Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Liquid–Gas Chromatography
2.1.1. Transfer Techniques
2.1.2. Retention Gap Technique
2.1.3. Loop-Type Interfaces
2.2. Gas Chromatography–Multidimensional High Resolution (GC–MHR)
2.3. Two-Liquid Chromatography Coupled System
- (1)
- For a multidimensional system, the first criterion is that the sample components must be displaced by orthogonal separation processes;
- (2)
- For the second condition, it is not permissible to mix components that have been separated by more than one separation dimension.
2.4. Coupled Supercritical Fluid Techniques with Chromatography Techniques
2.4.1. SFE–GC
2.4.2. SPE–SFE–GC
2.4.3. SFE–SFC
2.5. Electro-Driven Multidimensional Separation
- (a)
- Reverse-phase high-performance liquid chromatography–capillary electrophoresis microcolumns;
- (b)
- Capillary zone electrophoresis–microcolumn size exclusion chromatography;
- (c)
- Reverse-phase high-performance liquid chromatography–capillary electrophoresis in a single capillary;
- (d)
- Fast capillary zone electrophoresis with packed capillary reverse-phase high-performance liquid chromatography;
- (e)
- Reverse-phase liquid chromatography–capillary zone electrophoresis–three-dimensional size-exclusion chromatography is some of the techniques used.
2.6. Three-Dimensional Liquid Chromatography (3D-LC)
2.6.1. Online Systems 3D-LC
2.6.2. Offline Use of 3D-LC Systems
2.6.3. Online–Offline 3D-LC Systems in Combination
3. Multidimensional Applications
3.1. Foods, Flavors, and Fragrances
- Qualitative and/or quantitative determination of certain classes of constituents;
- Quality and authenticity control of the product;
- Adulteration or contamination detection.
3.1.1. Gas Chromatography (GC–GC or MDGC)
3.1.2. High-Performance Liquid Chromatography (MD–HPLC)
3.2. Biomedical and Pharmaceutical Applications
3.3. Industrial Chemicals and Polymer Applications
3.4. MDC in Environmental Analysis
3.5. Forensic Toxicological Applications
Sample | Solvent System | Analytes | Operation Mode | Ref |
---|---|---|---|---|
Fish and chicken | Acetonitrile | Enrofloxacin | SPE–HPLC | [69] |
Pig urine, human plasma, and Smashed shrimp samples | Water, methanol, and acetonitrile | Bisphenol A | C18 SPE–HPLC | [70] |
Wheat, barley, potato, and carrots | Acetonitrile and acetic acid | Fenuron | HPLC–DAD | [71] |
Baby food, chicken meat, vegetables (carrots, tomatoes, green beans, onions, peas, and leeks), potatoes puree, and olive oil | Formic acid and acetonitrile | Quinolones and fluoroquinolones | SAX or MIP cartridges- HPLC | [72] |
Soy samples | Acetonitrile | Parabens | Off-line MISPME by GC-FID | [73] |
Corn | Water and Acetonitrile | Phenylurea herbicides | HPLC–MISPE | [74] |
Pork and chicken | Acetonitrile | Sulfonamides | SPE–HPLC | [75] |
Egg, honey, duck, and lobster samples | Methanol: acetonitrile | Tetracycline | LC-tMS-MISPE | [76] |
Milk | Acetic or trichloroacetic acid | Chloramphenicol | Voltammetry | [77] |
Coffee | Acetic or trichloroacetic acid | Benzo[a]pyrene | HPLC–FLU | |
Citrus fruits | Acetonitrile, sodium dihydrogen Phosphate | Thiabendazole | CE MISPE | [78] |
Potato, corn, pea, | Toluene in acetonitrile | Triazines | SPE-PIP | [79] |
dried milk, condensed milk, and dried cheese | Solvents for solubility | Melamine, cyanuric acid | DART–TOFMS, LC–MS/MS and ELISA | [80] |
Human growth hormone | Ammoniumacetate (AmAc), pH 6.8 solution at 20 mM concentration | Reslizumab, bevacizumab | EC-IEX-UV-nMS system | [81] |
Peptides mapping tryptic digest | D1 mobile phase: (A) 10 Mm CH3COONH4 in H2O v/v (pH 9); (B) 10 mM CH3COONH4in H2O/ACN 10:90, v/v (pH 9). D2 mobile phase: (A) 0.1% TFA in H2O v/v (pH 2); (B) 0.1% TFA in H2O/ACN 10:90, v/v (pH 2). | Amino acids. α-Casein and dephosphorylated α-casein | 2D LC system in which RPLC × RPLC system, coupled to PDA and MS detection. | [82] |
Saccharomyces (yeast protein) | Four buffer solutions: Buffer A (2% ACN), buffer B (80% ACN), buffer C (250 mM ammonium acetate/2% ACN), and buffer D (2 M ammonium acetate/2% ACN) with each 0.1% formic acid | Soluble, urea-solubilized, and SDS-solubilized proteins | RP1-SCX-RP2 microcapillary column and an LCQ Deca XPMS/ Online | [83] |
S. cerevisiae and E. coli | Isocratic-acetonitrile and KCl each with 20 mM ammonium formate at pH 10 | Tryptic peptides | 3-D RP-SAX-RP and RP-RP-LCQ/ Online | [84] |
HEK 293T cell lysates | Buffer solutions with various pH 12, 6, 2 with variance 7-35% con Buffer | Peptides | SAX-based SISPROT/ Off-line | [85] |
Tryptic digest of whole Jurkat cell lysate | Water and acetonitrile with gradient system with each 0.1% HFBA | Peptides | LC-MS/MS (TripleTOF 5600)/Offline | [86] |
Mouse brain cell proteome digest | Water and acetonitrile with gradient system with each 0.1% FA and ammonium acetate solution (pH 2.88) | Peptides | SCX-RPLC-CZE-MS/MS/ Combined | [87] |
Breath of healthy smokers and non-smokers, and patients with COPD | - | 13 VOC and NSCLC | GCMS HP 6890 GC coupled with an HP 5973 mass selective detector | [88] |
Human urine | - | Aromatic amines | GC–MS/MS Agilent 7890-7000 C GC–MS/MS | [89] |
Microwave and conventional oven food contact material | - | Fatty foods—microwave meals, | GC–MS_EI | [90] |
Water (A) and acetonitrile (B), both with 0.1% formic acid (+), and 0.16 M ammonium hydroxide (-) | Roasting meat and poultry | LC–MS_ESI | [90] | |
Tuna fish muscle and wastes | - | Lipid extract | QqQ MS, | [91] |
Tuna β-actin | 0.1% TFA in water and 0.1% TFA in water: ACN | Peptides | RP-UPLC with ESI-ion trap-TOF MS/MS | [91] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guiochon, G.; Gonnord, M.; Zakaria, M.; Beaver, L.; Siouffi, A. Chromatography with a two-dimensional column. Chromatographia 1983, 17, 121–124. [Google Scholar] [CrossRef]
- Cortes, H.J. Multidimensional Chromatography Using On-Line Coupled High-Performance Liquid Chromatography and Capillary-Gas Chromatography. In Multidimensional Chromatography; CRC Press: Boca Raton, FL, USA, 2020; pp. 251–300. [Google Scholar]
- Erni, F.; Frei, R. Two-dimensional column liquid chromatographic technique for resolution of complex mixtures. J. Chromatogr. A 1978, 149, 561–569. [Google Scholar] [CrossRef]
- Pirok, B.W.; Stoll, D.R.; Schoenmakers, P.J. Recent developments in two-dimensional liquid chromatography: Fundamental improvements for practical applications. Anal. Chem. 2018, 91, 240–263. [Google Scholar] [CrossRef] [Green Version]
- Al-Othman, Z.A.; Al-Warthan, A.; Ali, I. Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography. J. Sep. Sci. 2014, 37, 1033–1057. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, M.; Grob, K.; Fröhlich, D.; Meier, W. On-line coupled liquid chromatography-gas chromatography (LC-GC) and LC-LC-GC for detecting irradiation of fat-containing foods. Z. Lebensm.-Unters. Forsch. 1992, 195, 409–416. [Google Scholar] [CrossRef]
- De Koning, S.; Janssen, H.-G.; Udo, A.T. Group-type characterisation of mineral oil samples by two-dimensional comprehensive normal-phase liquid chromatography–gas chromatography with time-of-flight mass spectrometric detection. J. Chromatogr. A 2004, 1058, 217–221. [Google Scholar] [CrossRef]
- Committee, A.R.T.; Boyer, A. Basic Applications of Multileaf Collimators; American Association of Physicists in Medicine: Alexandria, VA, USA, 2001. [Google Scholar]
- Purcaro, G.; Moret, S.; Conte, L. Hyphenated liquid chromatography–gas chromatography technique: Recent evolution and applications. J. Chromatogr. A 2012, 1255, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Dugo, P.; Cacciola, F.; Kumm, T.; Dugo, G.; Mondello, L. Comprehensive multidimensional liquid chromatography: Theory and applications. J. Chromatogr. A 2008, 1184, 353–368. [Google Scholar] [CrossRef]
- Mondello, L.; Tranchida, P.Q.; Dugo, P.; Dugo, G. Comprehensive two-dimensional gas chromatography-mass spectrometry: A review. Mass Spectrom. Rev. 2008, 27, 101–124. [Google Scholar] [CrossRef]
- Hoh, E.; Mastovska, K. Large volume injection techniques in capillary gas chromatography. J. Chromatogr. A 2008, 1186, 2–15. [Google Scholar] [CrossRef]
- Beens, J.; Udo, A. The role of gas chromatography in compositional analyses in the petroleum industry. TrAC Trends Anal. Chem. 2000, 19, 260–275. [Google Scholar] [CrossRef]
- Bertsch, W. Two-Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications–Part 1: Fundamentals, Conventional Two-Dimensional Gas Chromatography, Selected Applications. J. High Resolut. Chromatogr. 1999, 22, 647–665. [Google Scholar] [CrossRef]
- Gilar, M.; Daly, A.E.; Kele, M.; Neue, U.D.; Gebler, J.C. Implications of column peak capacity on the separation of complex peptide mixtures in single-and two-dimensional high-performance liquid chromatography. J. Chromatogr. A 2004, 1061, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Purcaro, G.; Moret, S.; Conte, L. Sample pre-fractionation of environmental and food samples using LC-GC multidimensional techniques. TrAC Trends Anal. Chem. 2013, 43, 146–160. [Google Scholar] [CrossRef]
- Pryde, S.; Gilbert, M.T. Applications of High Performance Liquid Chromatography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Evans, C.R.; Jorgenson, J.W. Multidimensional LC-LC and LC-CE for high-resolution separations of biological molecules. Anal. Bioanal. Chem. 2004, 378, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Dugo, P.; Favoino, O.; Luppino, R.; Dugo, G.; Mondello, L. Comprehensive two-dimensional normal-phase (adsorption)− reversed-phase liquid chromatography. Anal. Chem. 2004, 76, 2525–2530. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A 2007, 1163, 2–24. [Google Scholar] [CrossRef]
- Palit, S.; Bhuiyan, R.H.; Aklima, J.; Emran, T.B.; Dash, R. A study of the prevalence of thalassemia and its correlation with liver function test in different age and sex group in the Chittagong district of Bangladesh. J. Basic Clin. Pharm. 2012, 3, 352. [Google Scholar] [CrossRef] [Green Version]
- Engewald, W.; Teske, J.; Efer, J. Programmed temperature vaporiser-based injection in capillary gas chromatography. J. Chromatogr. A 1999, 856, 259–278. [Google Scholar] [CrossRef]
- Stashenko, E.; Martínez, J.R. Gas chromatography-mass spectrometry. Adv. Gas Chromatogr. 2014, 2014, 1–38. [Google Scholar]
- Kristenson, E.M.; Udo, A.T.; Ramos, L. Recent advances in matrix solid-phase dispersion. TrAC Trends Anal. Chem. 2006, 25, 96–111. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Zeng, Q.; Xu, Y.; Sun, L.; Xu, H.; Ding, L. On-line coupling of solid-phase extraction to liquid chromatography—A review. J. Chromatogr. Sci. 2009, 47, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Camargo, A.d.P.; Parada-Alfonso, F.; Ibáñez, E.; Cifuentes, A. On-line coupling of supercritical fluid extraction and chromatographic techniques. J. Sep. Sci. 2017, 40, 213–227. [Google Scholar] [CrossRef]
- Breadmore, M.C.; Tubaon, R.M.; Shallan, A.I.; Phung, S.C.; Abdul Keyon, A.S.; Gstoettenmayr, D.; Prapatpong, P.; Alhusban, A.A.; Ranjbar, L.; See, H.H. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014). Electrophoresis 2015, 36, 36–61. [Google Scholar] [CrossRef]
- Ferré, S.; González-Ruiz, V.; Guillarme, D.; Rudaz, S. Analytical strategies for the determination of amino acids: Past, present and future trends. J. Chromatogr. B 2019, 1132, 121819. [Google Scholar] [CrossRef]
- Dixon, S.P.; Pitfield, I.D.; Perrett, D. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis: A review. Biomed. Chromatogr. 2006, 20, 508–529. [Google Scholar] [CrossRef] [PubMed]
- McDonald, W.H.; Ohi, R.; Miyamoto, D.T.; Mitchison, T.J.; Yates, J.R. Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: Single-dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. Int. J. Mass Spectrom. 2002, 219, 245–251. [Google Scholar] [CrossRef]
- Zhou, F.; Sikorski, T.W.; Ficarro, S.B.; Webber, J.T.; Marto, J.A. Online nanoflow reversed phase-strong anion exchange-reversed phase liquid chromatography-tandem mass spectrometry platform for efficient and in-depth proteome sequence analysis of complex organisms. Anal. Chem. 2011, 83, 6996–7005. [Google Scholar] [CrossRef] [Green Version]
- Ficarro, S.B.; Zhang, Y.; Carrasco-Alfonso, M.J.; Garg, B.; Adelmant, G.; Webber, J.T.; Luckey, C.J.; Marto, J.A. Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol. Cell Proteom. 2011, 10, O111.011064. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Lu, Y.; Ficarro, S.B.; Adelmant, G.; Jiang, W.; Luckey, C.J.; Marto, J.A. Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat. Commun. 2013, 4, 2171. [Google Scholar] [CrossRef] [Green Version]
- Motoyama, A.; Xu, T.; Ruse, C.I.; Wohlschlegel, J.A.; Yates, J.R. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal. Chem. 2007, 79, 3623–3634. [Google Scholar] [CrossRef] [PubMed]
- Gilar, M.; Olivova, P.; Daly, A.E.; Gebler, J.C. Orthogonality of Separation in Two-Dimensional Liquid Chromatography. Anal. Chem. 2005, 77, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Di Palma, S.; Preisinger, C.; Peng, M.; Polat, A.N.; Heck, A.J.R.; Mohammed, S. Toward a Comprehensive Characterization of a Human Cancer Cell Phosphoproteome. J. Proteome Res. 2013, 12, 260–271. [Google Scholar] [CrossRef]
- Chen, W.; Adhikari, S.; Chen, L.; Lin, L.; Li, H.; Luo, S.; Yang, P.; Tian, R. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling. J. Chromatogr. A 2017, 1498, 207–214. [Google Scholar] [CrossRef]
- Ishihama, Y.; Rappsilber, J.; Mann, M. Modular stop and go extraction tips with stacked disks for parallel and multidimensional Peptide fractionation in proteomics. J. Proteome Res. 2006, 5, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Lin, L.; Zhou, W.; Chen, W.; Tang, J.; Sun, X.; Huang, P.; Tian, R. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling. J. Chromatogr. A 2018, 1564, 76–84. [Google Scholar] [CrossRef]
- Viana, L.; English, M. The application of chromatography in the study of off-flavour compounds in pulses and pulse by-products. LWT 2021, 150, 111981. [Google Scholar] [CrossRef]
- Kiefl, J.; Schulze, L.J.; Gebauer, I.; Schaefer, U.; Rommel, I.; Heitefaut, T.; Hauke, M.F.; Neumann, S.; Kohlenberg, B.; Slabizki, P. Chapter Eight–Investigation of food flavours by multidimensional and comprehensive gas chromatography. In Comprehensive Analytical Chemistry; Cordero, C.E.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 96, pp. 231–259. [Google Scholar]
- Ali, I.; Aboul-Enein, H.Y. Enantioseparation of some clinically used drugs by HPLC using cellulose Tris (3,5-dichlorophenylcarbamate) chiral stationary phase. Biomed. Chromatogr. 2003, 17, 113–117. [Google Scholar] [CrossRef]
- Pursch, M.; Buckenmaier, S. Loop-based multiple heart-cutting two-dimensional liquid chromatography for target analysis in complex matrices. Anal. Chem. 2015, 87, 5310–5317. [Google Scholar] [CrossRef]
- Stoll, D.R.; Li, X.; Wang, X.; Carr, P.W.; Porter, S.E.; Rutan, S.C. Fast, comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 2007, 1168, 3–43. [Google Scholar] [CrossRef] [Green Version]
- Nahon, L.; Nag, L.; Garcia, G.A.; Myrgorodska, I.; Meierhenrich, U.; Beaulieu, S.; Wanie, V.; Blanchet, V.; Géneaux, R.; Powis, I. Determination of accurate electron chiral asymmetries in fenchone and camphor in the VUV range: Sensitivity to isomerism and enantiomeric purity. Phys. Chem. Chem. Phys. 2016, 18, 12696–12706. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Rescigno, A.; Dettori, T.; Calina, D.; Docea, A.O.; Singh, L.; Cebeci, F.; Özçelik, B.; Bhia, M.; Dowlati Beirami, A.; et al. Avocado–Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited. Biomolecules 2020, 10, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboul-Enein, H.Y.; Ali, I.; Gübitz, G.; Simons, C.; Nicholls, P.J. HPLC enantiomeric resolution of novel aromatase inhibitors on cellulose-and amylose-based chiral stationary phases under reversed phase mode. Chirality 2000, 12, 727–733. [Google Scholar] [CrossRef]
- Deáková, Z.; Ďuračková, Z.; Armstrong, D.W.; Lehotay, J. Two-dimensional high performance liquid chromatography for determination of homocysteine, methionine and cysteine enantiomers in human serum. J. Chromatogr. A 2015, 1408, 118–124. [Google Scholar] [CrossRef]
- Aboul-Enein, H.Y.; Ali, I. Comparison of the chiral resolution of econazole, miconazole, and sulconazole by HPLC using normal-phase amylose CSPs. Fresenius J. Anal. Chem. 2001, 370, 951–955. [Google Scholar] [CrossRef]
- Semwal, P.; Painuli, S.; Abu-Izneid, T.; Rauf, A.; Sharma, A.; Daştan, S.D.; Kumar, M.; Alshehri, M.M.; Taheri, Y.; Das, R.; et al. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. Oxidative Med. Cell. Longev. 2022, 2022, 1035441. [Google Scholar] [CrossRef]
- Muhammad, N.; Hussian, I.; Ali, A.; Hussain, T.; Intisar, A.; Haq, I.U.; Subhani, Q.; Hedar, M.; Zhong, J.-L.; Asif, M. A comprehensive review of liquid chromatography hyphenated to post-column photoinduced fluorescence detection system for determination of analytes. Arab. J. Chem. 2022, 15, 104091. [Google Scholar] [CrossRef]
- Popović-Djordjević, J.; Quispe, C.; Giordo, R.; Kostić, A.; Katanić Stanković, J.S.; Tsouh Fokou, P.V.; Carbone, K.; Martorell, M.; Kumar, M.; Pintus, G.; et al. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur. J. Med. Chem. 2022, 233, 114217. [Google Scholar] [CrossRef]
- Amin, R.; Quispe, C.; Docea, A.O.; Ydyrys, A.; Kulbayeva, M.; Durna Daştan, S.; Calina, D.; Sharifi-Rad, J. The role of Tumour Necrosis Factor in neuroinflammation associated with Parkinson’s disease and targeted therapies. Neurochem. Int. 2022, 158, 105376. [Google Scholar] [CrossRef]
- Ingle, R.G.; Zeng, S.; Jiang, H.; Fang, W.-J. Current development of bioanalytical sample preparation techniques in pharmaceuticals. J. Pharm. Anal. 2022, 12, 517–529. [Google Scholar] [CrossRef]
- Xu, R.N.; Fan, L.; Rieser, M.J.; El-Shourbagy, T.A. Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal. 2007, 44, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Edom, R.W.; Xu, Y.; Weng, N. Recent advances in application of hydrophilic interaction chromatography for quantitative bioanalysis. J. Sep. Sci. 2010, 33, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Kholodov, A.S.; Tarasenko, I.A.; Zinkova, E.A.; Teodoro, M.; Docea, A.O.; Calina, D.; Tsatsakis, A.; Golokhvast, K.S. The Study of Airborne Particulate Matter in Dalnegorsk Town. Int. J. Environ. Res. Public Health 2021, 18, 9234. [Google Scholar] [CrossRef]
- Sobeih, K.L.; Baron, M.; Gonzalez-Rodriguez, J. Recent trends and developments in pyrolysis–gas chromatography. J. Chromatogr. A 2008, 1186, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Bolaños, P.; Frenich, A.G.; Vidal, J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A 2010, 1217, 6303–6326. [Google Scholar] [CrossRef] [PubMed]
- Muscalu, A.M.; Górecki, T. Comprehensive two-dimensional gas chromatography in environmental analysis. TrAC Trends Anal. Chem. 2018, 106, 225–245. [Google Scholar] [CrossRef]
- Poster, D.L.; Schantz, M.M.; Sander, L.C.; Wise, S.A. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Anal. Bioanal. Chem. 2006, 386, 859–881. [Google Scholar] [CrossRef]
- Tsatsakis, A.; Docea, A.O.; Calina, D.; Tsarouhas, K.; Zamfira, L.M.; Mitrut, R.; Sharifi-Rad, J.; Kovatsi, L.; Siokas, V.; Dardiotis, E.; et al. A Mechanistic and Pathophysiological Approach for Stroke Associated with Drugs of Abuse. J. Clin. Med. 2019, 8, 1295. [Google Scholar] [CrossRef] [Green Version]
- Calina, D.; Carvalho, F.; Oana Docea, A. Chapter 43—Toxicity of psychedelic drugs. In Toxicological Risk Assessment and Multi-System Health Impacts from Exposure; Tsatsakis, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Srinivasan, M.; Amin, R.; Thunga, G.; Nagiri, S.K.; Kudru, C.U. Pharmacokinetic Potentiation of Mixed Organophosphate and Pyrethroid Poison Leading to Prolonged Delayed Neuropathy. J. Clin. Diagn. Res. 2016, 10, Fd01–Fd02. [Google Scholar] [CrossRef]
- Nabel, G.J.; Nabel, E.G.; Yang, Z.Y.; Fox, B.A.; Plautz, G.E.; Gao, X.; Huang, L.; Shu, S.; Gordon, D.; Chang, A.E. Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biologic activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 1993, 90, 11307. [Google Scholar] [CrossRef] [Green Version]
- Shrivastav, P.S.; Buha, S.M.; Sanyal, M. Detection and quantitation of β-blockers in plasma and urine. Bioanalysis 2010, 2, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Marriott, P.; Hügel, H. Solid-phase microextraction—On-fibre derivatization with comprehensive two dimensional gas chromatography analysis oftrans-resveratrol in wine. Chromatographia 2003, 57, S349–S353. [Google Scholar] [CrossRef]
- Sciarrone, D.; Schepis, A.; Zoccali, M.; Donato, P.; Vita, F.; Creti, D.; Alpi, A.; Mondello, L. Multidimensional gas chromatography coupled to combustion-isotope ratio mass spectrometry/quadrupole MS with a low-bleed ionic liquid secondary column for the authentication of truffles and products containing truffle. Anal. Chem. 2018, 90, 6610–6617. [Google Scholar] [CrossRef] [PubMed]
- Junping, W.; Mingfei, P.; Guozhen, F.; Shuo, W. Preparation of a novel molecularly imprinted polymer by a sol-gel process for on-line solid-phase extraction coupled with high performance liquid chromatography to detect trace enrofloxacin in fish and chicken samples. Microchim. Acta 2009, 166, 295–302. [Google Scholar] [CrossRef]
- Zhang, J.-h.; Jiang, M.; Zou, L.; Shi, D.; Mei, S.-r.; Zhu, Y.-x.; Shi, Y.; Dai, K.; Lu, B. Selective solid-phase extraction of bisphenol A using molecularly imprinted polymers and its application to biological and environmental samples. Anal. Bioanal. Chem. 2006, 385, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, F.G.; Casillas, J.L.; Martin-Esteban, A. Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples. Anal. Chim. Acta 2003, 482, 165–173. [Google Scholar] [CrossRef]
- Díaz-Alvarez, M.; Turiel, E.; Martín-Esteban, A. Selective sample preparation for the analysis of (fluoro) quinolones in baby food: Molecularly imprinted polymers versus anion-exchange resins. Anal. Bioanal. Chem. 2009, 393, 899–905. [Google Scholar] [CrossRef]
- He, J.; Chen, S.; Jiang, Y.; Shen, Y.; Zhu, J.; Wei, H.; Zhang, H.; Lu, K. Preparation and selective recognition of a novel solid-phase microextraction fiber combined with molecularly imprinted polymers for the extraction of parabens in soy sample. J. Sep. Sci. 2012, 35, 308–314. [Google Scholar] [CrossRef]
- Tamayo, F.G.; Casillas, J.L.; Martin-Esteban, A. Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerisation for the extraction of phenylurea herbicides. J. Chromatogr. A 2005, 1069, 173–181. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Fang, G.; Zhu, H.; Zhang, Y. Molecularly imprinted polymer online solid-phase extraction coupled with high-performance liquid chromatography− UV for the determination of three sulfonamides in pork and chicken. J. Agric. Food Chem. 2008, 56, 2919–2925. [Google Scholar] [CrossRef]
- Jing, T.; Gao, X.-D.; Wang, P.; Wang, Y.; Lin, Y.-F.; Hu, X.-Z.; Hao, Q.-L.; Zhou, Y.-K.; Mei, S.-R. Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography–tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Anal. Bioanal. Chem. 2009, 393, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Baggiani, C.; Anfossi, L.; Giovannoli, C. Solid phase extraction of food contaminants using molecular imprinted polymers. Anal. Chim. Acta 2007, 591, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Cacho, C.; Schweitz, L.; Turiel, E.; Pérez-Conde, C. Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples. J. Chromatogr. A 2008, 1179, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Cacho, C.; Turiel, E.; Martin-Esteban, A.; Pérez-Conde, C.; Cámara, C. Clean-up of triazines in vegetable extracts by molecularly-imprinted solid-phase extraction using a propazine-imprinted polymer. Anal. Bioanal. Chem. 2003, 376, 491–496. [Google Scholar] [CrossRef]
- Vaclavik, L.; Rosmus, J.; Popping, B.; Hajslova, J. Rapid determination of melamine and cyanuric acid in milk powder using direct analysis in real time-time-of-flight mass spectrometry. J. Chromatogr. A 2010, 1217, 4204–4211. [Google Scholar] [CrossRef]
- Jia, M.; Mozziconacci, O.; Abend, A.; Wuelfing, W.P.; Pennington, J. Multi-dimensional plug-and-play liquid chromatography-native ion mobility mass spectrometry method for the analysis of biotherapeutics. Int. J. Mass Spectrom. 2022, 471, 116725. [Google Scholar] [CrossRef]
- Donato, P.; Cacciola, F.; Sommella, E.; Fanali, C.; Dugo, L.; Dacha, M.; Campiglia, P.; Novellino, E.; Dugo, P.; Mondello, L. Online comprehensive RPLC× RPLC with mass spectrometry detection for the analysis of proteome samples. Anal. Chem. 2011, 83, 2485–2491. [Google Scholar] [CrossRef]
- Wei, J.; Sun, J.; Yu, W.; Jones, A.; Oeller, P.; Keller, M.; Woodnutt, G.; Short, J.M. Global Proteome Discovery Using an Online Three-Dimensional LC−MS/MS. J. Proteome Res. 2005, 4, 801–808. [Google Scholar] [CrossRef]
- Lee, M.L.; Markides, K.E. Chromatography with supercritical fluids. Science 1987, 235, 1342–1347. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; West, C.; Lesellier, E. Supercritical fluid chromatography development of a predictive analytical tool to selectively extract bioactive compounds by supercritical fluid extraction and pressurised liquid extraction. J. Chromatogr. A. 2020, 1632, 461582. [Google Scholar] [CrossRef]
- Spicer, V.; Ezzati, P.; Neustaeter, H.; Beavis, R.C.; Wilkins, J.A.; Krokhin, O.V. 3D HPLC-MS with Reversed-Phase Separation Functionality in All Three Dimensions for Large-Scale Bottom-Up Proteomics and Peptide Retention Data Collection. Anal. Chem. 2016, 88, 2847–2855. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Shen, X.; Sun, L. Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics. Anal. Chim. Acta 2018, 1012, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazumder, S.; Ahamed, R.A.; McGahee, E.; Wang, L.; Seyler, T.H. A New Automated Method for the Analysis of Aromatic Amines in Human Urine by GC–MS/MS. J. Anal. Toxicol. 2019, 43, 25–35. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Nuñez, A.; Johnston, J. Screening of chemicals migrating from plastic food contact materials for oven and microwave applications by liquid and gas chromatography—Orbitrap mass spectrometry. J. Chromatogr. A 2021, 1651, 462261. [Google Scholar] [CrossRef]
- Rigano, F.; Arena, P.; Mangraviti, D.; Donnarumma, D.; Dugo, P.; Donato, P.; Mondello, L.; Micalizzi, G. Identification of high-value generating molecules from the wastes of tuna fishery industry by liquid chromatography and gas chromatography hyphenated techniques with automated sample preparation. J. Sep. Sci. 2021, 44, 1571–1580. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, R.; Alam, F.; Dey, B.K.; Mandhadi, J.R.; Bin Emran, T.; Khandaker, M.U.; Safi, S.Z. Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review. Separations 2022, 9, 326. https://doi.org/10.3390/separations9110326
Amin R, Alam F, Dey BK, Mandhadi JR, Bin Emran T, Khandaker MU, Safi SZ. Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review. Separations. 2022; 9(11):326. https://doi.org/10.3390/separations9110326
Chicago/Turabian StyleAmin, Ruhul, Faruk Alam, Biplab Kumar Dey, Jithendar Reddy Mandhadi, Talha Bin Emran, Mayeen Uddin Khandaker, and Sher Zaman Safi. 2022. "Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review" Separations 9, no. 11: 326. https://doi.org/10.3390/separations9110326
APA StyleAmin, R., Alam, F., Dey, B. K., Mandhadi, J. R., Bin Emran, T., Khandaker, M. U., & Safi, S. Z. (2022). Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review. Separations, 9(11), 326. https://doi.org/10.3390/separations9110326