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Abstract: Solidification/stabilization (S/S) is one of the most widely used techniques in the disposal
of heavy-metal-contaminated soil, though the long-term effectiveness of S/S technology remains
implicit. Temperature is an important factor affecting the leaching behavior of heavy metals and
the long-term effectiveness of S/S treatment. This study systematically explored the influence of
temperature on the leaching behavior of lead in an S/S monolith through semi-dynamic leaching
test at different temperatures. The results showed that an increase in temperature could accelerate
the leaching concentration and cumulative leaching amount of lead ions in the S/S monolith. The
cumulative leaching amount of lead ions in the S/S monolith after 11 days at 55 ◦C was about 5.8
times that at 25 ◦C. The leaching rate of lead ions in the S/S monolith increased with the increase
in temperature. The leaching index of lead ions was larger than 9, which met the requirements for
“controlled utilization” in the environment. The leaching mechanism of lead ions was diffusion
control and did not change in the temperature range of 25–55 ◦C. These findings indicate that
temperature affects the leaching behavior and the long-term effectiveness of S/S treatment, and
temperature variation should be considered in the effectiveness evaluation of S/S treatment.

Keywords: leaching; stabilization/solidification; engineering performance; elevated temperature

1. Introduction

The problem of soil heavy-metal pollution in China has seriously threatened environ-
mental safety and human health [1,2]. In recent years, due to the government’s emphasis
on and people’s increased awareness of environmental protection, soil remediation in
China has made rapid progress, and a large number of polluted sites have been reme-
diated [3]. Stabilization/solidification (S/S) is a popular method for the treatment of
heavy-metal-contaminated soil, involving chemical stabilization and physical encapsula-
tion using cementitious or pozzolanic materials as a binder [4]. S/S is one of the most
popular technologies for soil remediation, defined as one of the best demonstrated avail-
able technologies (BDATs) [5], and it has been widely used in U.S. superfund projects [3,6].
Similarly, S/S technology is widely used and burgeoning in the contaminated soil remedi-
ation market in China, and it has been reported that S/S treatment accounted for nearly
48.5% of the total contaminated-site remediation market during the period 2017–2018 [7].
However, some countries, such as Denmark and South Korea, have rejected this technology
due to the uncertainty of its long-term performance and durability [7]. The long-term
effectiveness of S/S treatment technology has been a concern of scholars for a considerable
time [4,8,9]. Exploring the long-term leaching behavior of heavy metals from S/S monoliths
at different temperatures is of great significance for evaluating the long-term effectiveness
of S/S treatment.
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Leachability is the key index for evaluating the long-term effectiveness of S/S mono-
liths. There are many ways to evaluate the long-term performance of S/S monoliths, such
as long-term in situ monitoring, rainfall simulation acceleration, and dry–wet cycles [10].
Many studies have focused on exploring the leaching behavior of heavy metals in S/S
products under different environments, such as pH and salt-leaching solutions [11,12].
This research showed that the pH is an important factor affecting the leaching behavior
and effectiveness of S/S-treated heavy-metal-contaminated soil [11]. The smaller the pH,
the faster the release of heavy-metal ions in the S/S monolith [11,13]. Many models have
been established to describe the migration and leaching behavior of pollutants from S/S
monoliths [9,12,14,15]. The most widely used of these are the diffusion model and the series
of modified models based on the improvement of the diffusion model [10]. The leaching
process of heavy metals in S/S monoliths is mainly controlled by diffusion, dissolution,
and surface washing [8,16]. The main influencing factors in the leaching process include
external factors and internal factors. The internal factors include pollutant type, concentra-
tion, curing agent, and pore structure, and the external factors mainly include pH, redox
potential, temperature, and other environmental conditions [8,9].

Temperature has a great influence on the mineral composition, microstructure, and
leaching behavior of S/S monoliths, and it is also an important factor affecting the properties
and effectiveness of the S/S treatment and the release of pollutants [17,18]. In particular,
extremely high temperatures occur in many parts of the world, including China in 2022.
The temperature in many areas and cities is in the range of 40 to 50 ◦C, which seriously
affects the durability and leachability of S/S monoliths. It was found that temperature
is the main factor affecting the leaching of copper ions from S/S monoliths [19]. The
change in temperature affects the ion movement frequency and chemical reaction rate, thus
accelerating the ion migration and diffusion rate in the leaching system, and ultimately
changing the ion-leaching kinetic process [20]. Batch leaching tests at different temperatures
showed that an increase in temperature accelerated the hydration reaction of cementitious
materials, thus reducing the leaching concentration of heavy metals [21]. However, few
studies have been conducted on the migration and release behavior of heavy metals in
S/S monoliths at different temperatures. Several studies have used batch leaching tests to
compare the changes in heavy-metal-leaching capacity across different time periods, but
there remains a lack of research on the changes in leaching behavior caused by temperature.
Semi-dynamic leaching tests can provide abundant information on the leaching kinetics
during the release of heavy metals from S/S products compared with batch tests, including
the pollutant concentration, leaching amount, effective diffusion coefficient, and leaching
mechanism [22].

In order to explore the leaching behavior and leaching mechanism of the heavy-
metal release from an S/S monolith at different temperatures, the long-term semi-dynamic
leaching test at temperature ranged from 20 to 55 ◦C were carried out in this study. The
influence of temperature on the leaching behavior of lead ions in the S/S monolith was
analyzed. Additionally, the influence of temperature on the leaching mechanism of the
S/S monolith and the migration of heavy metals was explored. The results can provide a
reference for the long-term evaluation and accelerated testing of the S/S remediation of
heavy-metal-contaminated sites.

2. Materials and Methods
2.1. Materials

In this study, we used artificially prepared heavy-metal-contaminated soil. The test
soil was taken from Wuhan City (30◦37′16.82′′ N, 114◦14′58.16′′ E), Hubei Province. The
clay was a silty clay, and its physical and mechanical properties are shown in Table 1.
The clay minerals were determined by X-ray diffraction (XRD) using a D8 Advance X-
ray diffractometer, and the main mineral components were found to be montmorillonite,
kaolinite, silicon dioxide, and feldspar. The physical and mechanical testing of the clay was
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based on the Chinese standard for geotechnical test methods (GB/T50123-2019), and the
compaction test used the light compaction method.

Table 1. Basic physical and mechanical properties of soil used in tests.

Water
Content

Natural
Density

Specific
Gravity Void Ratio Liquid

Limit
Plastic
Limit

Optimum
Moisture Content

Grain-Size Distribution /% Maximum
Dry DensitySand Silt Clay

20.78% 1.89 g/cm3 2.72 0.74 41.6% 21.8% 19.5% 3.45 62.27 34.28 1.72 g/cm3

2.2. Preparation of Pb-Contaminated Soil and S/S Samples

The detailed preparation processes for the lead-contaminated soil and the associ-
ated S/S treatment can be found in previous papers [12,23]. Briefly, we added a certain
amount of Pb solution to pre-air-dried and sieved clay to obtain the artificially prepared
Pb-contaminated soil with a moisture content of 19.5% and a Pb content of 5000 mg/kg.
Then, 20% (w/w) cement was mixed with the Pb-contaminated soil, and the mixture was
then placed into a blender and stirred evenly. After mixing well, distilled water was added
to ensure the water content of the mixture was 19.5%. S/S samples were prepared by the
static pressure method, which compacted a certain amount of mixture into a specific mold
with a jack to obtain the designed sample. The compaction degree was pre-set at 0.98. S/S
samples for the unconfined compressive strength (UCS) test were prepared as cylindrical
samples with a size of Φ39.1 × 80 mm. After S/S samples were prepared, the demolded
samples were cured for 7 days under standard curing conditions (20 ± 2 ◦C, 95% humidity)
before experiments.

2.3. Semi-Dynamic Leaching Test at Elevated Temperature

The semi-dynamic leaching test, during which the leachant samples were replaced
according to a pre-designed schedule, provided detailed information regarding the leaching
behavior of the constituents from the S/S monolith. The leaching test was based on the
American standard ASTM C1308 (C1308 2008) [24], and the replacement schedule was as
follows: 2 h, 7 h, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days,
and 11 days. The ratio of leachant volume to sample surface area (V/S) was (10 ± 0.2) cm.
It was calculated that the leachant volume was 1222 mL based on the surface area of the
sample (122.2 cm2). The semi-dynamic leaching tests were conducted using equipment
designed by our team, including a kettle, whose temperature could be accurately controlled.
The S/S sample was placed into the kettle, and 1222 mL distilled water was added to
the kettle. The leachate in the kettle was replaced according to the specified schedule
mentioned above. The temperature of the kettle for different semi-dynamic leaching tests
was set at 25, 40, and 55 ◦C. The other group of long-term leaching test samples were
prepared and tested under the same conditions as the short-term test, except that the
ambient temperature was controlled at 20 ◦C. The difference was that the leachate of the
long-term test was replaced and collected according to the following schedule: 6 h, 1 day,
2 days, 3 days, 4 days, 5 days, 19 days 47 days, 90 days, 150 days, 210 days, 270 days,
360 days, 450 days, 540 days, 630 days, and 720 days. This represented an extension of
the American Nuclear Society’s ANS 16.1 leaching test. All the leachate samples were
collected after each test, filtered with a 0.45 µm microporous membrane, and acidified
for the measurement of Pb concentration. Additionally, the microwave-assisted digestion
method was used to digest the prepared contaminated soil and the S/S products, and the
total Pb content in the samples was calculated based on the determined concentration.
Finally, an Agient 7700 inductively coupled plasma-source mass spectrometer (ICP-MS)
was used to determine the Pb concentration in the collected leachate.
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2.4. Diffusion Theory for Semi-Dynamic Leaching Test

It has been reported that the release of heavy metals from cement-based monoliths
is mostly controlled by diffusion, which is determined based on Fick’s second law [12,25].
According to this theory, the effective diffusion coefficient was calculated using Equation (1).

De = π

[
(an/A0)

(∆t)n

]2(V
S

)2
T (1)

where an is the contaminant loss (mg) during the leaching period with subscript n, A0 is
the initial amount of contaminant existing in the specimen (mg), V is the specimen vol-
ume (cm3), S is the surface area of the specimen (cm2), (∆t)n is the duration of the leaching
period in seconds, and T is the time elapsed up to the middle of the leaching period n (s).
T could be determined by Equation (2).

T =
[
1/2

(
t1/2
n + t1/2

n−1

)]2
(2)

where tn is the total leaching time of the leaching period n.
The leachability index (LX) is defined by Equation (3).

LX = (1/n)
n

∑
1
[log(β/De)] (3)

where β = 1 cm2/s.
The type of leaching mechanism that controlled the release of Pb could be determined

based on the slope values of the logarithm of cumulative fraction release (log(Bt)) and the
logarithm of time (log(t)) [26]. If diffusion is the dominant mechanism, the theory suggests
the following relationship:

log(Bt) =
1
2

log(t) + log

[
Umaxd

√
De

π

]
(4)

where De is the effective diffusion coefficient (m2/s) for component x (lead in this study),
Bt is the cumulative maximum release of component x (mg/m2), t is the contact time (s),
Umax is the maximum leachable quantity (mg/kg), and d is the bulk density of the S/S
product (kg/m3).

3. Results and Discussion
3.1. Effect of Temperature on Lead Ion Leaching

The environmental leaching of heavy-metal ions is a slow and lengthy process after
the treatment of contaminated soil by cement solidification/stabilization. Heavy metals
are mainly leached out from S/S monoliths through diffusion. The leaching rate of heavy
metals is directly related to the ambient temperature, so an increase in temperature can
accelerate the leaching process of heavy metals [9,27].

The concentrations of lead in the leachate samples of the S/S monolith from the
semi-dynamic leaching test at different temperatures are shown in Figure 1. It can be seen
that an increase in temperature significantly increased the cumulative leaching amount
of lead from the S/S monolith. The leaching concentration of lead increased significantly
with an increase in temperature, and the leaching concentration at 55 ◦C was about an
order of magnitude higher than that at 25 ◦C. The concentration of lead ions declined
slowly and then increased in the early stages of the semi-dynamic leaching test. This was
mainly due to the uncertain replacement time of the leaching solution in the initial stages
of the test, and the comprehensive influence of the mineral composition on the surface
of the S/S monolith and the dissolution and diffusion of pollutants [8,9]. After 1 day
of leaching, the concentration of heavy metals in the leaching solution showed a slow
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decreasing trend as the replacement time of the leachant became regular. This phenomenon
was mainly attributed to the fact that the leaching of lead ions in S/S monoliths is mainly
controlled by diffusion [9,28]. The concentration of lead ions in the S/S monolith was
relatively high, and the diffusion and migration rate was high during the early stages
of the experiment. Though the concentration in the leachate fluctuated with time, the
concentration and release rate of lead ions in the leaching solution decreased with leaching
time. The results of the semi-dynamic leaching test were consistent with those reported in
the relevant literature [17,29]. The increase in temperature increased the movement and
migration rate of ions.
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Figure 1. Results for leaching of Pb from S/S monolith at different temperatures: (a) Pb concentration
in the leachate; (b) cumulative leaching amount of Pb.

The leaching flux refers to the release rate of heavy-metal ions from the surface of the
S/S monolith during the leaching test. The comparison of the test results for short-term
accelerated leaching and long-term leaching is shown in Figure 2. It can be seen from
the figure that at 25 ◦C, 40 ◦C, and 55 ◦C, the 11-day leaching fluxes of lead ions in the
cured body were 7.62 × 10−5, 1.45 × 10−4, and 4.58 × 10−4 mg/cm2, respectively. The
cumulative leaching flux of lead ions in the S/S monolith kept at 20°C for two years was
4.75 × 10−4 mg/cm2. The cumulative leaching fractions (calculated according to the total
lead content of the S/S monolith) for the 11-day experiments at 25 ◦C, 40 ◦C, and 55 ◦C
were 1.19 × 10−5, 2.27 × 10−5, and 7.18 ×10−5 mg/cm2, respectively. The leaching fraction
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of lead ions in the S/S monolith kept at 20 ◦C for two years was 6.94 ×10−5 mg/cm2. The
cumulative leaching amount at 55 ◦C for 11 days was 5.81 times that at 25 ◦C, and the
cumulative leaching amount at 20 ◦C for 720 days was 7.01 times that at 25 ◦C. Although
the duration of the long-term leaching experiment was about 65 times that of the short-term
test, the leaching behavior of the tests conducted at different temperatures was similar to
that of the long-term tests.
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(b) cumulative leaching fraction.

3.2. Mobility of Pb at Elevated Temperatures

The effective diffusion coefficient De represents the mobility of heavy-metal ions
in the S/S monolith in a specific environment, according to Equation (1). The higher
the effective diffusion coefficient, the greater the leaching risk. De directly represents
the effectiveness of S/S-treated heavy-metal-contaminated soil. Therefore, the effective
diffusion coefficient was used to evaluate the remediation of heavy-metal-contaminated
soil after solidification/stabilization.

As presented in Figure 3, the effective diffusion coefficients of the S/S monolith
at 25 ◦C, 40 ◦C, and 55 ◦C were 8.38 × 10−17, 3.23 × 10−16, and 3.22× 10−15 cm2/s,
respectively. The results showed that the leaching and release rate of lead ions in the S/S
monolith increased significantly with an increase in the ambient temperature. The increase
in the leaching index and the decrease in the effective diffusion coefficient indicated that
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the mobility of lead ions in the S/S monolith was enhanced. The movement and leaching
rate of lead from the S/S monolith increased with the increase in ambient temperature.
The equilibrium concentration during the leaching process increased, thus intensifying
the accelerated leaching process of heavy metals from the S/S monolith [9,30]. As the
temperature increased from 25 ◦C to 55 ◦C, the effective diffusion coefficient increased by
about 40 times.
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Figure 3. Leachability index and effective diffusion coefficients for the leaching tests conducted at
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Extremely high temperatures occurred in many places in China in 2022, with the
temperature in some areas reaching 40–50 ◦C. High-temperature environments significantly
impact the effectiveness of treating heavy-metal-contaminated soil with S/S, and thus affect
the disposal of remediated contaminated soil. According to the Canadian Environmental
Protection Center, the leaching index (LX) can be used to evaluate the resource utilization of
S/S-treated heavy-metal-contaminated soil. S/S monoliths are appropriate for controlled
utilization under certain environmental conditions when the LX is greater than 9; landfill
treatment is required when the LX is between 8 and 9. The leaching indexes under long-
term leaching conditions at 20, 25, 40, and 55 ◦C were 16.44, 16.10, 15.54, and 14.54,
respectively. The effective diffusion coefficient was mainly affected by the total amount of
pollutants in the S/S monolith and the ambient temperature in the long-term leaching test.
According to the leaching results, the LX of the solidified contaminated soil was greater
than 9 under ambient temperatures ranging from 20 to 55 ◦C. The LX values obtained
at different temperatures indicated that the S/S monolith was suitable for “controlled
utilization” in the environment in a temperature range of 20 to 55 ◦C.

3.3. Leaching Mechanism at Elevated Temperatures

The controlled leaching mechanisms of heavy metals in specific environments could
be determined according to the linear fitting slope after the logarithmic conversion of
the accumulated leaching amount of heavy metals (mg/m2) and the leaching time in the
semi-dynamic leaching tests. The fitting slopes represent different leaching mechanisms
according to standard NEN 7375 (NEN 2004). The leaching mechanisms determined by the
slope of the fitting curve logBt~logt and the evaluation criteria are shown in Table 2. When
the logarithmic fitting curve slope for the cumulative leaching amount and leaching time is
lower than 0.35, between 0.35 and 0.65, and greater than 0.65, the control mechanism for
the leaching of heavy metals is surface wash-off, diffusion, and dissolution, respectively.
Dissolution indicates that the rate of metal-ion leaching from the surface of the material
exceeds the rate of heavy metal-ion leaching from the internal pores of the S/S monolith.
During the dissolution process, the material is not exhausted before the end of the test [26].



Separations 2022, 9, 402 8 of 12

Table 2. Leaching mechanism determined by slope of fitting curve.

Slope k Leaching Mechanism

k < 0.35 Surface wash-off
0.35 ≤ k ≤ 0.65 Diffusion

k > 0.65 Dissolution

The leaching mechanism of lead in the long-term semi-dynamic S/S monolith kept
for 2 years under distilled water was controlled by diffusion [18]. The fitting results
of the logarithmic curve of cumulative leaching amount and leaching time at different
temperatures are shown in Figure 4. It can be seen from Figure 4 that the fitting results of
the cumulative leaching amount and leaching time for lead ions in the S/S monolith at
25, 40, and 55 ◦C presented slopes of 0.49, 0.50, and 0.50, and the square of the correlation
coefficient was 0.98783, 0.98911, and 0.99124 for the tests conducted at 25, 40, and 55 ◦C,
respectively. According to the slope of the fitting curve, the leaching mechanism of lead
ions was strictly controlled by diffusion in the temperature range of 25–55 ◦C. The leaching
and release process of lead ions in the S/S monolith accelerated with the increase in
temperature, but the leaching mechanism remained the same, which met the requirements
of the acceleration test.
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3.4. Variation in De in Leaching Tests at Different Temperatures

The diffusion model is widely used to predict the long-term leaching behavior of
heavy metals from S/S monoliths. The effective diffusion coefficient is the key parameter
for evaluating the long-term leaching behavior of heavy metals, and the average value of
the effective diffusion coefficient across the whole leaching test is usually considered. The
effective diffusion coefficients at different temperatures were calculated and are shown in
Figure 5 and Table 3.

The results of the long-term leaching test showed that the effective diffusion coeffi-
cient of lead changed according to the leaching time and the leaching conditions across
the different leaching stages, which differed substantially from the average value. This
phenomenon could be attributed to the microstructure and the differences in the physical
and chemical properties of the S/S monoliths [12]. In addition, cracks can also cause a
significant increase in the effective diffusion coefficient of S/S monoliths [18].
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Table 3. Variation in effective diffusion coefficient at different temperatures.

Extended ANS 16.1 C 1308

Time 20 ◦C Time 25 ◦C 40 ◦C 55 ◦C
Day De (cm2/s) Day De (cm2/s) De (cm2/s) De (cm2/s)

0.25 5.90 × 10−17 0.083 7.20 × 10−17 2.50 × 10−16 2.66 × 10−15

1.00 1.62 × 10−17 0.29 6.84 × 10−17 1.69 × 10−16 2.45 × 10−15

2.00 1.52 × 10−17 1 3.66 × 10−17 1.39 × 10−16 1.32 × 10−15

3.00 2.33 × 10−17 2 4.05 × 10−17 1.44 × 10−16 1.06 × 10−15

4.00 2.56 × 10−17 3 8.30 × 10−17 1.93 × 10−16 2.14 × 10−15

5.00 3.69 × 10−17 4 5.60 × 10−17 3.29 × 10−16 3.23 × 10−15

19.00 7.19 × 10−17 5 9.81 × 10−17 2.78 × 10−16 3.53 × 10−15

47.00 7.07 × 10−17 6 1.32 × 10−16 2.85 × 10−16 4.05 × 10−15

90.00 3.11 × 10−17 7 1.08 × 10−16 4.17 × 10−16 2.18 × 10−15

150.00 1.74 × 10−17 8 8.74 × 10−17 3.27 × 10−16 4.18 × 10−15

210.00 1.32 × 10−17 9 1.08 × 10−16 4.22 × 10−16 4.53 × 10−15

270.00 4.48 × 10−17 10 9.23 × 10−17 7.16 × 10−16 4.13 × 10−15

360.00 2.76 × 10−17 11 1.07 × 10−16 5.33 × 10−16 6.37 × 10−15

450.00 4.18 × 10−17

540.00 6.21 × 10−17

630.00 8.41 × 10−17

720.00 1.01 × 10−17

Mean De 4.37 × 10−17 8.38 × 10−17 3.23 × 10−16 3.22 × 10−15

Standard
deviations 2.67 × 10−17 2.82 × 10−17 1.67 × 10−16 1.46 × 10−15

It can be seen from Figure 5 that although the effective diffusion coefficient values
differed according to the changes in temperature, the variation trend of lead leaching with t
remained the same. However, the effective diffusion coefficient showed variation trends at
different temperatures that different from the average value. The hydration products and
microstructure of cement can vary, which may explain the variation in the lead diffusion
coefficient under different temperatures. At the same time, different test replacement
frequencies also affected the effective diffusion coefficient of the pollutants. More research
should be conducted to investigate the variation in the effective diffusion coefficient of
heavy metals from S/S monoliths, allowing the accurately quantification of the long-term
leaching process of pollutants and the associated effectiveness of S/S treatment.

The results of the long- and short-term leaching tests at different temperatures indi-
cated that the effective diffusion coefficient of heavy-metal leaching in the S/S monolith at
different temperatures was time-dependent. Previous work has reported that the effective
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diffusion coefficient was affected by environmental erosion and the leaching of calcium
ions [31,32]. The internal structure of S/S monoliths is damaged during long-term leaching
experiments, and the formation and growth of internal microcracks accelerates the leaching
rate of heavy-metal ions from the S/S monoliths. Therefore, it is necessary to monitor the
ambient temperature and the leaching concentration of heavy metals for a considerable
duration in the process of resource utilization. This would ensure long-term safety and
avoid long-term environmental problems caused by the use of short-term leaching test
assessment results.

4. Conclusions

Short-term (11-day) and long-term (720-day) semi-dynamic tests were carried out at
different temperatures to investigate the leaching behavior and leaching mechanisms of Pb
in S/S-treated contaminated soil. The effects of temperature on the leaching behavior of
lead from the S/S monolith were analyzed. The main conclusions were as follows:

(1) The leaching of lead from the S/S monolith could be accelerated by an increase
in temperature in the range of 25–55 ◦C. Higher temperatures could improve the leaching
rate and the concentration of lead. The leaching concentration of lead in the leachate at
55 ◦C was about one order of magnitude higher than that of the leachate at 25 ◦C, and the
cumulative leaching amount of lead the test conducted for 11 days at 55 ◦C was 5.81 times
that at 25 ◦C.

(2) The effective diffusion coefficient and leaching index of heavy metals in the S/S
products was significantly affected by the change in temperature. The leaching index of the
S/S monolith was greater than 9 in the range of 25–55 ◦C, which met the requirements for
resource utilization.

(3) The leaching rate of heavy metals in the S/S products was significantly accelerated
by an increase in temperature. A temperature below 55 ◦C did not change the leaching
mechanism of lead from the S/S monolith. Accelerated aging tests in the range of 25–55 ◦C
are recommended for evaluating the long-term performance evolution of S/S treated
contaminated soils.
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