Heterogeneous Catalytic Ozonation: Solution pH and Initial Concentration of Pollutants as Two Important Factors for the Removal of Micropollutants from Water
Abstract
:1. Introduction
- Ozone is adsorbed on the surface of the catalyst.
- The organic molecule is adsorbed on the surface of the catalyst.
- Ozone and the organic molecule are both adsorbed on the surface of the catalyst and then interact.
2. Catalyst Categories
- Metal oxides, such as MnO2, Fe3O4 or Al2O3.
- Metals, such as Fe, Mn, Co, Cu, and Ce deposited onto different substrates, such as Al2O3, MCM-41 or SBA-15.
- Minerals, such as zeolites, perovskites, cordierite, and ceramic honeycomb.
- Carbons, such as AC, GO, and CNTs.
3. Factor 1: The pH Value of the Medium
3.1. Metal Oxides
Catalyst | PZC | Micropollutant | Ccat. (g/L) | CO3 (mg/L) | Cmicr. (mg/L) | pH | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Goethite (α-FeOOH) | / | Nitrobenzene | 0.1 | 25 | 100 | 7.0 | SAP < 3% (40 min) SOP = 74.8% (40 min) COP = 94.3% (40 min) | [44] |
α-MnO2 | 2.1 | Metoprolol | 0.2 | 10 | 7.0 | SAP = 10% (30 min) SOP = 65% (30 min) COP = 99.62% (30 min) | [53] | |
α-Fe0.9Mn0.1OOH | / | Iohexol | 0.1 | 0.8 | 1 | 7.0 | SAP < 3% (20 min) SOP = 45% (20 min) COP = 95% (20 min) | [41] |
Naturals–Goethite | 7.2 | Sulfasalazine | 1.5 | 5 | 10 | 7.0 | SAP = 6.52% (40 min) SOP = 61.44% (40 min) COP = 75.64% (40 min) | [45] |
PTG-N2 (goethite treated with nitrogen plasma) | 6.9 | SAP = 9.07% (40 min) SOP = 61.44% (40 min) COP = 96.05% (40 min) | ||||||
Fe3O4 | / | BPA | 0.1 | 50 | 7.0 | SOP = 72% (30 min) COP = 81.2% (30 min) | [35] | |
Fe3O4-MnO2 | / | SAP = 11.2% (30 min) SOP = 72% (30 min) COP = 97% (30 min) | ||||||
ZnFe2O4 | 6.9 | DBP | 0.01 | 0.5 | 7.0 | SAP = ng SOP = 36% (30 min) COP = 50.5% (30 min) | [42] | |
Mn-ZnFe2O4 | 6.8 | SAP = ng SOP = 36% (30 min) COP = 91.7% (30 min) | ||||||
ZnAl2O4 | 8 | 5-sulfosalicilic acid | 0.2 | 500 | 7.0 | SAP = 2% (60 min) SOP = 49.4% (60 min) COP = 64.8% (60 min) | [49] | |
Fe3O4@SiO2@TiO2 | 6.2 | Catechol | 0.2 | 1000 | 8.0 | SOP = 51% (30 min) COP = 70.5% (30 min) | [55] | |
CuFe2O4MNPs | / | DMAC | 30 | 4.6 | 200 | 6.7 | SOP = 55.4% (120 min) COP = 95.4% (120 min) | [39] |
Mn3O4 | / | Phenol | 0.04 | 100 | 6.8 | SOP = 57.3% (10 min) COP = 59.8% (10 min) | [7] | |
Fe2O3 | / | SOP = 57.3% (10 min) COP = 62.2% (10 min) | ||||||
ZnO | / | SOP = 57.3% (10 min) COP = 68.3% (10 min) | ||||||
MgO | 10.5 | SAP < 5% (10 min) SOP = 57.3% (10 min) COP = 80.1% (10 min) | ||||||
α-MnO2 | 2.6 | 4-nitrophenol | 0.1 | 20 | 25 | 7.0 | SAP = 3% (90 min) SOP = 50% (45 min) COP = 99.3% (45 min) | [11] |
β-MnO2 | 7.3 | SOP = 50% (45 min) COP = 86.4% (45 min) | ||||||
γ-MnO2 | 3.7 | SOP = 50% (45 min) COP = 93.3% (45 min) | ||||||
δ-MnO2 | 3.5 | SOP = 50% (45 min) COP = 96.6% (45 min) | ||||||
ε-MnO2 | 4.1 | SOP = 50% (45 min) COP = 89.8% (45 min) | ||||||
λ-MnO2 | 5.4 | SOP = 50% (45 min) COP = 90.0% (45 min) | ||||||
MgO | 7.2 | Quinolone | 0.2 | 2 | 20 | 6.8 | SAP = 1% (15 min) SOP = 53.8% (15 min) COP = 90.7% (15 min) | [48] |
Mn0.95Bi0.05Fe2O4 | / | DBP | 0.01 | 0.3 | 0.05 | 6.9 | SAP = 4% (60 min) SOP = 33% (60 min) COP = 69% (60 min) | [40] |
NiFe2O4 | / | Phenol | 1 | 300 | 6.5 | SAP = 0% (60 min) SOP = 38.9% (60 min) COP = 55.2% (60 min) | [38] | |
Goethite (α-FeOOH) | 7.2 | Oxalic acid | 15 | 1.1 | 0.9 | 7.0 | SAP = 10% (30 min) SOP = 22% (30 min) COP = 54% (30 min) | [46] |
3.2. Metals Deposited on Suitable Substrates
Catalyst | PZC | Micropollutant | Ccat. (g/L) | CO3 (mg/L) | Cmicr. (mg/L) | pH | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|---|
β-MnO2 | / | Oxalic acid | 0.5 | 50 | 6 | SAP < 2% (30 min) SOP = 3.2% (30 min) COP = 12.5% (30 min) | [50] | |
Cu1MnT | 3.49 | SAP < 2% (30 min) SOP = 3.2% (30 min) COP = 87.5% (30 min) | ||||||
Fe3O4 | / | Acetaminophen | 0.08 | 25 | 7 | SAP < 10% (10 min) SOP = 38.8% (10 min) COP = 49% (10 min) | [71] | |
Ce-UiO-66 | / | SAP < 10% (10 min) SOP = 38.8% (10 min) COP = 72.1% (10 min) | ||||||
Fe3O4@Ce-UiO-66 | / | SAP < 10% (10 min) SOP = 38.8% (10 min) COP = 87.4% (10 min) | ||||||
MnxOy/γ-Fe2O3 | 7.2 | Sulfamethazine | 0.3 | 6 | 20 | 7 | SAP < 2% (60min) SOP = 70% (10 min) COP = 95% (10 min) | [66] |
Cu-O-Mn-γ-Al2O3 | 7.9 | Polyvinyl alcohol | 0.15 | 20 | 7 | SAP < 3% (10 min) SOP = 36% (10 min) COP = 73.7% (10 min) | [59] | |
Cu/γ-Al2O3 | / | SOP = 36% (10 min) COP = 58.6% (10 min) | ||||||
Mn/γ-Al2O3 | / | SOP = 36% (10 min) COP = 56.6% (10 min) | ||||||
KCC-1 | ~4.0 | Sulfamethazine | 0.3 | 15 | 20 | 7 | SAP < 15% (15 min) SOP = 86% (10 min) COP = 90% (10 min) | [23] |
Fe-KCC-1 | 4.3 | SAP < 15% SOP = 86% (10 min) COP = 96% (10 min) | ||||||
Ni-MOF | / | Atrazine | 0.5 | 8 | 10 | 7 | SAP = 9.6% (20 min) SOP = 47.8% (20 min) COP = 75.5% (20 min) | [68] |
Co-MOF | / | SAP = 13.1% (20 min) SOP = 47.8% (20 min) COP = 67% (20 min) | ||||||
Co/Ni-MOF | / | SAP = 9.9% (20 min) SOP = 47.8% (20 min) COP = 93.9% (20 min) | ||||||
Ni/Al2O3 (5.78% wt) | / | Succinic acid | 10 | 200 | 7 | SOP = 41.2% (90 min) COP = 90.4% (60 min) | [57] | |
FeO3Si | / | p-chlorobenzene | 0.1 | 0.9 | 0.1 | 7 | SAP < 3.2% (30 min) SOP = 49.2% (30 min) COP = 82.8% (30 min) | [72] |
γ-Al2O3 | / | Ibuprofen | 1.5 | 30 | 10 | 7 | SOP = 80% (10 min) COP = 85% (10 min) | [58] |
TiO2/γ-Al2O3 | / | SOP = 80% (10 min) COP = 91% (10 min) | ||||||
γ-Ti-Al2O3 | 5.9 | SOP = 80% (10 min) COP = 100% (10 min) | ||||||
MCM-41 | 2.8 | Oxalic acid | 1 | 1.67 | 10 | 6 | SOP = 16.5% (60 min) COP = 15% (60 min) | [62] |
Fe-MCM-41 | 5.1 | SOP = 16.5% (60 min) COP = 23.4% (60 min) | ||||||
Cu-MCM-41 | 6.0 | SOP = 16.5% (60 min) COP = 69.7% (60 min) | ||||||
Fe-Cu-MCM-41 | 6.1 | SOP = 16.5% (60 min) COP = 95% (60 min) | ||||||
IS (Iron Silicate) | / | p-CNB | 0.5 | 0.6 | 0.1 | 7 | SAP = 4.0% (15 min) SOP = 56.7% (15 min) | [61] |
IS-FeOOH | / | SAP = 3.3 (15 min) SOP = 56.7% (15 min) COP = 99.8% (15 min) | ||||||
ZCSP | / | p-CNB | 0.3 | 0.6 | 0.1 | 7 | SAP = 10% (15 min) SOP = 45% (15 min) COP = 99.3% (15 min) | [65] |
FMSO | / | Sulfamethoxazole | 1 | 9.05 | 25.3 | 7 | SAP = 1.8% (20 min) SOP = 73% (60 min) COP = 90.6% (60 min) | [34] |
MCM-41 | / | DEHP | 1 | 83 | 10 | 7 | SAP = 9% (15 min) SOP = 87% (15 min) COP = 92% (15 min) | [63] |
Co-MCM-41 | / | SAP = 10% (15 min) SOP = 87% (15 min) COP = 97% (15 min) | ||||||
Mn-MCM-41 | / | SAP = 8% (15 min) SOP = 87% (15 min) COP = 94% (15 min) | ||||||
Co-Mn-MCM-41 | 4.9 | SAP = 4% (15 min) SOP = 87% (15 min) COP = 99.7% (15 min) | ||||||
MCM-41 | 2.5 | Nitrobenzene | 1 | 0.98 | 0.12 | 6.91 | SAP = 38.8% (10 min) SOP = 20.1% (10 min) COP = 43.9% (10 min) | [64] |
MnOx/MCM-41 (1.05%wt Mn) | 2.8 | SAP = 36.7% (10 min) SOP = 20.1% (10 min) COP = 88.9% (10 min) |
3.3. Minerals
Catalyst | PZC | Micropollutant | Ccat. (g/L) | CO3 (mg/L) | Cmicr. (mg/L) | pH | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Ceramic honeycomb | / | 4-Meq | cylinders | 1.1 | 50 | 6.8 | SAP < 3% (30 min) SOP = 54.9% (30 min) COP = 59.6% (30 min) | [83] |
Fluorinated ceramic honeycomb | / | SAP < 3% (30 min) SOP = 54.9% (30 min) COP = 77.8% (30 min) | ||||||
Zeolite A | 6.4 | Paracetamol | 1 | 0.98 | 0.12 | 6.9 | SAP = 4.78% (60 min) SOP = 76.8% (60 min) COP = 90.7% (60 min) | [10] |
FSO/PMC | 7.2 | Diclofenac | 0.8 | 5.52 | 29.6 | 7.0 | SAP = 7.3% (20 min) SOP = 100% (8 min) COP = 100% (6 min) | [77] |
Clinoptilolite | / | Nalidixic acid | 6 | 20 | 7.0 | SAP = 10.8% (60 min) SOP = 43% (60 min) COP = 73.8% (60 min) | [74] | |
Natural clinoptilolite | / | Nalidixic acid | 2 | 20 | 7.0 | SAP = 12% (60 min) SOP = 43% (60 min) COP = 60% (60 min) | [75] | |
Nano-clinoptilolite | / | SAP = 20% (60 min) SOP = 43% (60 min) COP = 91.1% (60 min) | ||||||
Pumice | 6.1 | p-CNB | 0.5 | 0.9 | 0.1 | 6.0 | SAP < 5.5% (15 min) SOP = 40.8% (15 min) COP = 73% (15 min) | [78] |
Fe/Pumice (6.1% wt) | 6.4 | SAP < 5.5% (15 min) SOP = 40.8% (15 min) COP = 9038% (15 min) | ||||||
Z25H (SiO2/Al2O3 = 25) | 5.0 | Ibuprofen | 15 | 6.67 | 20 | 7.2 | SAP = 10% (30 min) SOP = 42% (30 min) COP = 78% (30 min) | [73] |
Z900Na (SiO2/Al2O3 = 900) | 9.2 | SAP = 5% (30 min) SOP = 42% (30 min) COP = 68% (30 min) | ||||||
Z25Na (SiO2/Al2O3 = 25) | 9.3 | SAP = 10% (30 min) SOP = 42% (30 min) COP = 70% (30 min) | ||||||
Pumice | / | p-CNB | 1 | 0.6 | 0.1 | 6.9 | SAP = 3.9% (20 min) SOP = 52% (20 min) COP = 88% (20 min) | [76] |
Perovskite (Co) | / | Diclofenac | 0.1 | 20 | 30 | 7.0 | SOP = 42% (2 min) COP = 40% (2 min) | [84] |
Perovskite (Cu) | / | SOP = 42% (2 min) COP = 49% (2 min) | ||||||
Cordierite | 6.6 | Nitrobenzene | 5 pieces | 1.0 | 0.05 | 6.9 | SAP = 2.0% (20 min) SOP = 31% (20 min) COP = 50% (20 min) | [79] |
Cu-cordierite | 6.8 | SAP = 2.5% (20 min) SOP = 31% (20 min) COP = 77.9% (20 min) | ||||||
Ceramic honeycomb | / | Nitrobenzene | 58.3 | 1.0 | 0.05 | 6.87 | SAP = 2% (10 min) SOP = 37% (10 min) COP = 58% (10 min) | [81] |
Modified ceramic honeycomb (1% wt Mn– 0.5% wt Cu) | / | SAP = 1% (10 min) SOP = 37% (10 min) COP = 83% (10 min) | ||||||
Ceramic honeycomb | / | Benzophenone | 10 | 6.9 | SOP = 48.3% (120 min) COP = 68.8% (120 min) | [82] | ||
Mn-Fe-K-ceramic honeycomb | / | SOP = 48.3% (120 min) COP = 81.4% (120 min) |
3.4. Carbons
Catalyst | PZC | Micropollutant | Ccat. (g/L) | CO3 (mg/L) | Cmicr. (mg/L) | pH | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|---|
AC | / | Sulfamerazine | 0.05 | 10 | 6.1 | SAP = 5.5% (8 min) SOP = 64.8% (8 min) COP = 75.8% (8 min) | [8] | |
FeyOz/AC | / | SAP = 0.9% (8 min) SOP = 64.8% (8 min) COP = 81.2% (8 min) | ||||||
MnxFeyOz/AC | 5.26 | SAP = 14.3% (8 min) SOP = 64.8% (8 min) COP = 90.5% (8 min) | ||||||
Biochar | / | Atrazine | 0.02 | 25 | 1 | 7.0 | SAP = 6.5% (30 min) SOP = 48% (30 min) COP = 58% (30 min) | [96] |
MnOx/biochar | / | SAP < 10% (30 min) SOP = 48% (30 min) COP = 83% (30 min) | ||||||
FeOx/biochar | / | SAP < 10% (30 min) SOP = 48% (30 min) COP = 100% (30 min) | ||||||
CuO | / | Oxalic acid | 0.05 | 50 | 6.0 | SOP = 2% (15 min) COP = 56% (15 min) | [99] | |
CuO-g-C3N4 | 4.86 | 0.5 | SOP = 2% (15 min) COP = 91% (15 min) | |||||
g-C3N4 | 4.95 | Atrazine | 0.5 | 50 | 2 | 6.0 | SAP < 5% (5 min) SOP = 63.15% (5 min) COP = 56.83% (5 min) | [60] |
O@g-C3N4 | 4.39 | SAP < 5% (5 min) SOP = 63.15% (5 min) COP = 92.91% (5 min) | ||||||
Fe3O4/MWCNTs | 3.2 | Sulfamethazine | 0.5 | 50 | 20 | 7.0 | SAP = 6% (6 min) SOP = 90% (6 min) COP = 90% (6 min) | [85] |
Graphite | 4.5 | Diethyl phthalate | 0.1 | 0.67 | 6.2 | SAP = 12% (60 min) SOP = 50% (10 min) COP = 56% (10 min) | [90] | |
Zn-Graphite (3.5% wt) | 7.0 | SOP = 50% (10 min) COP = 94% (10 min) | ||||||
Zn-CNTs | / | 4-chloro-3- methyl-phenol | 2 | 50 | 50 | 6.0 | SAP = 26.75% (60 min) SOP = 90% (10 min) COP = 92% (10 min) | [26] |
GO | / | p-CBA | 0.03 | 4 | 0.078 | 7 | SAP = ng SOP = 20% (5 min) COP = 40% (5 min) | [24] |
GO/TiO2 | / | SAP = ng SOP = 20% (5 min) COP = 76% (5 min) | ||||||
GO/Fe3O4 | / | SAP = ng SOP = 20% (5 min) COP = 80% (5 min) | ||||||
GO/TiO2/Fe3O4 | / | SAP = ng SOP = 20% (5 min) COP = 95% (5 min) | ||||||
FMSACs (2.3% wt) | / | p-CBA | 0.04 | 1 | 20 | 6.0 | SAP = 10% (40 min) SOP = 42% (40 min) COP = 80% (40 min) | [91] |
rGO-MnFe2O4 | / | DBP | 0.01 | 1 | 0.5 | 7.0 | SAP = 30% (60 min) SOP = 32% (60 min) COP = 85% (60 min) | [88] |
nOG (non-oxidized) | / | p-CBA | 0.025 | 1 | 0.16 | 7.0 | SOP = 15% (5 min) COP = 42% (5 min) | [100] |
Fe3O4 | / | BPA | 0.5 | 3 | 50 | 7.0 | SAP = 1% (40 min) SOP = 50% (40 min) COP = 77% (40 min) | [86] |
MWCNTs | / | SAP = 42% (40 min) SOP = 50% (40 min) COP = 90% (40 min) | ||||||
Fe3O4/MWCNTs | / | SAP = 40% (40 min) SOP = 50% (40 min) COP = 91% (40 min) | ||||||
Fe3O4-MWCNTs | 3.2 | DEHP | 0.3 | 6 | 20 | 6.8 | SAP = 40% (5 min) SOP = 70% (30 min) COP = 96% (30 min) | [87] |
AC | / | 1.4-dioxane | 0.4 | 27 | 50 | 7.0 | SAP = 4.2% (30 min) SOP = 9.2% (30 min) COP = 82.8% (30 min) | [95] |
MWCNTs | / | SAP = 1% (30 min) SOP = 9.2% (30 min) COP = 45% (30 min) | ||||||
Biocarbon (coconut) | / | SAP = 21% (30 min) SOP = 9.2% (30 min) COP = 42% (30 min) | ||||||
Coal dust aggregates | / | SAP = 14% (30 min) SOP = 9.2% (30 min) COP = 27% (30 min) | ||||||
Fe3O4/AC | 7.7 | 2.4-dinitrophenol | 2 | 167 | 500 | 6.0 | SAP = 7% (15 min) SOP = 51% (15 min) COP = 86% (15 min) | [93] |
AC | / | DBP | 0.01 | 0.15 | 2 | 6.0 | SAP = 26% (60 min) SOP = 38% (60 min) COP = 58% (60 min) | [92] |
Fe/AC (15% wt) | / | SAP = 13% (60 min) SOP = 38% (60 min) COP = 63% (60 min) | ||||||
Fe3O4/AC | 7.7 | Phenol | 0.5 | 167 | 100 | 6.0 | SOP = 51% (5 min) COP = 79.9% (5 min) | [94] |
Norit GAC | 8.5 | Aniline | 0.5 | 50 | 102 | 7.0 | SAP = 50% (60 min) SOP = 100% (20 min) COP = 100% (15 min) | [25] |
ACHNO3 | 3 | SAP = 35% (60 min) SOP = (100% (20 min) COP = 100% (15 min) |
4. Factor 2: The Initial Micropollutants’ Concentrations
Catalyst | Micropollutant | Initial Micropollutant Concentration (μg/L) | pH | Residual Micropollutant Concentration (μg/L) | Ref. | |||
---|---|---|---|---|---|---|---|---|
SAP | SOP | COP | ||||||
Metal Oxides | ZnFe2O4 | DBP | 500 | 7 | ng | 320 (30 min) | 247.5 (30 min) | [42] |
Mn-ZnFe2O4 | 41.5 (30 min) | |||||||
α-Fe0.9Mn0.1OOH | Iohexole | 1000 | 7 | 970 (20 min) | 550 (20 min) | 50 (20 min) | [41] | |
α-Fe2O3 | p-CNB | 100 | 7 | <96.8% (30 min) | 50.8 (30 min) | 38 (30 min) | [72] | |
Mn0.95Bi0.05Fe2O4 | DBP | 50 | 6.9 | 48 (60 min) | 33.5 (60 min) | 15.5 (60 min) | [40] | |
Goethite (α-FeOOH) | Oxalic acid | 900 | 7 | 810 (30 min) | 702 (30 min) | 414 (30 min) | [46] | |
Metals on substrates | α-Fe2O3-IS (FeO3Si) | p-CNB | 100 | 7 | <96.8 (30 min) | 50.8 (30 min) | 17.2 (30 min) | [72] |
IS-FeOOH | p-CNB | 100 | 7 | 96.7 (15 min) | 43.3 (15 min) | 0.2 (15 min) | [61] | |
ZCSP | p-CNB | 100 | 7 | 90 (15 min) | 55 (15 min) | 0.7 (15 min) | [65] | |
MnOx/MCM-41 (1.05% wt) | Nitrobenzene | 120 | 6.91 | 76 (10 min) | 95.9 (10 min) | 13.4 (10 min) | [64] | |
Minerals | Zeolite A | Paracetamol | 120 | 6.91 | 114.3 (60 min) | 27.8 (60 min) | 11.2 (60 min) | [10] |
Fe/Pumice (6.1% wt) | p-chlorobenzene | 100 | 6 | <94.5 (15 min) | 59.2 (15 min) | 9.2 (15 min) | [79] | |
Pumice | p-chlorobenzene | 100 | 6.86 | 96.1 (20 min) | 48 (20 min) | 12 (20 min) | [77] | |
Cu-cordierite (2% wt) | Nitrobenzene | 50 | 6.9 | 48.8 (20 min) | 34.5 (20 min) | 11 (20 min) | [80] | |
Modified ceramic honeycomb (1% wt Mn, 0.5% wt Cu) | Nitrobenzene | 50 | 6.87 | 49.5 (10 min) | 31.5 (10 min) | 8.5 (10 min) | [82] | |
Carbons | Biochar | Atrazine | 1000 | 7.0 | 935 (30 min) | 520 (30 min) | 420 (30 min) | [96] |
MnOx/biochar | >900 (30 min) | 170 (30 min) | ||||||
FeOx/biochar | >900 (30 min) | 0 (30 min) | ||||||
GO/TiO2/Fe3O4 | p-CBA | 80 | 7 | ng | 64 (5 min) | 4 (5 min) | [24] | |
Graphite | DEP | 670 | 6.2 | 589.6 (60 min) | 335 (10 min) | 294.8 (10 min) | [90] | |
Zn-Graphite (3.5% wt) | / | 40.2 (10 min) | ||||||
rGO-MnFe2O4 (5% wt) | DBP | 500 | 7 | 350 (60 min) | 340 (60 min) | 75 (60 min) | [88] | |
nGO (non-oxidized) | p-CBA | 160 | 7 | ng | 136 (5 min) | 92.8 (5 min) | [100] | |
oGO | ng | 136 (5 min) | 59.2 (5 min) |
5. Limitations & Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
4-Meq | 4-methylquinoline | IS | Iron Silicate |
AC | Activated Carbon | KCC | Fibrous Silicon Nanospheres |
α-FeOOH | Goethite | kO3 | Rate constant of ozone |
AOPs | Advanced Oxidation Processes | MCM-41 | Mobile Composition of Matter No. 41 |
BPA | Bisphenol A | MOFs | Metal Organic Frameworks |
CNTs | Carbon Nanotubes | MWCNTs | Multiwalled Carbon Nanotubes |
Ccat. | Catalyst concentration | ng | Negligible |
Cmicr. | Micropollutant concentration | •OH | Hydroxyl radicals |
CO3 | Ozone concentration | p-CBA | p-chlorobenzoic acid |
COP | Catalytic Ozonation Process | PZC | Point of Zero Charge |
DBP | di-n-butyl phthalate | SAP | Single Adsorption Process |
DEHP | Di(2-ethylhexyl) phthalate | SBA-15 | Santa Barbara Amorphous-15 |
DEP | Diethyl phthalate | SMA | Sulfamethazine |
DMAC | Dimethylacetamide | SMZ | Sulfamerazine |
DMP DOC | Dimethyl phthalateDissolved Organic Matter | SOP | Single Ozonation Process |
FMSACs | Ferromagnetic sludge-based activated carbons | T | Temperature |
FMSO | Iron Manganese Silicate Oxide | ZCSP | Zinc Copper Silicate Polymer |
GO | Graphene Oxide | ZSM-5 | Zeolite Socony Mobil-5 |
References
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousset, E.; Loh, W.H.; Lim, W.S.; Jarry, L.; Wang, Z.; Lefebvre, O. Cost Comparison of Advanced Oxidation Processes for Wastewater Treatment Using Accumulated Oxygen-Equivalent Criteria. Water Res. 2021, 200, 117234. [Google Scholar] [CrossRef] [PubMed]
- Faria, P.C.C.; Monteiro, D.C.M.; Órfão, J.J.M.; Pereira, M.F.R. Cerium, Manganese and Cobalt Oxides as Catalysts for the Ozonation of Selected Organic Compounds. Chemosphere 2009, 74, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, J. Catalytic Ozonation in Water: Controversies and Questions. Discussion Paper. Appl. Catal. B 2013, 142–143, 465–471. [Google Scholar] [CrossRef]
- Liotta, L.F.; Gruttadauria, M.; di Carlo, G.; Perrini, G.; Librando, V. Heterogeneous Catalytic Degradation of Phenolic Substrates: Catalysts Activity. J. Hazard. Mater. 2009, 162, 588–606. [Google Scholar] [CrossRef]
- Nawrocki, J.; Fijołek, L. Catalytic Ozonation—Effect of Carbon Contaminants on the Process of Ozone Decomposition. Appl. Catal. B 2013, 142–143, 307–314. [Google Scholar] [CrossRef]
- Wang, B.; Xiong, X.; Ren, H.; Huang, Z. Preparation of MgO Nanocrystals and Catalytic Mechanism on Phenol Ozonation. RSC Adv. 2017, 7, 43464–43473. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhu, W.; Yang, Z.; Yang, Y.; Li, H. Efficient Ozone Catalysis by Manganese Iron Oxides/Activated Carbon for Sulfamerazine Degradation. J. Water Process Eng. 2022, 49, 103050. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Mechanisms of Catalytic Ozonation on Alumina and Zeolites in Water: Formation of Hydroxyl Radicals. Appl. Catal. B 2012, 123–124, 94–106. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Waheed, S.; Joya, K.S. Catalytic Ozonation of Paracetamol on Zeolite A: Non-Radical Mechanism. Catal. Commun. 2018, 112, 15–20. [Google Scholar] [CrossRef]
- Nawaz, F.; Cao, H.; Xie, Y.; Xiao, J.; Chen, Y.; Ghazi, Z.A. Selection of Active Phase of MnO2 for Catalytic Ozonation of 4-Nitrophenol. Chemosphere 2017, 168, 1457–1466. [Google Scholar] [CrossRef]
- Nawaz, F.; Xie, Y.; Cao, H.; Xiao, J.; Wang, Y.; Zhang, X.; Li, M.; Duan, F. Catalytic Ozonation of 4-Nitrophenol over an Mesoporous α-MnO2 with Resistance to Leaching. Catal. Today 2015, 258, 595–601. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Y.; Cao, H.; Zhao, H.; Xie, Y. Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environ. Sci. Technol. 2020, 54, 5931–5946. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Khan, M.A.; Khan, Q.; Habibi-Yangjeh, A.; Dang, A.; Maqbool, M. Review on the Hazardous Applications and Photodegradation Mechanisms of Chlorophenols over Different Photocatalysts. Environ. Res. 2021, 195, 110742. [Google Scholar] [CrossRef]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced Oxidation Processes (AOPs) Based Wastewater Treatment—Unexpected Nitration Side Reactions—A Serious Environmental Issue: A Review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Inchaurrondo, N.S.; Font, J. Clay, Zeolite and Oxide Minerals: Natural Catalytic Materials for the Ozonation of Organic Pollutants. Molecules 2022, 27, 2151. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Khan, Z.U.H.; Rizwan, M.; Murtaza, B.; Jamil, F.; Shah, A.; Ullah, A.; Nazzal, Y.; Howari, F.; et al. Visible Light Driven Doped CeO2 for the Treatment of Pharmaceuticals in Wastewater: A Review. J. Water Process Eng. 2022, 49, 103130. [Google Scholar] [CrossRef]
- Hama Aziz, K.H. Application of Different Advanced Oxidation Processes for the Removal of Chloroacetic Acids Using a Planar Falling Film Reactor. Chemosphere 2019, 228, 377–383. [Google Scholar] [CrossRef]
- Gardoni, D.; Vailati, A.; Canziani, R. Decay of Ozone in Water: A Review. Ozone Sci. Eng. 2012, 34, 233. [Google Scholar] [CrossRef]
- Su, W.; Li, Y.; Hong, X.; Lin, K.Y.A.; Tong, S. Catalytic Ozonation of N, N-Dimethylacetamide in Aqueous Solution by Fe3O4@SiO2@MgO Composite: Optimization, Degradation Pathways and Mechanism. J. Taiwan Inst. Chem. Eng. 2022, 135, 104380. [Google Scholar] [CrossRef]
- Weiner, F.R.; Matthews, A.R. Measurement of Water Quality. In Environmental Engineering; Butterworth Heinemann: Oxford, UK, 2003. [Google Scholar]
- Bai, Z.; Wang, J.; Yang, Q. Iron Doped Fibrous-Structured Silica Nanospheres as Efficient Catalyst for Catalytic Ozonation of Sulfamethazine. Environ. Sci. Pollut. Res. 2018, 25, 10090–10101. [Google Scholar] [CrossRef]
- Jothinathan, L.; Hu, J. Kinetic Evaluation of Graphene Oxide Based Heterogenous Catalytic Ozonation for the Removal of Ibuprofen. Water Res. 2018, 134, 63–73. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Órfão, J.J.M.; Pereira, M.F.R. Ozonation of Aniline Promoted by Activated Carbon. Chemosphere 2007, 67, 809–815. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, A.; Liu, Y.; Wang, J. Enhanced Degradation and Mineralization of 4-Chloro-3-Methyl Phenol by Zn-CNTs/O3 System. Chemosphere 2018, 191, 54–63. [Google Scholar] [CrossRef]
- Maezono, T.; Tokumura, M.; Sekine, M.; Kawase, Y. Hydroxyl Radical Concentration Profile in Photo-Fenton Oxidation Process: Generation and Consumption of Hydroxyl Radicals during the Discoloration of Azo-Dye Orange II. Chemosphere 2011, 82, 1422–1430. [Google Scholar] [CrossRef]
- Valdés, H.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Zaror, C.A. Effect of Ozone Treatment on Surface Properties of Activated Carbon. Langmuir 2002, 18, 2111–2116. [Google Scholar] [CrossRef]
- Morales-lara, F.; Pe, M.J.; Altmajer-vaz, D.; Garc, M.; Melguizo, M.; Lo, F.J. Functionalization of Multiwall Carbon Nanotubes by Ozone at Basic PH. Comparison with Oxygen Plasma and Ozone in Gas Phase. J. Phys. Chem. 2013, 117, 11647–11655. [Google Scholar] [CrossRef]
- Razumovskii, S.D.; Gorshenev, V.N.; Kovarskii, A.L.; Kuznetsov, A.M.; Shchegolikhin, A.N. Carbon Nanostructure Reactivity: Reactions of Graphite Powders with Ozone. Fuller. Nanotub. Carbon Nanostruct. 2007, 15, 53–63. [Google Scholar] [CrossRef]
- Álvarez, P.M.; García-Araya, J.F.; Beltrán, F.J.; Masa, F.J.; Medina, F. Ozonation of Activated Carbons: Effect on the Adsorption of Selected Phenolic Compounds from Aqueous Solutions. J. Colloid. Interface Sci. 2005, 283, 503–512. [Google Scholar] [CrossRef]
- Psaltou, S.; Kaprara, E.; Triantafyllidis, K.; Mitrakas, M.; Zouboulis, A. Heterogeneous Catalytic Ozonation: The Significant Contribution of PZC Value and Wettability of the Catalysts. J. Environ. Chem. Eng. 2021, 9, 106173. [Google Scholar] [CrossRef]
- Sánchez-Polo, M.; Rivera-Utrilla, J. Effect of the Ozone-Carbon Reaction on the Catalytic Activity of Activated Carbon during the Degradation of 1,3,6-Naphthalenetrisulphonic Acid with Ozone. Carbon 2003, 41, 303–307. [Google Scholar] [CrossRef]
- Gao, G.; Kang, J.; Shen, J.; Chen, Z.; Chu, W. Heterogeneous Catalytic Ozonation of Sulfamethoxazole in Aqueous Solution over Composite Iron–Manganese Silicate Oxide. Ozone Sci. Eng. 2016, 39, 24–32. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.; Lai, L.; Yao, G.; Lai, B. Catalytic Ozonation of Bisphenol A in Aqueous Solution by Fe3O4–MnO2 Magnetic Composites: Performance, Transformation Pathways and Mechanism. Sep. Purif. Technol. 2020, 245, 116449. [Google Scholar] [CrossRef]
- Garoma, T.; Matsumoto, S. Ozonation of Aqueous Solution Containing Bisphenol A: Effect of Operational Parameters. J. Hazard. Mater. 2009, 167, 1185–1191. [Google Scholar] [CrossRef]
- Shih, K.; White, T.; Leckie, J.O. Nickel Stabilization Efficiency of Aluminate and Ferrite Spinels and Their Leaching Behavior. Environ. Sci. Technol. 2006, 40, 5520–5526. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, Y.; Wang, G.; Jiang, P.; Zhang, J.; Wu, L.; Li, K. Novel Magnetically Separable Nanomaterials for Heterogeneous Catalytic Ozonation of Phenol Pollutant: NiFe2O4 and Their Performances. Chem. Eng. J. 2013, 219, 295–302. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, F.; Zhang, Y.; Pan, Z.; Lai, B. Catalytic Ozonation of N, N-Dimethylacetamide (DMAC) in Aqueous Solution Using Nanoscaled Magnetic CuFe2O4. Sep. Purif. Technol. 2018, 193, 368–377. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, Y.; Zeng, T.; Feng, J.; Ma, J.; Mitch, W.A. Influence of Bi-Doping on Mn1−XBixFe2O4 Catalytic Ozonation of Di-n-Butyl Phthalate. Chem. Eng. J. 2016, 283, 622–630. [Google Scholar] [CrossRef]
- Yan, P.; Shen, J.; Zhou, Y.; Yuan, L.; Kang, J.; Wang, S.; Chen, Z. Interface Mechanism of Catalytic Ozonation in an α-Fe0.9Mn0.1OOH Aqueous Suspension for the Removal of Iohexol. Appl. Catal. B 2020, 277, 119055. [Google Scholar] [CrossRef]
- Zhao, Y.; An, H.; Dong, G.; Feng, J.; Ren, Y.; Wei, T. Elevated Removal of Di-n-Butyl Phthalate by Catalytic Ozonation over Magnetic Mn-Doped Ferrospinel ZnFe2O4 Materials: Efficiency and Mechanism. Appl. Surf. Sci. 2020, 505, 144476. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Frost, R.L. An Overview of the Role of Goethite Surfaces in the Environment. Chemosphere 2014, 103, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Du, L.; Jing, J.; Ding, X.; Shao, S.; Jiao, W.; Liu, Y. Preparation of FeOOH Nanoparticles Using an Impinging Stream-Rotating Packed Bed and Their Catalytic Activity for Ozonation of Nitrobenzene. J. Taiwan Inst. Chem. Eng. 2021, 127, 102–108. [Google Scholar] [CrossRef]
- Pelalak, R.; Alizadeh, R.; Ghareshabani, E. Enhanced Heterogeneous Catalytic Ozonation of Pharmaceutical Pollutants Using a Novel Nanostructure of Iron-Based Mineral Prepared via Plasma Technology: A Comparative Study. J. Hazard. Mater. 2020, 392, 122269. [Google Scholar] [CrossRef]
- Sui, M.; Sheng, L.; Lu, K.; Tian, F. FeOOH Catalytic Ozonation of Oxalic Acid and the Effect of Phosphate Binding on Its Catalytic Activity. Appl. Catal. B 2010, 96, 94–100. [Google Scholar] [CrossRef]
- Psaltou, S.; Zouboulis, A. Catalytic Ozonation and Membrane Contactors—A Review Concerning Fouling Occurrence and Pollutant Removal. Water 2020, 12, 2964. [Google Scholar] [CrossRef]
- Zhu, H.; Ma, W.; Han, H.; Han, Y.; Ma, W. Catalytic Ozonation of Quinoline Using Nano-MgO: Efficacy, Pathways, Mechanisms and Its Application to Real Biologically Pretreated Coal Gasification Wastewater. Chem. Eng. J. 2017, 327, 91–99. [Google Scholar] [CrossRef]
- Dai, Q.; Zhang, Z.; Zhan, T.; Hu, Z.T.; Chen, J. Catalytic Ozonation for the Degradation of 5-Sulfosalicylic Acid with Spinel-Type ZnAl2O4 Prepared by Hydrothermal, Sol-Gel, and Coprecipitation Methods: A Comparison Study. ACS Omega 2018, 3, 6506–6512. [Google Scholar] [CrossRef]
- Ke, L.; Liu, J.; Sun, L.; Pan, F.; Yuan, X.; Xia, D. A Non-Specific Surface Area Dominated Catalytic Ozonation with CuO Modified β-MnO2 in Efficient Oxalic Acid Degradation. J. Water Process Eng. 2022, 46, 102535. [Google Scholar] [CrossRef]
- Tan, X.; Wan, Y.; Huang, Y.; He, C.; Zhang, Z.; He, Z.; Hu, L.; Zeng, J.; Shu, D. Three-Dimensional MnO2 Porous Hollow Microspheres for Enhanced Activity as Ozonation Catalysts in Degradation of Bisphenol, A.J. Hazard. Mater. 2017, 321, 162–172. [Google Scholar] [CrossRef]
- Tong, S.; Liu, W.; Leng, W.; Zhang, Q. Characteristics of MnO2 Catalytic Ozonation of Sulfosalicylic Acid and Propionic Acid in Water. Chemosphere 2003, 50, 1359–1364. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Chen, Z.; Shen, B.; Wei, J.; Zeng, P.; Wen, X. Catalytic Ozonation for Metoprolol and Ibuprofen Removal over Different MnO2 Nanocrystals: Efficiency, Transformation and Mechanism. Sci. Total Environ. 2021, 785, 147328. [Google Scholar] [CrossRef]
- Benner, J.; Ternes, T.A. Ozonation of Metoprolol: Elucidation of Oxidation Pathways and Major Oxidation Products. Environ. Sci. Technol. 2009, 43, 5472–5480. [Google Scholar] [CrossRef]
- Kermani, M.; Kakavandi, B.; Farzadkia, M.; Esrafili, A.; Jokandan, S.F.; Shahsavani, A. Catalytic Ozonation of High Concentrations of Catechol over TiO2@Fe3O4magnetic Core-Shell Nanocatalyst: Optimization, Toxicity and Degradation Pathway Studies. J. Clean. Prod. 2018, 192, 597–607. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef]
- Peng, J.; Lai, L.; Jiang, X.; Jiang, W.; Lai, B. Catalytic Ozonation of Succinic Acid in Aqueous Solution Using the Catalyst of Ni/Al2O3 Prepared by Electroless Plating-Calcination Method. Sep. Purif. Technol. 2018, 195, 138–148. [Google Scholar] [CrossRef]
- Bing, J.; Hu, C.; Zhang, L. Enhanced Mineralization of Pharmaceuticals by Surface Oxidation over Mesoporous γ-Ti-Al2O3 Suspension with Ozone. Appl. Catal. B 2017, 202, 118–126. [Google Scholar] [CrossRef]
- Yan, Z.; Zhu, J.; Hua, X.; Liang, D.; Dong, D.; Guo, Z.; Zheng, N.; Zhang, L. Catalytic Ozonation for the Degradation of Polyvinyl Alcohol in Aqueous Solution Using Catalyst Based on Copper and Manganese. J. Clean. Prod. 2020, 272, 122856. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.; Yan, P.; Zhang, J.; Wang, Z.; Zhao, S.; Chen, Z. Catalytic Ozonation of 4-Chloronitrobenzene by Goethite and Fe2+ -Modified Goethite with Low Defects: A Comparative Study. J. Hazard. Mater. 2019, 365, 744–750. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Gong, W.; Chen, Z.; Liu, H.; Bu, Y.; Zhang, Y. Heterogeneous Catalytic Ozonation of P-Chloronitrobenzene (PCNB) in Water with Iron Silicate Doped Hydroxylation Iron as Catalyst. Catal. Commun. 2017, 89, 81–85. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Liu, M.; Li, L. Effective Catalytic Ozonation for Oxalic Acid Degradation with Bimetallic Fe-Cu-MCM-41: Operation Parameters and Mechanism. J. Chem. Technol. Biotechnol. 2017, 92, 2862–2869. [Google Scholar] [CrossRef]
- Tang, Y.; Pan, Z.; Li, L. PH-Insusceptible Cobalt-Manganese Immobilizing Mesoporous Siliceous MCM-41 Catalyst for Ozonation of Dimethyl Phthalate. J. Colloid. Interface Sci. 2017, 508, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Sui, M.; Liu, J.; Sheng, L. Mesoporous Material Supported Manganese Oxides (MnOx/MCM-41) Catalytic Ozonation of Nitrobenzene in Water. Appl. Catal. B 2011, 106, 195–203. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Gong, W.; Dou, Y.; Wang, S.; Wang, W. Structural Characterizations of Zinc-Copper Silicate Polymer (ZCSP) and Its Mechanisms of Ozonation for Removal of p-Chloronitrobenzene in Aqueous Solution. Sep. Purif. Technol. 2017, 172, 251–257. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Fang, Y.; Yang, Z. Heterogeneous Catalytic Ozonation of Sulfamethazine in Aqueous Solution Using Maghemite-Supported Manganese Oxides. Sep. Purif. Technol. 2021, 274, 118945. [Google Scholar] [CrossRef]
- Gholipour-Ranjbar, H.; Soleimani, M.; Naderi, H.R. Application of Ni/Co-Based Metal-Organic Frameworks (MOFs) as an Advanced Electrode Material for Supercapacitors. New J. Chem. 2016, 40, 9187–9193. [Google Scholar] [CrossRef]
- Ye, G.; Luo, P.; Zhao, Y.; Qiu, G.; Hu, Y.; Preis, S.; Wei, C. Three-Dimensional Co/Ni Bimetallic Organic Frameworks for High-Efficient Catalytic Ozonation of Atrazine: Mechanism, Effect Parameters, and Degradation Pathways Analysis. Chemosphere 2020, 253, 126767. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.; Zhai, X. Mechanism of Influence of Initial PH on the Degradation of Nitrobenzene in Aqueous Solution by Ceramic Honeycomb Catalytic Ozonation. Environ. Sci. Technol. 2008, 42, 4002–4007. [Google Scholar] [CrossRef]
- Sawhney, B.L.; Singh, S.S. Sorption of Atrazine by Al-And Ca-Saturated Smectite. Clays Clay Miner. 1997, 45, 333–338. [Google Scholar] [CrossRef]
- Mohebali, H.; Moussavi, G.; Karimi, M.; Giannakis, S. Catalytic Ozonation of Acetaminophen with a Magnetic, Cerium-Based Metal-Organic Framework as a Novel, Easily-Separable Nanocomposite. Chem. Eng. J. 2022, 434, 134614. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.; Yan, P.; Chen, Z. Interface Mechanisms of Catalytic Ozonation with Amorphous Iron Silicate for Removal of 4-Chloronitrobenzene in Aqueous Solution. Environ. Sci. Technol. 2018, 52, 1429–1434. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Catalytic Ozonation for the Removal of Organic Contaminants in Water on ZSM-5 Zeolites. Appl. Catal. B 2014, 154–155, 110–122. [Google Scholar] [CrossRef]
- Khataee, A.; Rad, T.S.; Fathinia, M. The Role of Clinoptilolite Nanosheets in Catalytic Ozonation Process: Insights into the Degradation Mechanism, Kinetics and the Toxicity. J. Taiwan Inst. Chem. Eng. 2017, 77, 205–215. [Google Scholar] [CrossRef]
- Khataee, A.; Rad, T.S.; Fathinia, M.; Joo, S.W. Production of Clinoptilolite Nanorods by Glow Discharge Plasma Technique for Heterogeneous Catalytic Ozonation of Nalidixic Acid. RSC Adv. 2016, 6, 20858–20866. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.; Chen, Z.; Liu, Y. Pumice-Catalyzed Ozonation Degradation of p-Chloronitrobenzene in Aqueous Solution. Appl. Catal. B 2012, 117–118, 414–419. [Google Scholar] [CrossRef]
- Gao, G.; Shen, J.; Chu, W.; Chen, Z.; Yuan, L. Mechanism of Enhanced Diclofenac Mineralization by Catalytic Ozonation over Iron Silicate-Loaded Pumice. Sep. Purif. Technol. 2017, 173, 55–62. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.; Chen, Z.; Guan, X. Role of Fe/Pumice Composition and Structure in Promoting Ozonation Reactions. Appl. Catal. B 2016, 180, 707–714. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.; Man, J.; Liu, H. Enhancement Mechanism of Heterogeneous Catalytic Ozonation by Cordierite-Supported Copper for the Degradation of Nitrobenzene in Aqueous Solution. Environ. Sci. Technol. 2009, 43, 2047–2053. [Google Scholar] [CrossRef]
- Jiao, W.; Yang, P.; Gao, W.; Qiao, J.; Liu, Y. Apparent Kinetics of the Ozone Oxidation of Nitrobenzene in Aqueous Solution Enhanced by High Gravity Technology. Chem. Eng. Process. Process Intensif. 2019, 146, 107690. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.; Liu, H. Mechanism of Heterogeneous Catalytic Ozonation of Nitrobenzene in Aqueous Solution with Modified Ceramic Honeycomb. Appl. Catal. B 2009, 89, 326–334. [Google Scholar] [CrossRef]
- Hou, Y.J.; Ma, J.; Sun, Z.Z.; Yu, Y.H.; Zhao, L. Degradation of Benzophenone in Aqueous Solution by Mn-Fe-K Modified Ceramic Honeycomb-Catalyzed Ozonation. J. Environ. Sci. 2006, 18, 1065–1072. [Google Scholar] [CrossRef]
- Pan, J.; Qian, M.; Li, Y.; Wang, H.; Guan, B. Catalytic Ozonation of Aqueous 4-Methylquinoline by Fluorinated Ceramic Honeycomb. Chemosphere 2022, 307, 135678. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, F.J.; Pocostales, P.; Alvarez, P.; Garcia-Araya, J.F.; Gimeno, O. Perovskite Catalytic Ozonation of Some Pharmaceutical Compounds in Water. Ozone Sci. Eng. 2010, 32, 230–237. [Google Scholar] [CrossRef]
- Bai, Z.; Yang, Q.; Wang, J. Catalytic Ozonation of Sulfamethazine Antibiotics Using Fe3O4/Multiwalled Carbon Nanotubes. Environ. Process Sustain. Energy 2018, 37, 678–685. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Hu, L.; Zeng, J.; He, C.; Tan, X.; He, Z.; Zhang, Q.; Shu, D. Combined Adsorption and Catalytic Ozonation for Removal of Endocrine Disrupting Compounds over MWCNTs/Fe3O4composites. Catal. Today 2017, 297, 143–150. [Google Scholar] [CrossRef]
- Bai, Z.; Yang, Q.; Wang, J. Catalytic Ozonation of Dimethyl Phthalate Using Fe3O4/Multi-Wall Carbon Nanotubes. Environ. Technol. 2016, 38, 2048–2057. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, H.; An, H.; Zhao, Y.; Feng, J.; Xue, L.; Luan, T.; Fan, Z. Catalytic Ozonation of Di-n-Butyl Phthalate Degradation Using Manganese Ferrite/Reduced Graphene Oxide Nanofiber as Catalyst in the Water. J. Colloid. Interface Sci. 2018, 526, 347–355. [Google Scholar] [CrossRef]
- Li, G.; Lu, Y.; Lu, C.; Zhu, M.; Zhai, C.; Du, Y.; Yang, P. Efficient Catalytic Ozonation of Bisphenol-A over Reduced Graphene Oxide Modified Sea Urchin-like α-MnO2 Architectures. J. Hazard. Mater. 2015, 294, 201–208. [Google Scholar] [CrossRef]
- Liu, Z.; Tu, J.; Wang, Q.; Cui, Y.; Zhang, L.; Wu, X. Catalytic Ozonation of Diethyl Phthalate in Aqueous Solution Using Graphite Supported Zinc Oxide. Sep. Purif. Technol. 2018, 200, 51–58. [Google Scholar] [CrossRef]
- Lu, S.; Liu, Y.; Feng, L.; Sun, Z.; Zhang, L. Characterization of Ferromagnetic Sludge-Based Activated Carbon and Its Application in Catalytic Ozonation of p-Chlorobenzoic Acid. Environ. Sci. Pollut. Res. 2018, 25, 5086–5094. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, C.; Zhang, D.; Li, L.; Pan, D. Heterogeneous Catalytic Ozonation of Dibutyl Phthalate in Aqueous Solution in the Presence of Iron-Loaded Activated Carbon. Chemosphere 2015, 119, 295–301. [Google Scholar] [CrossRef]
- Dadban Shahamat, Y.; Sadeghi, M.; Shahryari, A.; Okhovat, N.; Bahrami Asl, F.; Baneshi, M.M. Heterogeneous Catalytic Ozonation of 2,4-Dinitrophenol in Aqueous Solution by Magnetic Carbonaceous Nanocomposite: Catalytic Activity and Mechanism. Desalination Water Treat 2015, 57, 20447–20456. [Google Scholar] [CrossRef]
- Farzadkia, M.; Dadban Shahamat, Y.; Nasseri, S.; Mahvi, A.H.; Gholami, M.; Shahryari, A. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates. J. Eng. 2014, 2014, 520929. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.P.; Wu, Q.Y.; Li, A.; Wang, W.L.; Hu, H.Y. Promoted Ozonation for the Decomposition of 1,4-Dioxane by Activated Carbon. Water Sci. Technol. Water Supply 2017, 17, 613–620. [Google Scholar] [CrossRef]
- Tian, S.Q.; Qi, J.Y.; Wang, Y.P.; Liu, Y.L.; Wang, L.; Ma, J. Heterogeneous Catalytic Ozonation of Atrazine with Mn-Loaded and Fe-Loaded Biochar. Water Res. 2021, 193, 116860. [Google Scholar] [CrossRef]
- Zada, A.; Ali, N.; Subhan, F.; Anwar, N.; Ali Shah, M.I.; Ateeq, M.; Hussain, Z.; Zaman, K.; Khan, M. Suitable Energy Platform Significantly Improves Charge Separation of G-C3N4 for CO2 Reduction and Pollutant Oxidation under Visible-Light. Prog. Nat. Sci. Mater. Int. 2019, 29, 138–144. [Google Scholar] [CrossRef]
- Oh, W.; Chang, V.W.C.; Hu, Z.T.; Goei, R.; Lim, T.T. Enhancing the Catalytic Activity of G-C3N4 through Me Doping (Me = Cu, Co and Fe) for Selective Sulfathiazole Degradation via Redox-Based Advanced Oxidation Process. Chem. Eng. J. 2017, 323, 260–269. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; He, S.; Sun, L.; Yuan, X.; Xia, D. Heterogeneous Catalytic Ozonation of Oxalic Acid with an Effective Catalyst Based on Copper Oxide Modified G-C3N4. Sep. Purif. Technol. 2020, 234, 16120. [Google Scholar] [CrossRef]
- Ahn, Y.; Oh, H.; Yoon, Y.; Park, W.K.; Yang, W.S.; Kang, J.W. Effect of Graphene Oxidation Degree on the Catalytic Activity of Graphene for Ozone Catalysis. J. Environ. Chem. Eng. 2017, 5, 3882–3894. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Z.; Chai, B.; Cheng, S.; Lu, X.; Bai, X. Heterogeneous Catalytic Ozonation of Natural Organic Matter with Goethite, Cerium Oxide and Magnesium Oxide. RSC Adv. 2016, 6, 14730–14740. [Google Scholar] [CrossRef]
- Kim, M.K.; Zoh, K.D. Occurrence and Removals of Micropollutants in Water Environment. Environ. Eng. Res. 2016, 21, 319–332. [Google Scholar] [CrossRef]
- Agudelo, E.A.; Cardona, G.S.A. Selection of Catalysts for Use in a Heterogeneous Catalytic Ozonation System. Ozone Sci. Eng. 2020, 42, 146–156. [Google Scholar] [CrossRef]
- Jiao, W.; Shao, S.; Yang, P.; Gao, K.; Liu, Y. Kinetics and Mechanism of Nitrobenzene Degradation by Hydroxyl Radicals-Based Ozonation Process Enhanced by High Gravity Technology. Front. Chem. Sci. Eng. 2021, 15, 1197–1205. [Google Scholar] [CrossRef]
- Elovitz, M.S.; von Gunten, U.; Kaiser, H.P. Hydroxyl Radical/Ozone Ratios during Ozonation Processes. II. The Effect of Temperature, PH, Alkalinity, and DOM Properties. Ozone Sci. Eng. 2000, 22, 123–150. [Google Scholar] [CrossRef]
- Acero, J.L.; Stemmler, K.; von Gunten, U. Degradation Kinetics of Atrazine and Its Degradation Products with Ozone and OH Radicals: A Predictive Tool for Drinking Water Treatment. Environ. Sci. Technol. 2000, 34, 591–597. [Google Scholar] [CrossRef]
- Wang, W.; Yao, H.; Yue, L. Supported-Catalyst CuO/AC with Reduced Cost and Enhanced Activity for the Degradation of Heavy Oil Refinery Wastewater by Catalytic Ozonation Process. Environ. Sci. Pollut. Res. 2020, 27, 7199–7210. [Google Scholar] [CrossRef]
- Pines, D.S.; Reckhow, D.A. Effect of Dissolved Cobalt (II) on the Ozonation of Oxalic Acid. Environ. Sci. Technol. 2002, 36, 4046–4051. [Google Scholar] [CrossRef]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V.; et al. Human Health Risk Assessment for Aluminium, Aluminium Oxide, and Aluminium Hydroxide. J. Toxicol. Environ. Health 2007, 10, 1–269. [Google Scholar] [CrossRef]
- Gomes, J.F.; Frasson, D.; Pereira, J.L.; Gonçalves, F.J.M.; Castro, L.M.; Quinta-Ferreira, R.M.; Martins, R.C. Ecotoxicity Variation through Parabens Degradation by Single and Catalytic Ozonation Using Volcanic Rock. Chem. Eng. J. 2019, 360, 30–37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psaltou, S.; Mitrakas, M.; Zouboulis, A. Heterogeneous Catalytic Ozonation: Solution pH and Initial Concentration of Pollutants as Two Important Factors for the Removal of Micropollutants from Water. Separations 2022, 9, 413. https://doi.org/10.3390/separations9120413
Psaltou S, Mitrakas M, Zouboulis A. Heterogeneous Catalytic Ozonation: Solution pH and Initial Concentration of Pollutants as Two Important Factors for the Removal of Micropollutants from Water. Separations. 2022; 9(12):413. https://doi.org/10.3390/separations9120413
Chicago/Turabian StylePsaltou, Savvina, Manassis Mitrakas, and Anastasios Zouboulis. 2022. "Heterogeneous Catalytic Ozonation: Solution pH and Initial Concentration of Pollutants as Two Important Factors for the Removal of Micropollutants from Water" Separations 9, no. 12: 413. https://doi.org/10.3390/separations9120413
APA StylePsaltou, S., Mitrakas, M., & Zouboulis, A. (2022). Heterogeneous Catalytic Ozonation: Solution pH and Initial Concentration of Pollutants as Two Important Factors for the Removal of Micropollutants from Water. Separations, 9(12), 413. https://doi.org/10.3390/separations9120413