Development and Validation of a Near-Infrared Spectroscopy Method for Multicomponent Quantification during the Second Alcohol Precipitation Process of Astragali radix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Alcohol Precipitation Process and Experimental Setup
2.3. NIR Spectral Acquisition
2.4. Reference Assays
2.5. Calibration Protocol
2.6. Validation Protocol
2.7. Multivariate Data Treatment
3. Results and Discussion
3.1. The Second Alcohol Precipitation Process and NIR Spectra
3.2. Spectral Pretreatments
3.3. Development of Calibration Models
3.4. In-Line Monitoring of the Second Alcohol Precipitation Process and Chemometric Validation
3.5. Validation Based on Accuracy Profiles
3.5.1. Trueness
3.5.2. Precision
3.5.3. Accuracy
3.5.4. Linearity
3.5.5. Range
3.5.6. Robustness
3.5.7. Specificity
3.6. Method Uncertainty Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.Y.; Wang, D.; Li, X.R.; Qin, X.M.; Du, Y.G.; Li, K. Identification and activity evaluation of Astragalus Radix from different germplasm resources based on specific oligosaccharide fragments. Chin. Herb. Med. 2021, 13, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.N.; Hou, G.J.; Meng, Y.; Chen, Y.; Xie, L.; Shi, B. Network Pharmacology and Molecular Docking-Based Investigation of Potential Targets of Astragalus membranaceus and Angelica sinensis Compound Acting on Spinal Cord Injury. Dis. Mark. 2022, 2022, 2141882. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.Y.; Qu, R.M.; Li, Y.C.; Lv, Y.; Dai, J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front. Pharm. 2022, 13, 976561. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.C.; Wang, S.; Li, Y.; Qu, H.B. Separation characteristics of ethanol precipitation for the purification of the water extract of medicinal plants. Sep. Purif. Technol. 2013, 107, 273–280. [Google Scholar] [CrossRef]
- Liang, X.L.; Ji, M.M.; Chen, L.; Liao, Y.; Kong, X.Q.; Xu, X.Q.; Liao, Z.G.; Wilson, W.D. Traditional Chinese herbal medicine Astragalus Radix and its effects on intestinal absorption of aconite alkaloids in rats. Chin. Herb. Med. 2021, 13, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Dong, Z.; Shr, Q. Modern Study of Traditional Chinese Medicine; Xue Yuan Press: Beijing, China, 1998; Volume 4, p. 3886. [Google Scholar]
- European Medicines Agency (EMA). Guideline on the Use of Near Infrared Spectroscopy by the Pharmaceutical Industry and the Data Requirements for New Submissions and Variations; EMA: Amsterdam, The Netherlands, 2014.
- Engel, J.; Gerretzen, J.; Szymanska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M.C. Breaking with trends in pre-processing? TrAC Trends Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- International Conference on Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, Tpoic Q2 (A), Test on Validation of Analytical Procedures; ICH: Geneva, Switzerland, 1994.
- Bleye, C.; Chavez, P.F.; Mantanus, J.; Marini, R.; Hubert, P.; Rozet, E.; Ziemons, E. Critical review of near-infrared spectroscopic methods validations in pharmaceutical applications. J. Pharm. Biomed. 2012, 69, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, A.; Toiviainen, M.; Lehtonen, M.; Jarvinen, K.; Paaso, J.; Juuti, M.; Ketolainen, J. Validation of a multipoint near-infrared spectroscopy method for in-line moisture content analysis during freeze-drying. J. Pharm. Biomed. 2014, 95, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, C.; Clicq, D.; Lecomte, C.; Merschaert, A.; Norrant, E.; Fotiad, F. A Process Analytical Technology (PAT) approach to control a new API manufacturing process: Development, validation and implementation. Talanta 2014, 120, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Fonteyne, M.; Arruabarrena, J.; Beer, J.; Hellings, M.; Kerkhof, T.V.; Burggraeve, A.; Vervaet, C.; Remon, J.P.; Beer, T. NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: Validation of quantifying abilities and uncertainty assessment. J. Pharm. Biomed. 2014, 100, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.F.; Yang, J.Y.; Cao, W.; Shao, J.Y.; Wang, G.X.; Qu, H.B.; Huang, W.H.; Gong, X.C. Critical process parameter identification of manufacturing processes of Astragali radix extract with a weighted determination coefficient method. Chin. Herb. Med. 2020, 12, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Hubert, P.; Nguyen-Huu, J.J.; Boulangerc, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P.A.; Dewe, W.; Feinberg, M.; Lallier, M.; et al. Harmonization of strategies for the validation of quantitative analytical procedures—A SFSTP proposal—Part II. J. Pharm. Biomed. 2007, 45, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Hubert, P.; Nguyen-Huu, J.J.; Boulangerc, B.; Chapuzet, E.; Cohen, N.; Compagnon, P.A.; Dewe, W.; Feinberg, M.; Laurentie, M.; Mercier, N.; et al. Harmonization of strategies for the validation of quantitative analytical procedures—A SFSTP proposal—Part III. J. Pharm. Biomed. 2007, 45, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Hubert, P.; Nguyen-Huu, J.J.; Boulanger, B.; Chapuzet, E.; Cohen, N.; Compagnon, P.A.; Dewe, W.; Feinberg, M.; Laurentie, M.; Mercier, N.; et al. Harmonization of strategies for the validation of quantitative analytical procedures: A SFSTP proposal Part IV. Examples of application. J. Pharm. Biomed. 2008, 48, 760–771. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, Q.; Lin, Z.; Peng, Y.; Ai, L.; Shi, X.; Qiao, Y. A novel model selection strategy using total error concept. Talanta 2013, 107, 248–254. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, B.; Du, M.; Sui, C.; Shi, X.; Qiao, Y. Validation of a NIR quantification method for the determination of chlorogenic acid in Lonicera japonica solution in ethanol precipitation process. J. Pharm. Biomed. 2012, 62, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Xu, B.; Yang, C.; Cui, X.; Li, J.; Shi, X.; Qiao, Y. Method validation for the analysis of licorice acid in the blending process by near infrared diffuse reflectance spectroscopy. Anal. Meth. 2015, 7, 5830–5837. [Google Scholar] [CrossRef]
- Luo, Y.; Li, W.; Huang, W.; Liu, X.; Song, Y.; Qu, H. Simultaneous assay of six components in water extract and alcohol precipitation liquid in Astragali radix by HPLC-UV-ELSD. J. Chin. Mater. Med. 2016, 41, 850–858. [Google Scholar]
- Xu, Z.; Huang, W.; Gong, X.; Ye, T.; Qu, H.; Song, Y.; Liu, D.; Wang, G. Design space approach to optimize first ethanol precipitation process of Dangshen. J. Chin. Mater. Med. 2015, 40, 4411–4416. [Google Scholar]
- Wang, K.Y.; Bian, X.H.; Tan, X.Y.; Wang, H.T.; Li, Y.K. A new ensemble modeling method for multivariate calibration of near infrared spectra. Anal. Meth. 2021, 13, 1374–1380. [Google Scholar] [CrossRef]
- Gerretzen, J.; Szymanska, E.; Jansen, J.J.; Bart, J.; Manen, H.; Heuvel, E.R.; Buydens, L.M.C. Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments. Anal. Chem. Acta 2015, 87, 12096–12103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 5725-1:1994; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. International Organization for Standardization: Geneva, Switzerland, 1994.
- International Conference on Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, Topic Q2(R1): Validation of Analytical Methods: Text and Methodology; ICH: Geneva, Switzerland, 2005.
- The European Agency for the Evaluation of Medicinal Products. Note for Guideline on the Use of Near-Infrared Spectroscopy by the Pharmaceutical Industry and the Data Requirements for News Submissions and Variations; European Agency for the Evaluation of Medicinal Products: London, UK, 2003. [Google Scholar]
- Li, T.T.; Hu, T.; Nie, L.; Zang, L.X.; Zeng, Y.Z.; Zang, H.C. Rapid monitoring five components of ethanol precipitation process of Shenzhiling oral solution using near infrared spectroscopy. Chin. J. Trad. Chin. Med. 2016, 41, 3543–3550. [Google Scholar]
- Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland, 1993.
- Zhang, C.; Liu, F.; Qiu, Z.J.; He, Y. Application of Deep Learning in Food: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1793–1811. [Google Scholar]
Batch | TS Contents of the Concentrated Raw Materials (%) | Ethanol Concentration (%) | Mass Ratio of Ethanol to the Concentrated Raw Materials (g/g) | Temperature (°C) | Usage |
---|---|---|---|---|---|
1 | 35 | 93 | 3.0 | 25 | Calibration |
2 | 45 | 93 | 3.0 | 25 | Calibration |
3 | 35 | 97 | 3.0 | 25 | Calibration |
4 | 45 | 97 | 3.0 | 25 | Calibration |
5 | 40 | 97 | 2.5 | 25 | Calibration |
6 | 40 | 93 | 3.5 | 25 | Calibration |
7 | 35 | 95 | 2.5 | 25 | Calibration |
8 | 45 | 95 | 2.5 | 25 | Calibration |
9 | 35 | 95 | 3.5 | 25 | Calibration |
10 | 45 | 95 | 3.5 | 25 | Calibration |
11 | 40 | 95 | 2.5 | 20 | Calibration |
12 | 40 | 93 | 3.5 | 25 | Calibration |
13 | 35 | 95 | 3.0 | 20 | Calibration |
14 | 45 | 95 | 3.0 | 20 | Calibration |
15 | 40 | 93 | 3.0 | 20 | Calibration |
16 | 40 | 97 | 3.0 | 20 | Calibration |
17 | 40 | 95 | 2.5 | 30 | Calibration |
18 | 40 | 95 | 3.5 | 30 | Calibration |
19 | 35 | 95 | 3.0 | 30 | Calibration |
20 | 45 | 95 | 3.0 | 30 | Calibration |
21 | 40 | 97 | 3.5 | 25 | Calibration |
22 | 40 | 97 | 3.0 | 30 | Calibration |
23 | 40 | 95 | 3.5 | 20 | Validation and robustness evaluation |
24 | 40 | 93 | 3.0 | 30 | Validation and robustness evaluation Robustness evaluation |
25 | 40 | 95 | 3.0 | 25 | Validation |
26 | 40 | 95 | 3.0 | 25 | Validation |
27 | 40 | 95 | 3.0 | 25 | Validation |
28 | 40 | 95 | 3.0 | 25 | Validation |
29 | 40 | 95 | 3.0 | 25 | Validation |
Baseline Correction | Scatter Correction | Smoothing | Scaling |
---|---|---|---|
- | - | - | Mean centering |
1st D a | MSC c | SG e | Auto scaling |
2nd D b | SNV d | NW f |
Baseline Correction | Scatter Correction | Smoothing | Scaling | LVs a | Calibration Set | Validation Set 1 | ||
---|---|---|---|---|---|---|---|---|
RC | RMSEC | RP | RMSEP | |||||
- | - | - | Auto scaling | 6 | 0.9783 | 2.28 | 0.9954 | 1.07 |
- | MSC | - | Auto scaling | 6 | 0.9692 | 2.71 | 0.9954 | 1.03 |
- | MSC | SG | Auto scaling | 5 | 0.9622 | 3.00 | 0.9939 | 1.18 |
1st D | - | NW | Auto scaling | 3 | 0.9651 | 2.88 | 0.9950 | 1.06 |
1st D | - | SG | Auto scaling | 7 | 0.9861 | 1.83 | 0.9950 | 1.23 |
2nd D | - | NW | Auto scaling | 4 | 0.9768 | 2.36 | 0.9963 | 0.83 |
Analytes | Pretreatment Combinations | LVs | Calibration Set | Cross-Validation | Validation Set 1 | |||
---|---|---|---|---|---|---|---|---|
RC | RMSEC | RCV | RMSECV | RP | RMSEP | |||
TS | NW a + 2nd D + auto scaling | 3 | 0.9711 | 2.63% | 0.9602 | 3.11% | 0.9974 | 0.74% |
CG | SG b + 1st D + auto scaling | 3 | 0.9614 | 0.169 mg/mL | 0.9504 | 0.192 mg/mL | 0.9963 | 0.0460 mg/mL |
FG | NW a + 2nd D + auto scaling | 3 | 0.971 | 0.0316 mg/mL | 0.9549 | 0.0395 mg/mL | 0.9924 | 0.0142 mg/mL |
DPGP | NW a + 2nd D + auto scaling | 3 | 0.9691 | 0.0629 mg/mL | 0.9522 | 0.0784 mg/mL | 0.9967 | 0.0197 mg/mL |
DDIFGP | NW c + 1st D + auto scaling | 3 | 0.9621 | 0.0256 mg/mL | 0.9517 | 0.0289 mg/mL | 0.9941 | 0.00865 mg/mL |
AG II | SG e + mean centering | 6 | 0.9675 | 0.0601 mg/mL | 0.9618 | 0.0652 mg/mL | 0.9656 | 0.0841 mg/mL |
AG IV | NW d + 1st D + auto scaling | 3 | 0.9416 | 0.0590 mg/mL | 0.9268 | 0.0659 mg/mL | 0.9762 | 0.0325 mg/mL |
Analytes | Validation Set 2 | ||
---|---|---|---|
R | RMSEP | RSEP | |
TS | 0.9988 | 0.53% | 2.41% |
CG | 0.9977 | 0.0437 mg/mL | 3.73% |
FG | 0.9961 | 0.0126 mg/mL | 4.79% |
DPGP | 0.9972 | 0.0199 mg/mL | 4.10% |
DDIFGP | 0.9748 | 0.0253 mg/mL | 13.4% |
AG II | 0.9331 | 0.0766 mg/mL | 15.6% |
AG IV | 0.9864 | 0.0256 mg/mL | 8.58% |
Analytes | Content Level | Trueness | Precision | Accuracy | ||
---|---|---|---|---|---|---|
Relative Bias (%) | Relative Bias (%) | Repeatability (RSD%) | Intermediate Precision (RSD%) | Relative β-Expectation Tolerance Limits (%) | ||
TS (%) | 39.8 | 0.43 | 100.4 | 0.34 | 0.92 | [−3.40, 4.25] |
25.0 | −1.66 | 98.34 | 0.81 | 0.81 | [−3.64, 0.33] | |
17.9 | −0.84 | 99.16 | 3.2 | 3.2 | [−8.65, 6.97] | |
12.7 | −6.17 | 93.83 | 2.2 | 2.5 | [−12.86, 0.53] | |
9.4 | 1.65 | 101.7 | 5.4 | 5.4 | [−11.58, 14.88] | |
8.4 | 3.81 | 103.8 | 2.1 | 3.2 | [−9.04, 10.99] | |
CG (mg/mL) | 2.26 | −1.47 | 98.53 | 2.2 | 2.8 | [−9.63, 6.68] |
1.27 | −0.85 | 99.15 | 1.4 | 1.4 | [−4.29, 2.59] | |
0.853 | −2.18 | 97.82 | 3.9 | 4.0 | [−12.02, 7.67] | |
0.591 | −1.37 | 98.63 | 1.4 | 2.7 | [−11.31, 8.58] | |
0.461 | 8.95 | 109.0 | 5.9 | 6.3 | [−7.32, 25.23] | |
0.408 | 12.31 | 112.3 | 2.2 | 3.2 | [2.35, 22.27] | |
FG (mg/mL) | 0.502 | −4.51 | 95.49 | 0.86 | 1.5 | [−9.57, 0.55] |
0.291 | −3.03 | 96.97 | 1.5 | 1.5 | [−6.60,0.53] | |
0.195 | −0.37 | 99.63 | 3.6 | 3.9 | [−10.33, 9.58] | |
0.137 | −3.18 | 96.82 | 1.9 | 2.0 | [−8.26, 1.91] | |
0.104 | 6.16 | 106.2 | 7.7 | 7.7 | [−12.61, 24.92] | |
0.091 | 8.59 | 108.6 | 7.7 | 8.9 | [−14.86, 32.04] | |
DPGP (mg/mL) | 0.939 | −2.27 | 97.73 | 2.1 | 2.1 | [−7.29, 2.74] |
0.525 | 2.36 | 102.4 | 1.7 | 2.4 | [−5.09, 9.80] | |
0.360 | 1.93 | 101.9 | 3.8 | 4.0 | [−8.09, 11.96] | |
0.246 | −0.46 | 99.54 | 2.1 | 2.1 | [−5.68, 4.75] | |
0.189 | 8.55 | 108.6 | 7.5 | 7.5 | [−9.75, 26.85] | |
0.167 | 11.14 | 111.1 | 8.6 | 10 | [−15.94, 38.22] |
Analytes | Content Level | Trueness | Precision | Accuracy | ||
---|---|---|---|---|---|---|
Relative Bias (%) | Relative Bias (%) | Repeatability (RSD%) | Intermediate Precision (RSD%) | Relative β-Expectation Tolerance limits (%) | ||
DDIFGP (mg/mL) | 0.384 | −10.55 | 89.45 | 9.2 | 9.2 | [−33.10, 12.01] |
0.188 | 1.42 | 101.42 | 2.4 | 4.3 | [−14.01, 16.85] | |
0.121 | 2.51 | 102.5 | 3.0 | 3.3 | [−5.83, 10.86] | |
0.0847 | 3.28 | 103.3 | 3.6 | 5.6 | [−14.69, 21.24] | |
0.0701 | 7.53 | 107.5 | 8.9 | 12 | [−29.41, 44.48] | |
0.0633 | 8.01 | 108.0 | 4.2 | 6.6 | [−13.49, 29.51] | |
AG II (mg/mL) | 0.879 | −3.15 | 96.85 | 2.0 | 3.4 | [−14.60, 8.29] |
0.509 | 0.17 | 100.2 | 2.2 | 2.8 | [−7.75, 8.08] | |
0.346 | −2.77 | 97.23 | 2.3 | 2.3 | [−8.47, 2.92] | |
0.386 | −38.53 | 61.47 | 1.8 | 1.8 | [−42.95, 34.11] | |
0.284 | −29.14 | 70.86 | 2.8 | 2.8 | [−35.98, −22.30] | |
0.246 | −26.16 | 73.84 | 2.1 | 2.8 | [−34.13, −18.19] | |
AG IV (mg/mL) | 0.556 | 9.53 | 109.5 | 4.7 | 4.7 | [−1.867, 20.93] |
0.336 | 1.72 | 101.7 | 3.4 | 4.9 | [−13.44, 16.88] | |
0.235 | −2.14 | 97.9 | 2.3 | 2.7 | [−9.11, 4.84] | |
0.167 | −6.37 | 93.6 | 2.8 | 2.8 | [−13.21, 0.48] | |
0.124 | 4.62 | 104.6 | 6.7 | 6.7 | [−11.75, 20.99] | |
0.106 | 12.08 | 112.1 | 4.0 | 8.3 | [−19.33, 43.49] |
Analytes | LLOQ–ULOQ | Proportion (%) |
---|---|---|
TS | 8.44–39.8% | 100 |
CG | 0.541–2.26 mg/mL | 93.1 |
FG | 0.118–0.502 mg/mL | 93.5 |
DPGP | 0.220–0.940 mg/mL | 93.3 |
DDIFGP | 0.106–0.167 mg/mL | 18.9 |
AG II | 0.484–0.879 mg/mL | 62.4 |
AG IV | 0.137–0.320 mg/mL | 40.8 |
Analytes | Content Level | Uncertainty | Expanded Uncertainty | Relative Expanded Uncertainty (%) |
---|---|---|---|---|
TS (%) | 39.8 | 0.42 | 0.83 | 2.1 |
25.0 | 0.21 | 0.43 | 1.7 | |
17.9 | 0.6 | 1.2 | 6.7 | |
12.7 | 0.35 | 0.70 | 5.5 | |
9.4 | 0.54 | 1.1 | 11.4 | |
8.4 | 0.30 | 0.60 | 7.1 | |
CG (mg/mL) | 2.26 | 0.071 | 0.14 | 6.3 |
1.27 | 0.019 | 0.038 | 3.0 | |
0.853 | 0.036 | 0.072 | 8.4 | |
0.591 | 0.018 | 0.036 | 6.2 | |
0.461 | 0.031 | 0.063 | 13.6 | |
0.408 | 0.015 | 0.029 | 7.1 | |
FG (mg/mL) | 0.502 | 0.0083 | 0.017 | 3.32 |
0.291 | 0.0045 | 0.0089 | 3.1 | |
0.195 | 0.0082 | 0.016 | 8.4 | |
0.137 | 0.003 | 0.0059 | 4.3 | |
0.104 | 0.0084 | 0.017 | 16.2 | |
0.091 | 0.0087 | 0.017 | 19.2 | |
DPGP (mg/mL) | 0.939 | 0.020 | 0.041 | 4.3 |
0.525 | 0.014 | 0.028 | 5.4 | |
0.360 | 0.015 | 0.031 | 8.52 | |
0.246 | 0.0055 | 0.011 | 4.5 | |
0.189 | 0.015 | 0.030 | 15.8 | |
0.167 | 0.018 | 0.037 | 21.9 |
Analytes | Content Level | Uncertainty | Expanded Uncertainty | Relative Expanded Uncertainty (%) |
---|---|---|---|---|
DDIFGP (mg/mL) | 0.384 | 0.037 | 0.075 | 19.4 |
0.188 | 0.0092 | 0.018 | 9.8 | |
0.121 | 0.0042 | 0.0085 | 7.0 | |
0.0847 | 0.0053 | 0.011 | 12.4 | |
0.0701 | 0.0096 | 0.019 | 27.3 | |
0.0633 | 0.0047 | 0.0093 | 14.7 | |
AG II (mg/mL) | 0.879 | 0.034 | 0.067 | 7.6 |
0.509 | 0.016 | 0.031 | 6.1 | |
0.346 | 0.0085 | 0.017 | 4.9 | |
0.386 | 0.0074 | 0.015 | 3.8 | |
0.284 | 0.0084 | 0.017 | 5.9 | |
0.246 | 0.0075 | 0.015 | 6.1 | |
AG IV (mg/mL) | 0.556 | 0.027 | 0.055 | 9.8 |
0.336 | 0.018 | 0.037 | 11.0 | |
0.235 | 0.0067 | 0.013 | 5.7 | |
0.167 | 0.0049 | 0.010 | 5.9 | |
0.124 | 0.0087 | 0.017 | 14.1 | |
0.106 | 0.010 | 0.020 | 18.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Luo, Y.; Wang, X.; Gong, X.; Huang, W.; Wang, G.; Qu, H. Development and Validation of a Near-Infrared Spectroscopy Method for Multicomponent Quantification during the Second Alcohol Precipitation Process of Astragali radix. Separations 2022, 9, 310. https://doi.org/10.3390/separations9100310
Li W, Luo Y, Wang X, Gong X, Huang W, Wang G, Qu H. Development and Validation of a Near-Infrared Spectroscopy Method for Multicomponent Quantification during the Second Alcohol Precipitation Process of Astragali radix. Separations. 2022; 9(10):310. https://doi.org/10.3390/separations9100310
Chicago/Turabian StyleLi, Wenlong, Yu Luo, Xi Wang, Xingchu Gong, Wenhua Huang, Guoxiang Wang, and Haibin Qu. 2022. "Development and Validation of a Near-Infrared Spectroscopy Method for Multicomponent Quantification during the Second Alcohol Precipitation Process of Astragali radix" Separations 9, no. 10: 310. https://doi.org/10.3390/separations9100310
APA StyleLi, W., Luo, Y., Wang, X., Gong, X., Huang, W., Wang, G., & Qu, H. (2022). Development and Validation of a Near-Infrared Spectroscopy Method for Multicomponent Quantification during the Second Alcohol Precipitation Process of Astragali radix. Separations, 9(10), 310. https://doi.org/10.3390/separations9100310