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Abstract: The objective of this study was to develop and validate a near-infrared (NIR) spectroscopy
based method for in-line quantification during the second alcohol precipitation process of Astragali
radix. In total, 22 calibration experiments were carefully arranged using a Box–Behnken design.
Variations in the raw materials, critical process parameters, and environmental temperature were all
included in the experimental design. Two independent validation sets were built for method evalua-
tion. Validation set 1 was used for optimization. Different spectral pretreatments were compared
using a “trial-and-error” approach. To reduce the calculation times, the full-factorial design was ap-
plied to determine the potential optimal combinations. Then, the best parameters for the pretreatment
algorithms were compared and selected. Partial least squares (PLS) regression models were obtained
with low complexity and good predictive performance. Validation set 2 was used for a thorough
validation of the NIR spectroscopy method. Based on the same validation set, traditional chemomet-
ric validation and validation using accuracy profiles were conducted and compared. Conventional
chemometric parameters were used to obtain the overall predictive capability of the established
models; however, these parameters were insufficient for pharmaceutical regulatory requirements.
Then, the method was fully validated according to the ICH Q2(R1) guideline and using the accuracy
profile approach, which enabled visual and reliable representation of the future performances of
the analytical method. The developed method was able to determine content ranges of 8.44–39.8%
at 0.541–2.26 mg/mL, 0.118–0.502 mg/mL, 0.220–0.940 mg/mL, 0.106–0.167 mg/mL, 0.484–0.879
mg/mL, and 0.137–0.320 mg/mL for total solid, calycosin glucoside, formononetin glucoside, 9, 10-
dimethoxypterocarpan glucopyranoside, 2′-dihydroxy -3′, 4′-dimethoxyisoflavan glucopyranoside,
astragloside II, and astragloside IV, respectively. These ranges were specific to the early and middle
stages of the second alcohol precipitation process. The method was confirmed to be capable of
achieving an in-line prediction with a very acceptable accuracy. The present study demonstrates
that accuracy profiles offer a potential approach for the standardization of NIR spectroscopy method
validation for traditional Chinese medicines (TCMs).

Keywords: near-infrared spectroscopy; Astragali radix; alcohol precipitation; validation; accuracy profile

1. Introduction

Astragali radix is one of the most extensively used Chinese herbal medicines because
of its effect of increasing the overall vitality of the system, and it has been prescribed for
general debility and chronic illnesses for centuries [1]. In recent years, it has been used clin-
ically for spinal cord injury [2], tissue fibrosis, and other diseases [3]. Alcohol precipitation
is a vital separation unit that is widely used in the manufacture of botanical medicines to
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purify the water extracts of medicinal plants [4]. In the manufacturing of Chinese patented
drugs derived from Astragali radix, a second ethanol precipitation is performed after the
first ethanol precipitation to remove more impurities, such as saccharides or proteins. The
quality of the intermediates in the following processes and the finished products is thought
to be affected by the second ethanol precipitation. To ensure a precise and reproducible
alcohol precipitation process, the composition of the alcohol precipitation liquid should be
closely supervised during the process.

Due to the complicated ingredients in Astragali radix, it is insufficient to realize quality
control using a single indicator. The total solid (TS) content represents the total soluble
solids (mostly saccharides) that are partially removed during the precipitation process.
Flavonoids and saponins are bioactive components that are responsible for pharmacological
activities and therapeutic efficacy [5,6]. In this study, the contents of TS, four flavonoid
compounds, and two saponin compounds were taken as critical quality attributes (CQAs)
of the alcohol precipitation liquids. However, these seven quality indices are often de-
termined by the time-consuming, loss-on-drying method or by high-performance liquid
chromatography (HPLC), which fail to satisfy the need for real-time monitoring.

With its advantages of nondestructive and high-speed acquisition, near-infrared (NIR)
spectroscopy is a good process analytical technology (PAT) tool that has long been used
in the pharmaceutical industry. To develop a sound NIR spectroscopy method, represen-
tative samples should be carefully selected, which need to be robust with the expected
variation [7]. In the modeling, spectral pretreatments should also be properly selected.
Among the different types of selection approaches, the “trial-and-error” approach [8] is a
fit-for-use oriented approach, which applies all the possible pretreatments to the data set
and selects the optimal one according to the goal of the analysis. However, this approach
may be computationally intensive.

Prior to routine analysis, the established NIR spectroscopy method should be validated
to demonstrate that it is suitable for its intended purpose [9]. However, validation of the
chemometric method is not straightforward compared with the validation of conventional
analytical techniques, such as chromatography or titrimetry. In pharmaceutical applications,
validation based on traditional chemometric parameters is widely used to assess the
performance of the developed NIR spectroscopy method [10]. Such parameters include the
correlation coefficient (R), root mean square error of calibration (RMSEC), root mean square
error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP).
However, the model performance evaluation is an area that has not been fully explored.
Some studies have demonstrated that all these parameters provide insufficient information
to guarantee the suitability of the method for the intended purpose [11–13]. For example, R
is an index affected by unwanted factors, such as data distribution. The more centralized
the data distribution is, the more difficult it is to obtain a higher R, while the more dispersed
the data distribution is, the more likely it is to obtain a higher R.

The validation strategy of an accuracy profile, which was introduced by the commis-
sion of the Société Française des Sciences et Techniques Pharmaceutiques (SFSTP) [14–16],
involves acquiring the content ranges over which future measurements will be sufficiently
accurate. The accuracy profile is based on β-expectation tolerance intervals, which reflect
the total measurement error.

A method is considered to be valid when the β-expectation tolerance intervals are
fully included within the predefined acceptance limits. As described by De Bleye et al.,
accuracy profiles have been used for many NIR spectroscopic methods in pharmaceutical
applications [10].

In the manufacturing of traditional Chinese medicine (TCM) preparations, NIR spec-
troscopy has been extensively applied [17]. However, most NIR spectroscopy methods
have been considered valid when satisfactory traditional chemometric parameters were
obtained, and few of the methods were further validated according to the ICH Q2(R1)
guideline. In reported studies, there have been some cases of using the accuracy profile
approach during the validation stage, such as methods for the determination of baicalin
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in Yinhuang oral solution [18], chlorogenic acid in the ethanol precipitation solution of
Lonicera japonica [19], and licorice acid in a blending process [20]. However, to our knowl-
edge, there have been few studies that have focused on a thorough validation of an in-line
NIR spectroscopy method for multicomponent quantification.

The objective of this study was first to develop an NIR spectroscopy method for
multicomponent quantification during the second alcohol precipitation process of Astragali
radix, meanwhile during which a selection method based on the design of experiments
(DOE) was used to reduce the calculation times for the selection of pretreatments. The
second aim was to fully validate the in-line method for the seven analytes and to compare
the traditional chemometric validation with the accurate profile approach.

2. Materials and Methods
2.1. Materials

The concentrated supernatants of the first ethanol precipitation of Astragali radix were
supplied by Livzon (Group), Limin Pharmaceutical Factory (Shaoguan, China). Anhydrous
alcohol was purchased from Changqin Chemical Co., Ltd. (Hangzhou, China). Stan-
dard substances of calycosin-7-O-β-D-glucoside (CG), formononetin–7–O–β–D-glucoside
(FG), 9,10-dimethoxypterocarpan–3–O-β-D-glucopyranoside (DPGP), 2′-dihydroxy-3′,4′-
dimethoxyisoflavan-7-O-β-D- glucopyranoside (DDIFGP), astragloside II (AG II), and
astragloside IV (AG IV) were purchased from Shanghai Winherb Medical Technology Co.,
Ltd. (Shanghai, China).

2.2. Alcohol Precipitation Process and Experimental Setup

Typical operating conditions for the second alcohol precipitation process were as
follows. First, 300 g of concentrated supernatant of the first ethanol precipitation of
Astragali radix (TS content was 40%) was placed into a 2 L jacketed glass container. The
solution was maintained at a constant temperature of 25 ◦C using a circulation bath. A 95%
(v/v) alcohol solution that was 900 g was added into the glass container at a constant speed
using a peristaltic pump, and the mixed solution was stirred using a mechanical stirrer at
a speed of approximately 350 rpm. The alcohol adding time was 20 min, and the mixed
solution was allowed to stand for 10 min without stirring. The supernatant was obtained
as the second alcohol precipitation liquid.

The experimental setup is shown schematically in Figure 1. An NIR immersion
transflectance probe with a 2 mm optical path length (Hellma, Müllheim, Germany) was
directly inserted into the glass container and connected to the spectrometer by optic fibers.
During the precipitation process, a sample of approximately 5 mL was collected near the
probe every 5 to 10 min for reference assays.
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2.3. NIR Spectral Acquisition

NIR spectra were collected in transflectance mode using an Antaris FT-NIR spec-
trophotometer (Thermo Nicolet Corporation, Waltham, MA, USA) fitted with an InGaAs
detector and a 2 mm optical path length immersion probe. The instrument resolution
was specified at 8 cm−1. Each spectrum was acquired by averaging 32 scans over the
wavenumber range of 4500–10,000 cm−1, and background spectra were obtained in air.

2.4. Reference Assays

The seven quality indicators were measured by corresponding standard assays. A
gravimetric-based loss-on-drying method was run to determine the contents of TS via hot
air dying at 105 ◦C for 3 h. Quantitative analyses of CG, FG, DPGP, DDIFGP, AG II, and
AG IV were performed using the HPLC-UV-ELSD method [19]. The flavonoids of CG,
FG, DPGP, and DDIFGP were detected using UV. The saponins of AG II and AG IV were
detected using ELSD.

2.5. Calibration Protocol

Calibration models should be developed using carefully selected and representative
samples, and method development procedures need to be robust with respect to the
expected variability of the products to be analyzed and the manufacturing processes used
to prepare them [7]. Variations of raw materials, process parameters, and environmental
temperature were introduced into the calibration sample set using a Box–Behnken design.
As shown in Table 1, experiments of 29 runs (the central operating conditions were repeated
5 times) were performed to cover the different sources of variability. The concentrated
supernatants of the first ethanol precipitation with TS contents of 45%, 40%, and 35%
were prepared to obtain different raw materials for the second precipitation process. As
illustrated in our previous study [20,21], the concentration of ethanol and the mass ratio
of ethanol to concentrated raw materials were considered to be the two critical process
parameters for the alcohol precipitation process. Additionally, the spectral acquisition
position of each experiment was randomly set to include the different positions of the
samples in the container. In the meantime of spectral acquisition, samples were collected
for reference assays. Seven samples were collected for each experiment for batches 1 to 22,
as shown in Table 1, and in total, 154 samples were included in the calibration set.

Table 1. Conditions for the alcohol precipitation experiments according to the Box–Behnken design.

Batch
TS Contents of the
Concentrated Raw

Materials (%)
Ethanol

Concentration (%)
Mass Ratio of Ethanol to

the Concentrated Raw
Materials (g/g)

Temperature (◦C) Usage

1 35 93 3.0 25 Calibration
2 45 93 3.0 25 Calibration
3 35 97 3.0 25 Calibration
4 45 97 3.0 25 Calibration
5 40 97 2.5 25 Calibration
6 40 93 3.5 25 Calibration
7 35 95 2.5 25 Calibration
8 45 95 2.5 25 Calibration
9 35 95 3.5 25 Calibration
10 45 95 3.5 25 Calibration
11 40 95 2.5 20 Calibration
12 40 93 3.5 25 Calibration
13 35 95 3.0 20 Calibration
14 45 95 3.0 20 Calibration
15 40 93 3.0 20 Calibration
16 40 97 3.0 20 Calibration
17 40 95 2.5 30 Calibration
18 40 95 3.5 30 Calibration
19 35 95 3.0 30 Calibration
20 45 95 3.0 30 Calibration
21 40 97 3.5 25 Calibration
22 40 97 3.0 30 Calibration
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Table 1. Cont.

Batch
TS Contents of the
Concentrated Raw

Materials (%)
Ethanol

Concentration (%)
Mass Ratio of Ethanol to

the Concentrated Raw
Materials (g/g)

Temperature (◦C) Usage

23 40 95 3.5 20 Validation and
robustness evaluation

24 40 93 3.0 30
Validation and

robustness evaluation
Robustness
evaluation

25 40 95 3.0 25 Validation
26 40 95 3.0 25 Validation
27 40 95 3.0 25 Validation
28 40 95 3.0 25 Validation
29 40 95 3.0 25 Validation

2.6. Validation Protocol

Validation set 1 was constructed to optimize the calibration model. It encompassed
samples collected from batches 23 to 29. Independent raw material with TS contents of 40%
were used in the experiments, and 3 to 7 samples were randomly collected for each batch.
Finally, 38 samples were included in external validation set 1.

Validation set 2 was constructed for a thorough validation of the in-line NIR method.
Three batches with normal operating conditions for the second alcohol precipitation process
were repeated and performed over three days. The position of the optical probe was fixed.
One spectrum was collected every 1 min to provide real-time spectral information. Samples
for reference assays were collected at 6 time points (0, 4, 8, 13, 18, and 30 min) near the
probe in each validation batch to obtain 6 different content levels. Samples collected at the
same time point during the 9 repeated batches were considered to have the same content
levels. Finally, 54 samples (9 batches × 6 content levels) were included in validation set 2.

2.7. Multivariate Data Treatment

Partial least square regression (PLSR) was used to build the prediction models based
on the calibration set. Appropriate pretreatments of the spectra were selected via a “trial-
and-error” approach. To reduce the computational complexity, an experimental design
was first set up to determine the optimal directions. The parameters for the improved
algorithms were adjusted to select the best pretreatments.

Model validation consisted of traditional chemometric validation and validation using
accuracy profiles. Conventional chemometric parameters were first used to obtain the
global predictive capability of the established models based on validation sets 1 and 2. Then,
the accuracy profiles computed based on validation set 2 were used for model assessment
and thorough validation. Conventional statistical parameters, such as R, RMSEC, RMSECV,
RMSEP, and the relative standard error of prediction (RSEP), were calculated to evaluate
the model performance.

In validation set 2, for each content level, the average content values of the 9 samples
were used as the true reference values. Due to process variation, it was not possible to
obtain exactly the same contents when we repeated the 9 validation batches. Therefore, all
prediction values were normalized in Equation (1) when calculating the accuracy profile
for each content level [13].

yij nor =
ŷij

yij
· yj (1)

In the ith validation batch, for a sample of the jth content level, yij norm is the normalized
NIR predicted value, yij is the reference value, ŷij is the NIR predicted value, and yj is the
true reference value of the jth content level.

The TQ analyst software package (Thermo Fisher scientific, Madison, WI, USA) and
ChemDataSolution chemometrics software (Dalian ChemDataSolution Information Tech-
nology Co. Ltd., Dalian, China) were used for spectral data treatments. The accuracy
profiles were computed with e.noval V3.0b demo (Arlenda, Liège, Belgium).
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3. Results and Discussion
3.1. The Second Alcohol Precipitation Process and NIR Spectra

Due to the addition of ethanol, the system changed as alcohol-insoluble impurities
emerged. The NIR spectra obtained under the main operating conditions are shown
in Figure 2. The peak at 6900 cm−1 is attributed to water and ethanol. The peaks at
5200–5500 cm−1 and 8500 cm−1 appeared after ethanol addition, which correspond to the
1st and 2nd overtones of C-H stretching in ethanol. [22] The system was clear before the
critical point when the alcohol-insoluble impurities emerged. The whole system became
turbid, and the spectra shifted after the critical point (at approximately 12 min). During
the standing period (20–30 min) after the completion of ethanol addition, the impurities
gathered and began to precipitate. The upper part of the system was clear again, and the
precipitate was in the bottom part. The corresponding NIR spectra for this period became
smooth, and the spectral shifts decreased. Therefore, the NIR spectra reflected the changing
process state. The regions of 5000–5095 cm−1 and 5300–10,000 cm−1 were selected for
model construction after removing the saturated absorption regions.
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Figure 2. The NIR spectra during the process under normal operating conditions.

3.2. Spectral Pretreatments

Different spectral pretreatments were employed to remove unwanted artifacts caused
by small particles and other interference factors during the process. The typical methods
used to preprocess the raw spectral data include: baseline correction, scatter correction,
smoothing, and scaling [23,24]. Table 2 lists some pretreatment algorithms that are often
used. Appropriate combinations of different pretreatments were selected via a “trial-and-
error” approach; however, they may be computationally intensive. To reduce the number of
calculations, DOE was used to determine the optimization directions. The four pretreatment
steps in Table 2 were used as factors, and the full factorial design was applied to obtain 48
combinations of different pretreatments. The Norris–Williams derivation was only used to
process the first or second derivation spectra. The combinations were used to process the
spectra, and 48 PLSR models were obtained. The models with better performance were
selected compared to the model constructed from the raw data without any pretreatments.
Using the TS contents as an example, the potential optimal combinations are listed in
Table 3.

Next, predictive performance and model complexity were used as evaluation indices
to further optimize the parameters of the pretreatment algorithms shown in Table 3. As a
result, there were a total of 80 models constructed, as included in Figure 3. Take the red
triangle as reference, which represents the model built from raw data. The performances
of the models in the lower left part were improved by the pretreatments. Finally, the best
pretreatments that yielded a simple model with the best predictive performance were
chosen. For the seven analytes, the best pretreatment combinations are listed in Table 4.
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Table 2. Overview of some commonly used algorithms for each pretreatment method.

Baseline Correction Scatter Correction Smoothing Scaling

- - - Mean centering
1st D a MSC c SG e

Auto scaling
2nd D b SNV d NW f

a First derivation (1st D). b Second derivation (2nd D). c Multiplicative scatter correction (MSC). d Standard normal
variate (SNV). e Savitzky–Golay polynomial derivative filter (SG) using a 9-point window and a third-order
polynomial as the initial default parameters. f Norris–Williams derivation (NW) using 5-point smoothing and a
gap size of 5 as the initial default parameters.

Table 3. Potential optimal pretreatment combinations for the TS content models.

Baseline
Correction

Scatter
Correction

Smoothing Scaling LVs a
Calibration Set Validation Set 1

RC RMSEC RP RMSEP

- - - Auto scaling 6 0.9783 2.28 0.9954 1.07
- MSC - Auto scaling 6 0.9692 2.71 0.9954 1.03
- MSC SG Auto scaling 5 0.9622 3.00 0.9939 1.18

1st D - NW Auto scaling 3 0.9651 2.88 0.9950 1.06
1st D - SG Auto scaling 7 0.9861 1.83 0.9950 1.23
2nd D - NW Auto scaling 4 0.9768 2.36 0.9963 0.83

a The number of latent variables (LVs) reveals the complexity of the models.

Table 4. Performance parameters of the seven calibration models.

Analytes Pretreatment Combinations LVs
Calibration Set Cross-Validation Validation Set 1

RC RMSEC RCV RMSECV RP RMSEP

TS NW a + 2nd D + auto scaling 3 0.9711 2.63% 0.9602 3.11% 0.9974 0.74%
CG SG b + 1st D + auto scaling 3 0.9614 0.169

mg/mL 0.9504 0.192
mg/mL 0.9963 0.0460

mg/mL
FG NW a + 2nd D + auto scaling 3 0.971 0.0316

mg/mL 0.9549 0.0395
mg/mL 0.9924 0.0142

mg/mL
DPGP NW a + 2nd D + auto scaling 3 0.9691 0.0629

mg/mL 0.9522 0.0784
mg/mL 0.9967 0.0197

mg/mL
DDIFGP NW c + 1st D + auto scaling 3 0.9621 0.0256

mg/mL 0.9517 0.0289
mg/mL 0.9941 0.00865

mg/mL
AG II SG e + mean centering 6 0.9675 0.0601

mg/mL 0.9618 0.0652
mg/mL 0.9656 0.0841

mg/mL
AG IV NW d + 1st D + auto scaling 3 0.9416 0.0590

mg/mL 0.9268 0.0659
mg/mL 0.9762 0.0325

mg/mL

a NW using a 7-point smoothing and a gap size of 7. b SG using an 11-point window and a second-order
polynomial. c NW using a 3-point smoothing and a gap size of 5. d NW using a 5-point smoothing and a gap size
of 3. e SG using a 9-point window and a third-order polynomial.
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3.3. Development of Calibration Models

A four-fold cross-validation was used to choose the number of LVs for each PLSR
model. The quantitative models were constructed for NIR spectra and the seven analytes.
The conventional statistical parameters, such as R of calibration (RC), R of cross-validation
(RCV), R of prediction (RP), RMSEC, RMSECV, and RMSEP, were calculated to evaluate
the model performance. The detailed performance parameters of the seven models are
summarized in Table 4. The obtained models have a small number of LVs, which limit
the risk of overfitting. Promising results in terms of high correlation coefficients and
low prediction errors were obtained. Figure 4 shows the correlation plots of reference
values versus the NIR predictions for the seven analytes. The plots present the fitting and
predictive ability of the seven models for the entire content range. The models demonstrate
good global predictive performance for the seven analytes of the target process samples in
the external validation set 1.
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3.4. In-Line Monitoring of the Second Alcohol Precipitation Process and Chemometric Validation

The established calibration models were used to predict the contents of the seven
analytes during the second alcohol precipitation process under normal operating conditions.
Figure 5 shows the in-line monitoring results of nine alcohol precipitation batches. To
further evaluate the model performance, 54 samples in validation set 2 were collected for
reference assays from the nine batches. The newly added parameter of RSEP together with
RMSEP and R were used to evaluate the different aspects of the model quality. Table 5 shows
the chemometric validation parameters of the quantitative models for the seven analytes.
The results demonstrate that the models still present a good overall predictive performance
for the samples in the independent new batches. Compared with the parameters in Table 4,
the difference in RMSEP values is low. In addition, the first four models for TS, CG, FG,
and DPGP perform better than the models for DDIFGP, AG II, and AG IV regarding the
RSEP values.
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Table 5. Chemometric validation parameters for the 7 quantitative models.

Analytes
Validation Set 2

R RMSEP RSEP

TS 0.9988 0.53% 2.41%
CG 0.9977 0.0437 mg/mL 3.73%
FG 0.9961 0.0126 mg/mL 4.79%

DPGP 0.9972 0.0199 mg/mL 4.10%
DDIFGP 0.9748 0.0253 mg/mL 13.4%

AG II 0.9331 0.0766 mg/mL 15.6%
AG IV 0.9864 0.0256 mg/mL 8.58%

3.5. Validation Based on Accuracy Profiles

The accuracy profile approach using the concept of total error (bias and standard devi-
ation) is fully compliant with the ICH Q2(R1) requirements in which different validation
characteristics should be considered. The following sections discuss in detail the validation
criteria for the established models.

3.5.1. Trueness

Trueness represents the systematic error in the measurements. It refers to the closeness
in agreement between the average of the measured results and the accepted reference
value [25,26]. Trueness is generally expressed in terms of relative bias and recovery.

The calculated results of the six different content levels for each analyte are listed
in Tables 6 and 7. All seven models exhibited a higher relative bias as a function of
increasing content. The relative bias became much higher for the lower content range of
0.246–0.386 mg/mL for the AG II model, and for the other six models shown in Table 8, all
values were within 12.5%. Most values fell within 5%.

Table 6. Validation criteria of trueness, precision, and accuracy of the models for the 7 analytes.

Analytes Content Level

Trueness Precision Accuracy

Relative Bias (%) Relative Bias (%) Repeatability
(RSD%)

Intermediate
Precision
(RSD%)

Relative
β-Expectation

Tolerance Limits (%)

TS (%)

39.8 0.43 100.4 0.34 0.92 [−3.40, 4.25]
25.0 −1.66 98.34 0.81 0.81 [−3.64, 0.33]
17.9 −0.84 99.16 3.2 3.2 [−8.65, 6.97]
12.7 −6.17 93.83 2.2 2.5 [−12.86, 0.53]
9.4 1.65 101.7 5.4 5.4 [−11.58, 14.88]
8.4 3.81 103.8 2.1 3.2 [−9.04, 10.99]

CG
(mg/mL)

2.26 −1.47 98.53 2.2 2.8 [−9.63, 6.68]
1.27 −0.85 99.15 1.4 1.4 [−4.29, 2.59]
0.853 −2.18 97.82 3.9 4.0 [−12.02, 7.67]
0.591 −1.37 98.63 1.4 2.7 [−11.31, 8.58]
0.461 8.95 109.0 5.9 6.3 [−7.32, 25.23]
0.408 12.31 112.3 2.2 3.2 [2.35, 22.27]

FG
(mg/mL)

0.502 −4.51 95.49 0.86 1.5 [−9.57, 0.55]
0.291 −3.03 96.97 1.5 1.5 [−6.60,0.53]
0.195 −0.37 99.63 3.6 3.9 [−10.33, 9.58]
0.137 −3.18 96.82 1.9 2.0 [−8.26, 1.91]
0.104 6.16 106.2 7.7 7.7 [−12.61, 24.92]
0.091 8.59 108.6 7.7 8.9 [−14.86, 32.04]

DPGP
(mg/mL)

0.939 −2.27 97.73 2.1 2.1 [−7.29, 2.74]
0.525 2.36 102.4 1.7 2.4 [−5.09, 9.80]
0.360 1.93 101.9 3.8 4.0 [−8.09, 11.96]
0.246 −0.46 99.54 2.1 2.1 [−5.68, 4.75]
0.189 8.55 108.6 7.5 7.5 [−9.75, 26.85]
0.167 11.14 111.1 8.6 10 [−15.94, 38.22]
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Table 7. Validation criteria of trueness, precision, and accuracy of the models for the 7 analytes.

Analytes Content Level

Trueness Precision Accuracy

Relative Bias (%) Relative Bias (%) Repeatability
(RSD%)

Intermediate
Precision
(RSD%)

Relative
β-Expectation

Tolerance limits (%)

DDIFGP
(mg/mL)

0.384 −10.55 89.45 9.2 9.2 [−33.10, 12.01]
0.188 1.42 101.42 2.4 4.3 [−14.01, 16.85]
0.121 2.51 102.5 3.0 3.3 [−5.83, 10.86]

0.0847 3.28 103.3 3.6 5.6 [−14.69, 21.24]
0.0701 7.53 107.5 8.9 12 [−29.41, 44.48]
0.0633 8.01 108.0 4.2 6.6 [−13.49, 29.51]

AG II
(mg/mL)

0.879 −3.15 96.85 2.0 3.4 [−14.60, 8.29]
0.509 0.17 100.2 2.2 2.8 [−7.75, 8.08]
0.346 −2.77 97.23 2.3 2.3 [−8.47, 2.92]
0.386 −38.53 61.47 1.8 1.8 [−42.95, 34.11]
0.284 −29.14 70.86 2.8 2.8 [−35.98, −22.30]
0.246 −26.16 73.84 2.1 2.8 [−34.13, −18.19]

AG IV
(mg/mL)

0.556 9.53 109.5 4.7 4.7 [−1.867, 20.93]
0.336 1.72 101.7 3.4 4.9 [−13.44, 16.88]
0.235 −2.14 97.9 2.3 2.7 [−9.11, 4.84]
0.167 −6.37 93.6 2.8 2.8 [−13.21, 0.48]
0.124 4.62 104.6 6.7 6.7 [−11.75, 20.99]
0.106 12.08 112.1 4.0 8.3 [−19.33, 43.49]

Table 8. The valid range for each analyte and its proportion over the studied content range.

Analytes LLOQ–ULOQ Proportion (%)

TS 8.44–39.8% 100
CG 0.541–2.26 mg/mL 93.1
FG 0.118–0.502 mg/mL 93.5

DPGP 0.220–0.940 mg/mL 93.3
DDIFGP 0.106–0.167 mg/mL 18.9

AG II 0.484–0.879 mg/mL 62.4
AG IV 0.137–0.320 mg/mL 40.8

3.5.2. Precision

Precision represents the random error in the measurements. It refers to the closeness
in agreement between a series of measurements of the same homogeneous sample obtained
under various conditions [25]. Precision is evaluated at two levels: repeatability and
intermediate precision, and the results are listed in Tables 6 and 7. The relative standard
deviation (RSD%) shows good precision at high content levels for the seven analytes,
whereas at low content levels, some random errors were observed. Of the seven models,
the AG II model was the most precise model.

3.5.3. Accuracy

Accuracy expresses the closeness in agreement between a single measured result and
the accepted reference value [25], and it represents the total measurement error, which
is the sum of the trueness and precision. The accuracy at different content levels for the
seven analytes calculated at the relative 95% β-expectation tolerance limits are shown in
Tables 6 and 7. The obtained intervals produced error ranges that suggested that the future
NIR predicted results will fall within a 95% probability. The accuracy profile was built by
integrating the total error and the calculated tolerance limits at each content level in one
plot, as shown in Figure 6. These profiles constitute a visual decision tool when compared
with the predefined acceptance limits. The acceptance limits for the in-line determination
of the seven analytes were fixed at 15%, and the NIR quantitative method was considered
to be valid when the relative errors of the predicted values were within 15% of the studied
content range. As shown in Figure 6, for the first four analytes, the relative β-expectation
tolerance limits for most content levels were included within the acceptance limit of ±15%.
For the last three analytes, the accuracy did not fulfill the acceptance limits for some content
levels, especially for lower levels.
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3.5.4. Linearity

The linearity of an analytical procedure is its ability within a definite range to obtain
results that are directly proportional to the amount of the analyte in the sample [24]. Figure 7
presents the linear profiles of the seven models with R2 values and the linear equations. The
R2 values are larger than 0.95, which indicate the overall high linearity of the models. The
intercepts in the equations are close to 0, confirming the absence of a constant systematic
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error, and all slopes are close to 1 in the equations except the slope for DDIFGP, which
indicates a certain proportional systematic error in that quantification model. However,
the method can be considered linear within the content range where the β-expectation
tolerance limits are within the absolute acceptance limits.
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3.5.5. Range

The range of an analytical procedure is the interval between the upper and lower
amounts of analyte in a sample for which it has been demonstrated that the analytical
procedure has a suitable level of precision, accuracy, and linearity [26]. According to
Figure 6, the range between the lower and upper limits of quantification can be obtained
where the relative β-expectation tolerance limits are included within the acceptance limits.
The range for each quantification model is listed in Table 8. For the first four analytes,
the established NIR models were able to predict accurate results over more than 90% of
the content range for the second alcohol precipitation process. However, for the last three
models, accurate results could be guaranteed within the higher content ranges for the
process. Of the seven analytes, the content of DDIFGP was the lowest in the samples,
which may be close to the sensitivity limit of the NIR spectrometer, which may be prone
to large prediction errors. For AG II and AG IV, as the HPLC-ELSD method was applied
as the reference quantitative method, which is less accurate than the HPLC-UV method,
the prediction models yielded narrower valid ranges than the three models for CG, FG,
and DPGP. Moreover, the complexity of the changing system during the in-line analysis
and the existence of the alcohol-insoluble impurities made it more difficult to obtain more
accurate models.

3.5.6. Robustness

The robustness of an analytical procedure is a measure of its capacity to remain
unaffected by small but deliberate variations in the method parameters during normal
usage [26]. At the stage of method development, the expected variability was built into
the calibration set by DOE, and the obtained models had a small number of LVs, which
characterized their robustness. At the stage of validation, stable RMSEP values calculated
from two independent validation sets were obtained for the seven models, which indicated
the robustness. To further evaluate method robustness, critical process parameters, and
temperature were deliberately altered. As listed in Table 1, batch 23 and 24 were selected,
and seven samples were randomly collected from each batch. The content results of the
seven analytes in the samples were compared and are shown in Figure 8, which were
obtained via the off-line reference methods and in-line NIR analysis. The established
NIR spectroscopy method retained good in-process performance even with deliberate
process variations.

3.5.7. Specificity

The specificity refers to the ability to unequivocally assess an analyte in the presence
of components that are expected to be present [26]. The NIR spectrum is characterized
by wide and overlapping absorption bands, and it is quite difficult to assign a value to a
specific chemical component because of the complexity of TCMs. The specificity of the
models was demonstrated by the variance in the reference data that was covered by the
LVs [27]. Three LVs were used for quantitative models of TS, CG, FG, DPGP, DDIFGP, and
AG IV, explaining 94.3%, 92.9%, 94.3%, 93.9%, 92.6%, and 88.7% of the total variance in the
data, respectively. Six LVs were used for quantitative models of AG II, explaining 93.6%
of the total variance in the data. This result indicated that each model contained enough
content information of the target analyte and demonstrated the specificity [28].
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3.6. Method Uncertainty Assessment

The uncertainty characterizes the dispersion of the values that can reasonably be
attributed to the measurement [29]. The uncertainties in the bias of the NIR spectroscopy
method at each content level for the seven analytes are displayed in Tables 9 and 10. The
expanded uncertainty refers to an interval around the results where an unknown true value
can be observed with a confidence level of 95% [30], and the relative expanded uncertainties
obtained by dividing the expanded uncertainties with the corresponding true reference
content values were not higher than 11.5% over the entire TC validated range, which means
that at a confidence level of 95%, the unknown true value is located at a maximum of ±
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11.5% around the NIR result. For the other six analytes, the relative expanded uncertainties
did not exceed 8.5%, 8.6%,8.6%, 13.0%, 11.0%, or 7.6% over the respective valid ranges
between the lower and upper limits of quantification.

Table 9. NIR method uncertainties for the 7 analytes.

Analytes Content Level Uncertainty Expanded Uncertainty Relative Expanded Uncertainty (%)

TS (%)

39.8 0.42 0.83 2.1
25.0 0.21 0.43 1.7
17.9 0.6 1.2 6.7
12.7 0.35 0.70 5.5
9.4 0.54 1.1 11.4
8.4 0.30 0.60 7.1

CG
(mg/mL)

2.26 0.071 0.14 6.3
1.27 0.019 0.038 3.0

0.853 0.036 0.072 8.4
0.591 0.018 0.036 6.2
0.461 0.031 0.063 13.6
0.408 0.015 0.029 7.1

FG
(mg/mL)

0.502 0.0083 0.017 3.32
0.291 0.0045 0.0089 3.1
0.195 0.0082 0.016 8.4
0.137 0.003 0.0059 4.3
0.104 0.0084 0.017 16.2
0.091 0.0087 0.017 19.2

DPGP
(mg/mL)

0.939 0.020 0.041 4.3
0.525 0.014 0.028 5.4
0.360 0.015 0.031 8.52
0.246 0.0055 0.011 4.5
0.189 0.015 0.030 15.8
0.167 0.018 0.037 21.9

Table 10. NIR method uncertainties for the 7 analytes.

Analytes Content Level Uncertainty Expanded Uncertainty Relative Expanded Uncertainty (%)

DDIFGP
(mg/mL)

0.384 0.037 0.075 19.4
0.188 0.0092 0.018 9.8
0.121 0.0042 0.0085 7.0

0.0847 0.0053 0.011 12.4
0.0701 0.0096 0.019 27.3
0.0633 0.0047 0.0093 14.7

AG II
(mg/mL)

0.879 0.034 0.067 7.6
0.509 0.016 0.031 6.1
0.346 0.0085 0.017 4.9
0.386 0.0074 0.015 3.8
0.284 0.0084 0.017 5.9
0.246 0.0075 0.015 6.1

AG IV
(mg/mL)

0.556 0.027 0.055 9.8
0.336 0.018 0.037 11.0
0.235 0.0067 0.013 5.7
0.167 0.0049 0.010 5.9
0.124 0.0087 0.017 14.1
0.106 0.010 0.020 18.8

4. Conclusions

This study explored an in-line NIR spectroscopy method for multicomponent quantifi-
cation during the second alcohol precipitation process of Astragali radix.
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At the stage of method development, a calibration set that encompassed enough
variation was built, and models were optimized using the DOEs, reducing the calculation
times via a trial-and error approach. Finally, the established PLS models had a small
number of LVs, and promising results in terms of high correlation coefficients and low
prediction errors were obtained.

At the validation stage, traditional chemometric validation and the accurate profile
approach were compared. The general good predictive capability of the seven models
was demonstrated using the conventional statistical parameters, and the models were
further validated using accuracy profiles. According to the predefined acceptance limits,
the accuracy profiles produced a reliable representation of the future performances of the
NIR spectroscopy method. A visual decision tool to select valid content ranges showed
the following results: 8.44–39.8%, 0.541–2.26 mg/mL, 0.118–0.502 mg/mL, 0.220–0.940
mg/mL, 0.106–0.167 mg/mL, 0.484–0.879 mg/mL, and 0.137–0.320 mg/mL for TS, CG, FG,
DPGP, DDIFGP, AG II, and AG IV, respectively. Generally, the developed NIR spectroscopy
method can be applied for in-line prediction of the early and middle stage of the second
alcohol precipitation process. Additionally, the validation results demonstrated acceptable
trueness, precision, accuracy, linearity, specificity, and robustness over the ranges, which
were in compliance with the ICH Q2(R1) guideline.

Author Contributions: Conceptualization, W.L., Y.L. and X.W.; methodology, Y.L. and X.W.; software,
X.W. and Y.L.; validation, Y.L., X.W. and X.G.; formal analysis, W.L., X.G. and H.Q; investigation,
W.L. and H.Q.; resources, W.H. and G.W.; data curation, W.L., Y.L. and X.W.; writing—original draft
preparation, W.L., Y.L. and H.Q.; writing—review and editing, W.L., Y.L., W.H., G.W. and H.Q.;
visualization, W.L., X.G. and W.H.; supervision, W.L. and H.Q.; project administration, W.H., G.W.
and H.Q.; funding acquisition, W.H. and G.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by [Xingchu Gong] the National Project for Standardization of
Chinese Materia Medica (ZYBZH-C-GD-04), and [Wenlong Li] the Key Project from the National
Project for Standardization of Chinese Materia Medica (ZYBZH-C-JIN-43).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, S.Y.; Wang, D.; Li, X.R.; Qin, X.M.; Du, Y.G.; Li, K. Identification and activity evaluation of Astragalus Radix from different

germplasm resources based on specific oligosaccharide fragments. Chin. Herb. Med. 2021, 13, 33–42. [CrossRef] [PubMed]
2. Cao, S.N.; Hou, G.J.; Meng, Y.; Chen, Y.; Xie, L.; Shi, B. Network Pharmacology and Molecular Docking-Based Investigation of

Potential Targets of Astragalus membranaceus and Angelica sinensis Compound Acting on Spinal Cord Injury. Dis. Mark. 2022,
2022, 2141882. [CrossRef] [PubMed]

3. Gong, F.Y.; Qu, R.M.; Li, Y.C.; Lv, Y.; Dai, J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front. Pharm. 2022,
13, 976561. [CrossRef] [PubMed]

4. Gong, X.C.; Wang, S.; Li, Y.; Qu, H.B. Separation characteristics of ethanol precipitation for the purification of the water extract of
medicinal plants. Sep. Purif. Technol. 2013, 107, 273–280. [CrossRef]

5. Liang, X.L.; Ji, M.M.; Chen, L.; Liao, Y.; Kong, X.Q.; Xu, X.Q.; Liao, Z.G.; Wilson, W.D. Traditional Chinese herbal medicine
Astragalus Radix and its effects on intestinal absorption of aconite alkaloids in rats. Chin. Herb. Med. 2021, 13, 235–242. [CrossRef]
[PubMed]

6. Zheng, H.; Dong, Z.; Shr, Q. Modern Study of Traditional Chinese Medicine; Xue Yuan Press: Beijing, China, 1998; Volume 4, p. 3886.
7. European Medicines Agency (EMA). Guideline on the Use of Near Infrared Spectroscopy by the Pharmaceutical Industry and the Data

Requirements for New Submissions and Variations; EMA: Amsterdam, The Netherlands, 2014.
8. Engel, J.; Gerretzen, J.; Szymanska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M.C. Breaking with trends in pre-

processing? TrAC Trends Anal. Chem. 2013, 50, 96–106. [CrossRef]
9. International Conference on Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, Tpoic Q2

(A), Test on Validation of Analytical Procedures; ICH: Geneva, Switzerland, 1994.
10. Bleye, C.; Chavez, P.F.; Mantanus, J.; Marini, R.; Hubert, P.; Rozet, E.; Ziemons, E. Critical review of near-infrared spectroscopic

methods validations in pharmaceutical applications. J. Pharm. Biomed. 2012, 69, 125–132. [CrossRef] [PubMed]

http://doi.org/10.1016/j.chmed.2020.07.004
http://www.ncbi.nlm.nih.gov/pubmed/36117754
http://doi.org/10.1155/2022/2141882
http://www.ncbi.nlm.nih.gov/pubmed/36157206
http://doi.org/10.3389/fphar.2022.976561
http://www.ncbi.nlm.nih.gov/pubmed/36160396
http://doi.org/10.1016/j.seppur.2013.01.029
http://doi.org/10.1016/j.chmed.2020.09.005
http://www.ncbi.nlm.nih.gov/pubmed/36117510
http://doi.org/10.1016/j.trac.2013.04.015
http://doi.org/10.1016/j.jpba.2012.02.003
http://www.ncbi.nlm.nih.gov/pubmed/22464561


Separations 2022, 9, 310 18 of 18

11. Kauppinen, A.; Toiviainen, M.; Lehtonen, M.; Jarvinen, K.; Paaso, J.; Juuti, M.; Ketolainen, J. Validation of a multipoint near-
infrared spectroscopy method for in-line moisture content analysis during freeze-drying. J. Pharm. Biomed. 2014, 95, 229–237.
[CrossRef] [PubMed]

12. Schaefer, C.; Clicq, D.; Lecomte, C.; Merschaert, A.; Norrant, E.; Fotiad, F. A Process Analytical Technology (PAT) approach to
control a new API manufacturing process: Development, validation and implementation. Talanta 2014, 120, 114–125. [CrossRef]
[PubMed]

13. Fonteyne, M.; Arruabarrena, J.; Beer, J.; Hellings, M.; Kerkhof, T.V.; Burggraeve, A.; Vervaet, C.; Remon, J.P.; Beer, T. NIR
spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet
production line: Validation of quantifying abilities and uncertainty assessment. J. Pharm. Biomed. 2014, 100, 21–27. [CrossRef]
[PubMed]

14. Sun, M.F.; Yang, J.Y.; Cao, W.; Shao, J.Y.; Wang, G.X.; Qu, H.B.; Huang, W.H.; Gong, X.C. Critical process parameter identification
of manufacturing processes of Astragali radix extract with a weighted determination coefficient method. Chin. Herb. Med. 2020, 12,
125–132. [CrossRef] [PubMed]

15. Hubert, P.; Nguyen-Huu, J.J.; Boulangerc, B.; Chapuzet, E.; Chiap, P.; Cohen, N.; Compagnon, P.A.; Dewe, W.; Feinberg, M.;
Lallier, M.; et al. Harmonization of strategies for the validation of quantitative analytical procedures—A SFSTP proposal—Part II.
J. Pharm. Biomed. 2007, 45, 70–81. [CrossRef] [PubMed]

16. Hubert, P.; Nguyen-Huu, J.J.; Boulangerc, B.; Chapuzet, E.; Cohen, N.; Compagnon, P.A.; Dewe, W.; Feinberg, M.; Laurentie, M.;
Mercier, N.; et al. Harmonization of strategies for the validation of quantitative analytical procedures—A SFSTP proposal—Part
III. J. Pharm. Biomed. 2007, 45, 82–96. [CrossRef] [PubMed]

17. Hubert, P.; Nguyen-Huu, J.J.; Boulanger, B.; Chapuzet, E.; Cohen, N.; Compagnon, P.A.; Dewe, W.; Feinberg, M.; Laurentie, M.;
Mercier, N.; et al. Harmonization of strategies for the validation of quantitative analytical procedures: A SFSTP proposal Part IV.
Examples of application. J. Pharm. Biomed. 2008, 48, 760–771. [CrossRef]

18. Wu, Z.; Ma, Q.; Lin, Z.; Peng, Y.; Ai, L.; Shi, X.; Qiao, Y. A novel model selection strategy using total error concept. Talanta 2013,
107, 248–254. [CrossRef]

19. Wu, Z.; Xu, B.; Du, M.; Sui, C.; Shi, X.; Qiao, Y. Validation of a NIR quantification method for the determination of chlorogenic
acid in Lonicera japonica solution in ethanol precipitation process. J. Pharm. Biomed. 2012, 62, 1–6. [CrossRef] [PubMed]

20. Xue, Z.; Xu, B.; Yang, C.; Cui, X.; Li, J.; Shi, X.; Qiao, Y. Method validation for the analysis of licorice acid in the blending process
by near infrared diffuse reflectance spectroscopy. Anal. Meth. 2015, 7, 5830–5837. [CrossRef]

21. Luo, Y.; Li, W.; Huang, W.; Liu, X.; Song, Y.; Qu, H. Simultaneous assay of six components in water extract and alcohol precipitation
liquid in Astragali radix by HPLC-UV-ELSD. J. Chin. Mater. Med. 2016, 41, 850–858.

22. Xu, Z.; Huang, W.; Gong, X.; Ye, T.; Qu, H.; Song, Y.; Liu, D.; Wang, G. Design space approach to optimize first ethanol
precipitation process of Dangshen. J. Chin. Mater. Med. 2015, 40, 4411–4416.

23. Wang, K.Y.; Bian, X.H.; Tan, X.Y.; Wang, H.T.; Li, Y.K. A new ensemble modeling method for multivariate calibration of near
infrared spectra. Anal. Meth. 2021, 13, 1374–1380. [CrossRef]

24. Gerretzen, J.; Szymanska, E.; Jansen, J.J.; Bart, J.; Manen, H.; Heuvel, E.R.; Buydens, L.M.C. Simple and Effective Way for Data
Preprocessing Selection Based on Design of Experiments. Anal. Chem. Acta 2015, 87, 12096–12103. [CrossRef] [PubMed]

25. ISO 5725-1:1994; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and
Definitions. International Organization for Standardization: Geneva, Switzerland, 1994.

26. International Conference on Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, Topic
Q2(R1): Validation of Analytical Methods: Text and Methodology; ICH: Geneva, Switzerland, 2005.

27. The European Agency for the Evaluation of Medicinal Products. Note for Guideline on the Use of Near-Infrared Spectroscopy by the
Pharmaceutical Industry and the Data Requirements for News Submissions and Variations; European Agency for the Evaluation of
Medicinal Products: London, UK, 2003.

28. Li, T.T.; Hu, T.; Nie, L.; Zang, L.X.; Zeng, Y.Z.; Zang, H.C. Rapid monitoring five components of ethanol precipitation process of
Shenzhiling oral solution using near infrared spectroscopy. Chin. J. Trad. Chin. Med. 2016, 41, 3543–3550.

29. Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland, 1993.
30. Zhang, C.; Liu, F.; Qiu, Z.J.; He, Y. Application of Deep Learning in Food: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18,

1793–1811.

http://doi.org/10.1016/j.jpba.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24699368
http://doi.org/10.1016/j.talanta.2013.11.072
http://www.ncbi.nlm.nih.gov/pubmed/24468350
http://doi.org/10.1016/j.jpba.2014.07.012
http://www.ncbi.nlm.nih.gov/pubmed/25124155
http://doi.org/10.1016/j.chmed.2019.11.001
http://www.ncbi.nlm.nih.gov/pubmed/36119791
http://doi.org/10.1016/j.jpba.2007.06.013
http://www.ncbi.nlm.nih.gov/pubmed/17646076
http://doi.org/10.1016/j.jpba.2007.06.032
http://www.ncbi.nlm.nih.gov/pubmed/17716847
http://doi.org/10.1016/j.jpba.2008.07.018
http://doi.org/10.1016/j.talanta.2012.12.057
http://doi.org/10.1016/j.jpba.2011.12.005
http://www.ncbi.nlm.nih.gov/pubmed/22264844
http://doi.org/10.1039/C5AY01289A
http://doi.org/10.1039/D1AY00017A
http://doi.org/10.1021/acs.analchem.5b02832
http://www.ncbi.nlm.nih.gov/pubmed/26632985

	Introduction 
	Materials and Methods 
	Materials 
	Alcohol Precipitation Process and Experimental Setup 
	NIR Spectral Acquisition 
	Reference Assays 
	Calibration Protocol 
	Validation Protocol 
	Multivariate Data Treatment 

	Results and Discussion 
	The Second Alcohol Precipitation Process and NIR Spectra 
	Spectral Pretreatments 
	Development of Calibration Models 
	In-Line Monitoring of the Second Alcohol Precipitation Process and Chemometric Validation 
	Validation Based on Accuracy Profiles 
	Trueness 
	Precision 
	Accuracy 
	Linearity 
	Range 
	Robustness 
	Specificity 

	Method Uncertainty Assessment 

	Conclusions 
	References

