).
- Drug Bank. Atropine. Available online: https://go.drugbank.com/drugs/DB00572 (accessed on 18 April 2021).
- Sigma Aldrich. Scopolamine Safety Data Sheet. Available online: https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=S1875&brand=SIGMA&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3DScopolamine%26interface%3DAll%26N%3D0%26mode%3Dmatch%2520partialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct (accessed on 18 April 2021).
- Sigma Aldrich. α-Solanine Safety Data Sheet. Available online: https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&productNumber=S3757&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Fterm%3Dsolanine%26interface%3DAll%26N%3D0%26mode%3Dmatch%2520partialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct (accessed on 18 April 2021).
- Drug Bank. Coumarin. Available online: https://go.drugbank.com/drugs/DB04665 (accessed on 18 April 2021).
- Zhou, W.; Chen, X.; Zhao, G.; Xu, D.; Jiang, Z.; Zhang, L.; Wang, T. Psoralen Induced Liver Injury by Attenuating Liver Regenerative Capability. Front. Pharmacol. 2018, 9, 1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Shi, R.; Gao, M.; Wang, H.; Du, Y.; Zhang, L.; Wang, Q.; Zhang, M. Differentiation of Furanocoumarin Isomers with Ratio of Relative Abundance of Characteristic Fragment Ions and Application in Angelicae dahuricae Radix. Chromatographia 2017, 80, 1401–1410. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Fu, C.-M.; Hu, Y.; Li, Y.; Qing, S.-h.; Gao, F. Screening out Potential Cardio-Toxic Components of Chinese Herb Radix Aconiti Lateralis in Rat Dosed Plasma by High Performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-Of-Flight Mass Spectrometry. Anal. Lett. 2012, 45, 1695–1712. [Google Scholar] [CrossRef]
- Chen, H.X.; Chen, Y.; Du, P.; Han, F.M. LC-MS for Identification and Elucidation of the Structure of In-Vivo and In-Vitro Metabolites of Atropine. Chromatographia 2007, 65, 413–418. [Google Scholar] [CrossRef]
- Li, W.; Sun, Y.; Fitzloff, J.F.; van Breemen, R.B. Evaluation of Commercial Ginkgo and Echinacea Dietary Supplements for Colchicine Using Liquid Chromatography-Tandem Mass Spectrometry. Chem. Res. Toxicol. 2002, 15, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, Y.; Sun, S.; Chen, X.; Shi, X.; Fang, H.; Zhang, Y.; Fang, Z. Fragmentation pathways of protonated coumarin by ESI-QE-Orbitrap-MS/MS coupled with DFT calculations. Biol. Mass Spectrom. 2020, 55, e4496. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Du, P.; Han, F. Liquid Chromatography–Electrospray Ionization Ion Trap Mass Spectrometry for Analysis of in Vivo and in Vitro Metabolites of Scopolamine in Rats. J. Chromatogr. Sci. 2008, 46, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Cahill, M.; Caprioli, G.; Vittori, S.; James, K. Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry. J. Mass Spectrom. 2010, 45, 1019–1025. [Google Scholar] [CrossRef]
Parameter | Plant Poison Analysis | ||
---|---|---|---|
Mobile Phase | A: 0.1% Formic acid in water B: 0.1% Formic acid in methanol | ||
Pump program | Time (min) | % A | % B |
0.00 | 60 | 40 | |
10.00 | 10 | 90 | |
20.00 | 10 | 90 | |
20.10 | 60 | 40 | |
25.00 | 60 | 40 | |
HESI temperature | Ambient | ||
Ion source voltage | 4.50 kV | ||
Capillary voltage (V) | 25, 45, 15, 14 | ||
Transfer capillary temperature | 350 °C | ||
Auxiliary Gas (arb) | 10 | ||
Sweep Gas (arb) | 5 | ||
Sheath gas (arb) | 10 | ||
Ion Mode | Positive | ||
Scan mode | SRM |
Compound | Collison Energy (eV) | Fragmentation Ion Observed (m/z) | Fragmentation |
---|---|---|---|
5-methoxypsoralen | 30.0 | 217, 202 *, 173 | [M + H]+, [M + H-CH3]+, [M + H-CO2]+ |
8-methoxypsoralen | 30.0 | 217, 202 *, 173 | [M + H]+, [M + H-CH3]+, [M + H-CO2]+ |
Aconitine | 24.0 | 647, 597, 587 * | [M + H]+, [M + H-HO3]+, [M + H-C2H4O2]+ |
Atropine | 24.0 | 290, 260, 124 * | [M + H]+, [M + H-OH]+, [M + H-C8H7O2]+ |
Cathinone | 30.0 | 150, 133 *, 105 | [M + H]+, [M + H-NH3]+, [M + H-C2H7N]+ |
Colchicine | 23.0 | 400, 382 *, 358 | [M + H]+, [M + H-H2O]+, [M + H-C2H2O]+ |
Coumarin | 30.0 | 147, 119, 103 * | [M + H]+, [M + H-CO]+, [M + H-CO2]+ |
Digitoxin | 28.0 | 788, 743, 387 * | [M + Na]+, [M + Na-CO2]+, [M + Na-C17H36O10]+ |
Digoxin | 29.0 | 804, 786, 387 * | [M + Na]+, [M + Na-H2O]+, [M + Na-C17H36O11]+ |
Hellebrin | 32.0 | 747, 701, 585 * | [M + Na]+, [M + Na-CH2O2]+, [M + Na-C6H10O5]+ |
Psoralen | 30.0 | 187, 159, 143 * | [M + H]+, [M + H-CO]+, [M + H-CO2]+ |
Scopolamine | 23.5 | 304, 156, 138 * | [M + H]+, [M + H-C9H8O2]+, [M + H-C9H10O3]+ |
Solanine | 40.0 | 869, 723, 707 * | [M + H]+, [M + H-C6H10O4]+, [M + H-C6H10O5]+ |
Thujone | 28.0 | 175, 133, 119 * | [M + Na]+, [M + Na-C3H6]+, [M + Na-C4H8]+ |
Veratridine | 25.0 | 674, 656, 492 * | [M + H]+, [M + H-H2O]+, [M + H-C9H10O4]+ |
Segment Number | Time Window (min) | Compounds | Tune File Used |
---|---|---|---|
1 | 0–6 | atropine, cathinone, scopolamine | Atropine |
2 | 6–10 | aconitine, coumarin, hellebrin, solanine, veratridine, colchicine | Hellebrin |
3 | 10–14.5 | digoxin, 5- and 8-methoxypsoralen, psoralen, thujone | Psoralen |
4 | 14.5–20 | digitoxin | Digitoxin |
Compound | Calibration Range (ng/mL) | No of Data Points | Linearity (y=) | R2 Value | Precision (%CV) (Low, Mid, High) | LOD (in Solution) (ng/mL) | LOQ (in Solution) (ng/mL) | LOD (in Matrix) (ng/g) | LOQ (in Matrix) (ng/g) |
---|---|---|---|---|---|---|---|---|---|
5-methoxypsoralen | 0–100 | 7 | 1325.5x + 2893 | 0.9964 | 10, 4.6, 2.3 | 2.0 | 6.7 | 128 | 389 |
8-methoxypsoralen | 0–100 | 7 | 1315.3x − 1107.7 | 0.9984 | 9.3, 2.2, 2.9 | 0.7 | 2.3 | 56 | 169 |
Aconitine | 0–100 | 7 | 7001.2x −6390.8 | 0.9991 | 1.5, 0.9, 2.9 | 1.0 | 3.3 | 500 | 1515 |
Atropine | 0–100 | 7 | 4227.2x − 5294.6 | 0.9994 | 2.8, 2.6, 6.9 | 3.7 | 12 | 259 | 784 |
Cathinone | 0–100 | 7 | 7116.8x − 36,698 | 0.9957 | 1.4, 3.2, 2.4 | 6.3 | 20.1 | 488 | 1478 |
Colchicine | 0–100 | 7 | 267.94x + 115.8 | 0.9985 | 3.5, 4.1, 4.0 | 0.3 | 1.1 | 27 | 82 |
Coumarin | 0–5000 | 10 | 4.1771x − 158.54 | 0.9990 | 0.6, 2.3, 1.7 | 92 | 308 | 6450 | 21,276 |
Digitoxin | 0–100 | 7 | 108.28x +258.93 | 0.9959 | 2.9, 5.0, 2.9 | 1.1 | 3.5 | 94 | 286 |
Digoxin | 0–300 | 7 | 30.352x − 47.162 | 0.9988 | 2.8, 5.2, 4.1 | 5.5 | 18.2 | 134 | 407 |
Hellebrin | 0–400 | 10 | 195.98x + 1686.6 | 0.9981 | 6.0, 6.7, 6.5 | 7.5 | 25 | 527 | 1597 |
Psoralen | 0–100 | 7 | 198.35x − 491.57 | 0.9952 | 10.7, 2.7, 3.3 | 1.2 | 4.1 | 79 | 238 |
Scopolamine | 0–100 | 7 | 720.56x + 142.49 | 0.9993 | 0.8, 5.5, 5.4 | 1.0 | 3.3 | 177 | 536 |
Solanine | 0–100 | 7 | 2478.2x + 959.64 | 0.9996 | 1.8, 1.4, 1.6 | 2.4 | 7.9 | 103 | 311 |
Thujone | 0–100 | 7 | 73.474x + 180.44 | 0.9969 | 3.4, 2.8, 2.1 | 2.7 | 8.5 | 101 | 305 |
Veratridine | 0–100 | 7 | 6533.4x − 814.27 | 0.9979 | 2.1, 1.0, 0.3 | 0.2 | 0.8 | 8 | 24 |
Family | Genus | Species | Common Name | Part of Plant | Ground Position | Compound | (a) | (b) | ||
---|---|---|---|---|---|---|---|---|---|---|
Concentration (µg/g) ± SD (n = 3) | Exposure Factor (µg/kg-day) | Compound LD50 (mg/kg) | Days (Years) to Reach LD50 | |||||||
Apiaceae | Heracleum | H. mantegazzianum | Giant hogweed | Flower | above | Psoralen | 1428 ± 30 | 9000 | 1700 | 190 |
above | 5-Methoxypsoralen | 920 ± 15 | 5800 | >3000 | 519 (>1) | |||||
above | 8-Methoxypsoralen | 672 ± 10 | 4200 | 791 | 188 | |||||
Leaf | above | Psoralen | 1703 ± 14 | 11,000 | 1700 | 159 | ||||
above | 5-Methoxypsoralen | 1298 ± 17 | 8100 | >3000 | 368 (>1) | |||||
above | 8-Methoxypsoralen | 499 ± 21 | 3100 | 791 | 252 | |||||
Asteraceae | Artemisia | A. absinthium | Common wormwood | Leaf | above | Thujone | 322 ± 9.7 | 2000 | 500 | 247 |
Stem | above | Thujone | 110 ± 3.5 | 688 | 500 | 727 (>2) | ||||
Celastraceae | Catha | C. edulis | Khat | Leaf | above | Cathinone | ND | ND | 379.7 | ND |
Colchicaceae | Colchicum | C. autumnale | Autumn crocus | Bulb | below | Colchicine | 578 ± 3 | 3,600,000 | 5.87 | 0.002 |
Leaf | above | Colchicine | 127 ± 1 | 800,000 | 5.87 | 0.007 | ||||
Liliaceae | Fritillaria | F. imperialis | Crown imperial | Leaf | above | Veratridine | 0.44 ± 0.01 | 2.8 | 1.35 | 489 (>1) |
Stem | above | Veratridine | ND | ND | 1.35 | ND | ||||
F. meleagris | Snake’s head | Leaf | above | Veratridine | 0.04 ± 0.001 | 0.3 | 1.35 | 5400 (>14) | ||
Stem | above | Veratridine | ND | ND | 1.35 | ND | ||||
Melanthiaceae | Veratrum | V. album | White hellebore | Flower | above | Veratridine | 1.3 ± 0.02 | 8.3 | 1.35 | 163 |
Seed | above | Veratridine | ND | ND | 1.35 | ND | ||||
Plantaginaceae | Digitalis | D. ferruginea | Rusty foxglove | Flower | above | Digitoxin | 184 ± 2 | 1200 | 3527 | 3000 (>8) |
above | Digoxin | 81 ± 1 | 506 | 28.27 | 56 (<1) | |||||
Leaf | above | Digitoxin | 70 ± 0.6 | 440 | 3527 | 8000 (>21) | ||||
above | Digoxin | ND | ND | 28.27 | ND | |||||
Seed | above | Digitoxin | 244 ± 3 | 1500 | 3527 | 2300 (>6) | ||||
above | Digoxin | 26 ± 0.6 | 160 | 28.27 | 176 | |||||
D. purpurea | Foxglove | Leaf | above | Digitoxin | 256 ± 4 | 1600 | 3527 | 2200 (>6) | ||
above | Digoxin | 1.1 ± 0.1 | 6.7 | 28.27 | 4200 (>11) | |||||
Ranunculaceae | Helleborous | H. argutifolis | Holly-leaved hellebore | Flower | above | Hellebrin | ND | ND | 8.4 | ND |
Leaf | above | Hellebrin | ND | ND | 8.4 | ND | ||||
Root | below | Hellebrin | 1.6 ± 0.03 | 1.1 | 8.4 | 7800 (>25) | ||||
H. niger | Christmas rose | Flower | above | Hellebrin | ND | ND | 8.4 | ND | ||
Leaf | above | Hellebrin | ND | ND | 8.4 | ND | ||||
Root | below | Hellebrin | ND | ND | 8.4 | ND | ||||
H. orientalis | Lenten rose | Flower | above | Hellebrin | ND | ND | 8.4 | ND | ||
Leaf | above | Hellebrin | ND | ND | 8.4 | ND | ||||
Root | below | Hellebrin | 18.1 ± 1.2 | 12.5 | 8.4 | 669 (>1) | ||||
H. cyclophyllus | - | Flower | above | Hellebrin | ND | ND | 8.4 | ND | ||
Leaf | above | Hellebrin | ND | ND | 8.4 | ND | ||||
Root | below | Hellebrin | ND | ND | 8.4 | ND | ||||
H. early purple | - | Flower | above | Hellebrin | ND | ND | 8.4 | ND | ||
Leaf | above | Hellebrin | ND | ND | 8.4 | ND | ||||
Root | below | Hellebrin | 10.8 ± 1 | 7.5 | 8.4 | 1100 (>3) | ||||
H. viridis | Green hellebore | Flower | above | Hellebrin | ND | ND | 8.4 | ND | ||
Leaf | above | Hellebrin | ND | ND | 8.4 | ND | ||||
Root | below | Hellebrin | 55.6 ± 2.9 | 38.4 | 8.4 | 218 | ||||
Aconitum | A. lycoctonum | Wolf’s-bane | Leaf | above | Aconitine | ND | ND | 1 | ND | |
Stem | above | Aconitine | ND | ND | 1 | ND | ||||
A. napellus | Monk’s-hood | Leaf | above | Aconitine | 1.7 ± 0.02 | 10.9 | 1 | 92 | ||
Stem | above | Aconitine | ND | ND | 1 | ND | ||||
Aquilegia | A. alpina | Breath of God | Flower | above | Aconitine | ND | ND | 1 | ND | |
Seed | above | Aconitine | ND | ND | 1 | ND | ||||
Stem | above | Aconitine | ND | ND | 1 | ND | ||||
A. atrata | Dark columbine | Flower | above | Aconitine | ND | ND | 1 | ND | ||
Leaf | above | Aconitine | ND | ND | 1 | ND | ||||
Stem | above | Aconitine | ND | ND | 1 | ND | ||||
Seed | above | Aconitine | ND | ND | 1 | ND | ||||
Rutaceae | Ruta | R. graveolens | Rue | Leaf | above | Psoralen | 343 ± 5 | 2200 | 1700 | 790 (>2) |
above | 5-Methoxypsoralen | 335 ± 5 | 2100 | >3000 | 1400 (>3) | |||||
above | 8-Methoxypsoralen | 139 ± 4 | 873 | 791 | 905 (>2) | |||||
Fruit | above | Psoralen | 42 ± 0.5 | 265 | 1700 | 6400 (>17) | ||||
above | 5-Methoxypsoralen | ND | ND | >3000 | ND | |||||
above | 8-Methoxypsoralen | 4.1 ± 0.04 | 25 | 791 | 31,000 (>85) | |||||
Solanaceae | Atropa | A. belladonna | Deadly nightshade | Fruit | above | Atropine | 63,146 ± 126 | 400,000 | 75 | 0.19 |
above | Scopolamine | 44,498 ± 1201 | 280,000 | 1300 | 4.7 | |||||
Leaf | above | Atropine | 2117 ± 176 | 13,000 | 75 | 5.6 | ||||
above | Scopolamine | 388 ± 2 | 2400 | 1300 | 534 (>1) | |||||
Brugmansia | B. suaveolens | Angel’s trumpet | Flower | above | Atropine | 31 ± 0.8 | 197 | 75 | 380 (>1) | |
above | Scopolamine | 29 ± 3 | 185 | 1300 | 7000 (>19) | |||||
Pollen | above | Atropine | 79 ± 1 | 494 | 75 | 152 | ||||
above | Scopolamine | 69 ± 0.5 | 433 | 1300 | 3000 (>8) | |||||
Stem | above | Atropine | 100 ± 2 | 625 | 75 | 120 | ||||
above | Scopolamine | 5257 ± 37 | 33,000 | 1300 | 39 | |||||
Hyoscyamus | H. niger | Henbane | Flower | above | Atropine | 61 ± 1.2 | 385 | 75 | 195 | |
above | Scopolamine | 2755 ± 58 | 17,000 | 1300 | 75 | |||||
Root | below | Atropine | 6.9 ± 0.2 | 4.8 | 75 | 16,000 (>43) | ||||
below | Scopolamine | 36 ± 1 | 25 | 1300 | 52,000 (>100) | |||||
Seed | above | Atropine | 91 ± 6 | 574 | 75 | 131 | ||||
above | Scopolamine | 3907 ± 176 | 25,000 | 1300 | 53 | |||||
Solanum | S. dulcamara | Bittersweet | Flower | above | Solanine | ND | ND | 590 | ND | |
Leaf | above | Solanine | 0.73 ± 0.01 | 4600 | 590 | 129 | ||||
Stem | above | Solanine | 0.93 ± 0.01 | 5800 | 590 | 101 | ||||
Root | below | Solanine | ND | ND | 590 | ND | ||||
Thymelaeceae | Daphne | D. laureola | Spurge laurel | Leaf | above | Coumarin | 98 ± 0.2 | 612 | 359.5 | 587 (>1) |
Parameter | Abbreviation | Value (Units) |
---|---|---|
Exposure frequency | EF | 0.088 (days/year) |
Exposure duration | ED | 5 (years) |
Average time of exposure | AT | 5 (days) |
Body weight | BW | 11.4 (kg) |
Ingestion rate (above ground) | IngRa | 816 (mg/day) |
Ingestion rate (below ground) | IngRb | 90 (mg/day) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowerbank, S.L.; Gallidabino, M.D.; Dean, J.R. Plant Poisons in the Garden: A Human Risk Assessment. Separations 2022, 9, 308. https://doi.org/10.3390/separations9100308
Bowerbank SL, Gallidabino MD, Dean JR. Plant Poisons in the Garden: A Human Risk Assessment. Separations. 2022; 9(10):308. https://doi.org/10.3390/separations9100308
Chicago/Turabian StyleBowerbank, Samantha L., Matteo D. Gallidabino, and John R. Dean. 2022. "Plant Poisons in the Garden: A Human Risk Assessment" Separations 9, no. 10: 308. https://doi.org/10.3390/separations9100308
APA StyleBowerbank, S. L., Gallidabino, M. D., & Dean, J. R. (2022). Plant Poisons in the Garden: A Human Risk Assessment. Separations, 9(10), 308. https://doi.org/10.3390/separations9100308