The Potential of Biochar as N Carrier to Recover N from Wastewater for Reuse in Planting Soil: Adsorption Capacity and Bioavailability Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Biochar Materials, Soil, and Plant
2.2. Experimental Design and Sampling
2.2.1. Batch Adsorption Experiment and Sampling
2.2.2. Planting Experiment and Sampling
2.3. Testing
2.3.1. N Content Testing
2.3.2. Biochar
2.3.3. 15N Abundance Testing
2.4. Calculations
2.4.1. N Removal Efficiency
2.4.2. Inorganic N Adsorbed by Biochar
2.4.3. N Input from N–Biochar Matrix
2.4.4. N Balance in Planting Experiment
2.4.5. Statistical Analysis
3. Results
3.1. N Removal Efficiency
3.2. Amount of N Adsorbed by Biochars
3.3. Bioavailability of the Carried N on Biochar
4. Discussion
4.1. N Adsorptive Capacity
4.2. Bioavailability of The Carried N from Biochar
4.3. Potential of Biochar Application for N Recovery from Agricultural Wastewater
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, X.; Zhan, X.; Zhou, F.; Yan, X.; Gu, B.; Reis, S.; Wu, Y.; Liu, H.; Piao, S.; Tang, Y. Detection and attribution of nitrogen runoff trend in China’s croplands. Environ. Pollut. 2018, 234, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Yin, A.J.; Duan, J.J.; Xue, L.H.; Feng, Y.F.; Petropoulos, E.; Yang, L.Z. High yield and mitigation of N-loss from paddy fields obtained by irrigation using optimized application of sewage tail water. Agr. Ecosyst. Environ. 2020, 304, 107137. [Google Scholar] [CrossRef]
- Woli, K.P.; Nagumo, T.; Hatano, R. Magnitude of nitrogen pollution in stream water due to intensive livestock farming practices. Soil Sci. Plant Nutr. 2002, 48, 883–887. [Google Scholar] [CrossRef]
- Shan, L.N.; He, Y.F.; Chen, J.; Huang, Q.; Lian, X.; Wang, H.C.; Liu, Y.L. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Agr. Water Manage. 2015, 159, 255–263. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Kong, L.L.; Zhu, L.; Xia, J.H.; Patricia, X. Fate characteristics of nitrogen in runoff from a small agricultural watershed on the south of Huaihe River in China. Environ. Earth Sci. 2012, 66, 835–848. [Google Scholar] [CrossRef]
- Xue, L.; Yu, Y.; Yang, L. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management. Environ. Res. Lett. 2014, 9, 115010. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.F.; Jiang, Y.; Yan, L.; Petropoulos, E.; Wang, J.Y.; Xue, L.H.; Yang, L.Z.; Chen, D.L. Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands: A meta-analysis. Sci. Total Environ. 2021, 793, 148554. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Allohverdi, T.; Mohanty, A.K.; Roy, P.; Misra, M. A review on current status of biochar uses in agriculture. Molecules 2021, 26, 5584. [Google Scholar] [CrossRef]
- Ayaz, M.; Feiziene, D.; Tilvikiene, V.; Akhtar, K.; Stulpinaite, U.; Iqbal, R. Biochar role in the sustainability of agriculture and environment. Sustainability 2021, 13, 1330. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Saleh, M.E.; Mahmoud, A.H.; El-Refaey, A.A. Removal of cadmium from aqueous solution by biochars derived from peanut hull and wheat straw. Adv. Environ. Biol. 2014, 8, 399–410. [Google Scholar]
- Vithanage, M.; Rajapaksha, A.U.; Ahmad, M.; Uchimiya, M.; Dou, X.; Alessi, D.S.; Yong, S.O. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. J. Environ. Manag. 2015, 151, 443–449. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Sayadi, M.; Farasati, M.; Mahmoodlu, M.G.; Rostamicharati, F. Removal of nitrate, ammonium, and phosphate from water using conocarpus and paulownia plant biochar. Iran. J. Chem. Chem. Eng. 2020, 39, 205–222. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Y.; Zhao, M.; Yin, B.; Zhu, Z. The assessment of nitrate leaching in a rice–wheat rotation system using an improved agronomic practice aimed to increase rice crop yields. Agr. Ecosyst. Environ. 2017, 241, 100–109. [Google Scholar] [CrossRef]
- Cengeloglu, Y.; Tor, A.; Ersoz, M.; Arslan, G. Removal of nitrate from aqueous solution by using red mud. Sep. Purif. Technol. 2006, 51, 374–378. [Google Scholar] [CrossRef]
- Shi, Y. China’s resources of biomass feedstock. Engineering Sci. 2011, 13, 16–23. [Google Scholar]
- Liu, H.W.; Dong, Y.H.; Wang, H.Y.; Liu, Y. Ammonium adsorption from aqueous solutions by strawberry leaf powder: Equilibrium, kinetics and effects of coexisting ions. Desalination 2010, 263, 70–75. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.X.; Wu, W.X.; Shi, D.Z.; Yang, M.; Zhong, Z.K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Poll. 2010, 213, 47–55. [Google Scholar] [CrossRef]
- Hollister, C.C.; Bisogni, J.J.; Lehmann, J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover and oak wood. J. Environ. Qual. 2012, 42, 137–144. [Google Scholar] [CrossRef]
- Sanford, J.R.; Larson, R.A.; Runge, T. Nitrate sorption to biochar following chemical oxidation. Sci. Total Environ. 2019, 669, 938–947. [Google Scholar] [CrossRef]
- Hale, S.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G.; Cornelissen, G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 2013, 91, 1612–1619. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Yao, Y.; Xue, Y.; Inyang, M. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem. Eng. J. 2012, 210, 26–32. [Google Scholar] [CrossRef]
- Wang, T.T.; Zhang, D.; Fang, K.K.; Zhu, W.; Peng, Q.; Xie, Z.G. Enhanced nitrate removal by physical activation and Mg/Al layered double hydroxide modified biochar derived from wood waste: Adsorption characteristics and mechanisms. J. Environ. Chem. Eng. 2021, 9, 105184. [Google Scholar] [CrossRef]
- Masanizan, A.; Lim, C.M.; Kooh, M.R.R.; Mahadi, A.H.; Thotagamuge, R. The removal of ruthenium-based complexes N3 dye from DSSC wastewater using copper impregnated KOH-activated bamboo charcoal. Water Air Soil Pollut. 2021, 232, 388. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, P.; Li, X.; Sun, Q.; She, D. Magnesium chloride-modified potassium humate-based carbon material for efficient removal of phosphate from water. J. Taiwan Inst. Chem. E 2022, 140, 104540. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, G.; Zhang, P.; Shen, J.; Wang, S.; Li, Y. Development of iron-based biochar for enhancing nitrate adsorption: Effects of specific surface areas, electrostatic forces, and functional groups. Sci. Total Environ. 2022, 856, 159037. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef] [Green Version]
- Krounbi, L.; Enders, A.; Gaunt, J.; Ball, M.; Lehmann, J. Plant uptake of nitrogen adsorbed to biochars made from dairy manure. Sci. Rep. 2021, 11, 15001. [Google Scholar] [CrossRef]
- Marcińczyk, M.; Ok, Y.S.; Oleszczuk, P. From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars. Chemosphere 2022, 306, 135310. [Google Scholar] [CrossRef]
- Craswell, E.T.; Chalk, P.M.; Kaudal, B.B. Role of 15N in tracing biologically driven nitrogen dynamics in soils amended with biochar: A review. Soil Biol. Biochem. 2021, 162, 108416. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, Z.; Yi, C.; Zhu, T. Denitrification and total nitrogen gas production from forest soils of Eastern China. Soil Biol. Biochem. 2009, 41, 2551–2557. [Google Scholar] [CrossRef]
- Wang, Z.H.; Guo, H.Y.; Shen, F.; Yang, G.; Zhang, Y.Z.; Zeng, Y.M.; Wang, L.L.; Xiao, H.; Deng, S.H. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere 2015, 119, 646–653. [Google Scholar] [CrossRef]
- Begum, S.A.; Hyder, A.; Hicklen, Q.; Crocker, T.; Oni, B. Adsorption characteristics of ammonium onto biochar from an aqueous solution. J. Water Supply Res. 2021, 70, 113–122. [Google Scholar] [CrossRef]
- Yin, Q.Q.; Zhang, B.D.; Wang, R.K.; Zhao, Z.H. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review. Environ. Sci. Pollut. R. 2017, 24, 26297–26309. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xue, Y.W.; Deng, P.Y.; Cheng, X.R.; Yang, K. Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem. Spec. Bioavailab. 2015, 27, 92–97. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Chen, J.J.; Yang, L.Y. Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environ. Sci. Technol. 2013, 47, 8700–8708. [Google Scholar] [CrossRef]
- Nguyen, T.; Xu, C.Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef]
- Huang, C.; Sun, X.Y.; Wang, L.J.; Storer, P.; Siddique, K.H.M.; Solaiman, Z.M. Nutrients leaching from tillage soil amended with wheat straw biochar influenced by fertiliser type. Agriculture 2021, 11, 1132. [Google Scholar] [CrossRef]
- Li, Y.; Feng, G.; Tewolde, H.; Yang, M.; Zhang, F. Soil, biochar, and nitrogen loss to runoff from loess soil amended with biochar under simulated rainfall. J. Hydrol. 2020, 591, 125318. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Berruti, F.; Greenhalf, C.; Tian, X.H.; Henry, H.A.L. Increased retention of soil nitrogen over winter by biochar application: Implications of biochar pyrolysis temperature for plant nitrogen availability. Agr. Ecosyst. Environ. 2017, 236, 61–68. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Peñuelas, J.; Sardans, J.; Chen, X.; Fang, Y.; Tariq, A. Effects of nitrogen-enriched biochar on subtropical paddy soil organic carbon pool dynamics. Sci. Total Environ. 2022, 851, 158322. [Google Scholar] [CrossRef]
- Zheng, J.; Luan, L.; Luo, Y.; Fan, J.; Xu, Q.; Sun, B.; Jiang, Y. Biochar and lime amendments promote soil nitrification and nitrogen use efficiency by differentially mediating ammonia-oxidizer community in an acidic soil. Appl. Soil Ecol. 2022, 180, 104619. [Google Scholar] [CrossRef]
- Zhang, M.; Riaz, M.; Xia, H.; Li, Y.; Wang, X.; Jiang, C. Four-year biochar study: Positive response of acidic soil microenvironment and citrus growth to biochar under potassium deficiency conditions. Sci. Total Environ. 2022, 813, 152515. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Li, H.; Xiao, J.; Sun, J.; Liu, R.; Zhang, A. Soil multifunctionality of paddy field is explained by soil pH rather than microbial diversity after 8-years of repeated applications of biochar and nitrogen fertilizer. Sci. Total Environ. 2022, 853, 158620. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.L.; Li, K.W.; Nkoh, J.N.; He, X.; Hong, Z.N.; Xu, R.K. Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils. Chemosphere 2022, 301, 134674. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Odindo, A.; Xue, L.; Yang, L. Influences of biochar addition on vegetable soil nitrogen balance and pH buffering capacity. IOP Conf. Ser. Earth Environ. Sci. 2016, 41, 012029. [Google Scholar] [CrossRef] [Green Version]
- Verheijen, F.G.A.; Mankasingh, U.; Penizek, V.; Panzacchi, P.; Glaser, B.; Jeffery, S.; Bastos, A.C.; Tammeorg, P.; Kern, J.; Zavalloni, C.; et al. Representativeness of European biochar research: Part I- field experiments. J. Environ. Eng. Landsc. 2017, 25, 140–151. [Google Scholar] [CrossRef]
Regular Biochar | mg-Modified Biochar | Soil | |
---|---|---|---|
Total N (g/kg) | 12.5 | 9.4 | 1.2 |
Total carbon (g/kg) | 503.1 | 476.2 | -- |
Ammonium-N (mg/kg) | 1.8 | 0.7 | 16.4 |
Nitrate-N (mg/kg) | 0.4 | 0.6 | 62.4 |
Available phosphorus (mg/kg) | <0.2 | 0.3 | 64.1 |
Available potassium (mg/kg) | <0.2 | <0.2 | 182.2 |
pH (H2O) | 8.9 | 7.4 | 5.6 |
Soil organic matter (g/kg) | -- | -- | 17.9 |
Water-holding capacity (%) | -- | -- | 48.6 |
Zeta potential (mV) (pH = 5.5) | 5.6 | −20.1 | -- |
BET (m2/g) | 9.1 | 23.4 | -- |
Pore volume (cm³/g) | 1.6 × 10−2 | 6.2 × 10−2 | -- |
Level | Urea Addition Rates (mmol/L) | Inorganic-N Concentration (mg/L) | Ammonium-N Concentration (mg/L) | Nitrate-N Concentration (mg/L) |
---|---|---|---|---|
L1 | 1.5 | 6.6 | 2.6 | 4.0 |
L2 | 3.0 | 14.2 | 6.7 | 7.5 |
L3 | 7.5 | 38.9 | 18.5 | 20.4 |
L4 | 15.0 | 87.8 | 43.5 | 44.3 |
L5 | 30.0 | 157.1 | 74.9 | 83.2 |
L6 | 75.0 | 289.6 | 129.8 | 159.8 |
Treatments | From Chemical Fertilizer (mg/kg) | From N–Biochar Matrix (mg/kg) | Total N Input (mg/kg) |
---|---|---|---|
N control | 100 | 100 | |
RBA + NC | 58.5 | 41.5 (Regular biochar) | 100 |
MBA + NC | 59.1 | 40.9 (Mg-modified biochar) | 100 |
Input (mg/pot) | Output (mg/pot) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant N Uptake | N Residual in Soil | N Loss 1 | ||||||||||
Source | Biochar | Fertilizer | Sum | Biochar | Fertilizer | Sum | Biochar | Fertilizer | Sum | Biochar | Fertilizer | Sum |
N control | 200.0 | 200.0 | 72.8 | 72.8b 2 | 57.8 | 57.8c | 69.2 | 69.2a | ||||
RBA + NC | 83.0 | 117.0 | 200.0 | 35.4 | 58.2 | 93.6a | 38.1 | 31.9 | 70.0b | 9.5 | 26.9 | 36.4b |
MBA + NC | 81.8 | 118.2 | 200.0 | 28.4 | 49.0 | 77.4b | 43.9 | 42.0 | 85.9a | 9.5 | 27.2 | 36.7b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Yang, B.; Petropoulos, E.; Duan, J.; Yang, L.; Xue, L. The Potential of Biochar as N Carrier to Recover N from Wastewater for Reuse in Planting Soil: Adsorption Capacity and Bioavailability Analysis. Separations 2022, 9, 337. https://doi.org/10.3390/separations9110337
Yu Y, Yang B, Petropoulos E, Duan J, Yang L, Xue L. The Potential of Biochar as N Carrier to Recover N from Wastewater for Reuse in Planting Soil: Adsorption Capacity and Bioavailability Analysis. Separations. 2022; 9(11):337. https://doi.org/10.3390/separations9110337
Chicago/Turabian StyleYu, Yingliang, Bei Yang, Evangelos Petropoulos, Jingjing Duan, Linzhang Yang, and Lihong Xue. 2022. "The Potential of Biochar as N Carrier to Recover N from Wastewater for Reuse in Planting Soil: Adsorption Capacity and Bioavailability Analysis" Separations 9, no. 11: 337. https://doi.org/10.3390/separations9110337
APA StyleYu, Y., Yang, B., Petropoulos, E., Duan, J., Yang, L., & Xue, L. (2022). The Potential of Biochar as N Carrier to Recover N from Wastewater for Reuse in Planting Soil: Adsorption Capacity and Bioavailability Analysis. Separations, 9(11), 337. https://doi.org/10.3390/separations9110337