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Abstract: The ozone/peroxymonosulfate (O3/PMS) system has attracted widespread attention from
researchers owing to its ability to produce hydroxyl radicals (•OH) and sulfate radicals (SO4

•−)
simultaneously. The existing research has shown that the O3/PMS system significantly degrades
refinery trace organic compounds (TrOCs) in highly concentrated organic wastewater. However,
there is still a lack of systematic understanding of the O3/PMS system, which has created a significant
loophole in its application in the treatment of highly concentrated organic wastewater. Hence, this
paper reviewed the specific degradation effect, toxicity change, reaction mechanism, various influ-
encing factors and the cause of oxidation byproducts (OBPs) of various TrOCs when the O3/PMS
system is applied to the degradation of highly concentrated organic wastewater. In addition, the
effects of different reaction conditions on the O3/PMS system were comprehensively evaluated.
Furthermore, given the limited understanding of the O3/PMS system in the degradation of TrOCs
and the formation of OBPs, an outlook on potential future research was presented. Finally, this
paper comprehensively evaluated the degradation of TrOCs in highly concentrated organic wastew-
ater by the O3/PMS system, filling the gaps in scale research, operation cost, sustainability and
overall feasibility.

Keywords: ozone/peroxymonosulfate; advanced oxidation process; highly concentrated organic
wastewater; hydroxyl radicals; sulfate radicals; organic pollutants

1. Introduction

With the industrial activities that humans operate, all kinds of organic wastewater are
inevitably produced. Among them, the highest concentration of organic wastewater is pro-
duced in animal husbandry and medical industries. Studies have shown that such highly
concentrated organic wastewater still shows high TrOC concentration and toxicity after being
treated by a conventional wastewater treatment plant (WWTP) [1–4]. Discharging TrOCs
into the natural water body leads to the eutrophication of the water body and a decrease
in the oxygen content in the water, which in turn result in the formation of a black and
odorous water body [5–7]. Therefore, treating highly concentrated organic wastewater is a
significant challenge for traditional WWTP treatment [8,9]. Some researchers have solved this
problem using a chemically enhanced primary treatment, reducing chlorination byproducts,
and applying a machine learning model to pH and chemical dose control [10–12]. However,
subsequent observation of the receiving waters revealed that the microbial community in the
river was significantly affected [13]. This showed that compared with the activated sludge
and chemical precipitation methods in the traditional WWTP, this new enhanced primary
and secondary treatment scheme had improved effects; however, there are still limitations in
treating TrOCs [14,15].
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Several scholars are focusing on advanced oxidation processes (AOPs) due to the
water quality problem in WWTPs. Traditional AOPs mainly degrade various TrOCs by
producing •OH, and the treatment effect is not ideal. However, the O3/PMS system can
simultaneously produce •OH and SO4

•−, which eliminates the limitation of traditional
AOPs in terms of degradation effect [16–24]. Relevant experiments showed that [25], in the
O3/PMS system, the more types and contents of TrOCs present in wastewater, the higher
the proportion of •OH is in the oxidation contribution. The experiment of tert-Butyl alcohol
quenching •OH showed that [26] the O3/PMS process demonstrated a higher removal
efficiency than most AOPs dominated by •OH, especially at a higher pH. At that time,
SO4

•− played a significant role in the degradation of TrOCs, which is the advantage of the
process that produced two kinds of active free radicals compared with the process that only
produced a single free radical. However, at that time, the degradation efficiency of chemical
oxygen demand (COD) and biochemical oxygen demand (BOD) in the system decreased,
mainly because the selectivity of SO4

•− to TrOCs was higher than that of •OH [20,27]. In
addition, when PMS was used alone for degradation, the toxicity of the treated water was
often much higher than that of the O3/PMS process. Therefore, it was likely that O3 and
hydroxyl inhibited the generation of disinfection byproducts (DBPs) [28].

Given the advantages of the O3/PMS process—environmental sustainability, high
efficiency and strong anti-interference ability—the development of the O3/PMS process has
been paid more and more attention by scholars. However, there are still some gaps when the
O3/PMS system is applied to the degradation of highly concentrated organic wastewater,
such as the specific degradation effect of various TrOCs, the toxicity changes in the degra-
dation process, the reaction mechanism, various influencing factors and OBPs generated
by them. Therefore, in this paper, the reaction mechanism of O3/PMS was summarised,
and various influencing factors of the system and a series of chemical changes in the treat-
ment of highly concentrated organic wastewater were described in detail. Furthermore,
it introduces the latest research progress on the O3/PMS process in highly concentrated
wastewater treatment, which provides a valuable reference for future studies to carry out
in-depth research on the O3/PMS process. In addition, future research directions were
proposed, given the limited understanding of the O3/PMS system in the degradation of
TrOCs and the formation of OBPs.

2. Mechanism and Influence Factors of O3/PMS Process
2.1. Reaction Mechanism

As shown in Figure 1, from a microscopic perspective, the structural formula of PMS
(H2SO5) is such that a hydrogen atom in H2O2 is replaced by a sulfo group (–SO3H) and
HOO– is combined with –SO3H. Therefore, some characteristics of PMS are similar to those
of H2O2, but the difference is that the free radicals (SO4

•− and •OH) produced by breaking
the O-O bonds are different. There are many effective oxidants in the O3/PMS system.
As a strong oxidant, O3 can effectively degrade many organic substances that are difficult
to deal with in the traditional oxidation process [29,30]. Generally, O3 attacks only the
double bonds, activated aromatic groups and nonprotonated amines of TrOCs [31,32], but
it has strong selectivity. PMS slowly hydrolyses sulfuric acid and H2O2 in water and reacts
slowly with TrOCs, mainly acting as the primary source of SO4

•− in the system. •OH is a
strong nonselective oxidant, which can diffuse rapidly in the system and react with various
TrOCs, with a reaction rate range of 1 × 109–3 × 1010 M−1·s−1 [33].

In general, the degradation of micropollutants by O3 is achieved through the joint
activities of molecular O3 and OH [34]. The degradation selectivity of SO4

•− is higher
than that of •OH, but its higher redox potential (E0 = 2.5~3.1 V) indicates that SO4

•− has
a more efficient degradation rate in the system. Further, the reaction between SO4

•− and
TrOCs has less alkali resistance and is less interfered with by natural organic matter (NOM)
and inorganic nonmetallic ions [35–37]. Therefore, SO4

•− produced by PMS activation can
exist in the system for a long time and effectively and continuously oxidise TrOCs. In each
reaction process in Figure 1, the direct oxidation and indirect oxidation of •OH in reaction
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processes 1, 2 and 3 are dominant. However, for some TrOCs, the indirect oxidation of
SO4

•− produced in process 4 plays an important role. On the other hand, the selectivity of
•OH and SO4

•− produced in the O3/PMS system is lower than that of O3, especially •OH.
This means that the process has a broader application range [38–41].
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Figure 1. Free radical generation process in O3/PMS process and bond breaking of PMS and H2O2. 
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As shown in Table 1, deprotonated PMS first reacts with O3 to generate SO8
2− (Re-

action 1). Then, this substance decays in the form of biomolecules for decomposition
(Reactions 2 and 3). O3

•− (superoxide radical) is converted into •OH (Reactions 4 and 5) in
water. The SO5

•− produced by Reaction 2 can not only react with ozone again to generate
SO4

•− (Reaction 6) but also self-decompose to generate a sulfate radical (Reaction 7) or
decay to S2O8

2− (Reaction 8). At the same time, excessive SO4
•− in the system further

oxidises H2O or OH− to form •OH (Reaction 9, 10) [17,35,42,43].

Table 1. The reaction equations for the formation of •OH and SO4
•− and the corresponding reaction

rate constants.

No. Reaction Reaction Rate Constant References

1 SO5
2−+O3 → SO8

2− 2.12 × 104 [17]
2 SO8

2− → SO5
•−+O3

• none [17]
3 SO8

2− → SO4
2−+2O2 none [17]

4 O3
•− 
 O2+O•− none [43]

5 O•−+H2O 
 •OH + OH− none [43]
6 SO5

•−+O3 → SO4
•−+2O2 1.6 × 105 M−1·s−1 [43,44]

7 2SO5
•− → 2SO4

•−+O2 2.1 × 108 M−1·s−1 [43,44]
8 2SO5

•− → S2O8
2−+O2 2.2 × 108 M−1·s−1 [43,44]

9 SO4
•−+H2O→ H+ + SO4

2−+•OH <3 × 103 M−1·s−1 [36,43]
10 SO4

•−+OH− → SO4
2−+•OH 7.3 × 107 M−1·s−1 [36,43]

In addition, When PMS in the system is excessive, under an alkaline environment, it
hydrolyses to produce H2O2 (Reaction 11 and 12) [17,44], and then the H2O2 reacts with
O3 to produce •OH (Reaction 13) [45]. Excess SO4

•− in the system hydrolyses to produce
•OH or forms new •OH with OH− (Reaction 14 and 15) [44,46]. Table 2 shows the reaction
formulas and corresponding reaction rate constants of PMS and SO4

•− promoting •OH
formation [17,44–46].
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Table 2. Reaction equations and corresponding reaction rate constants for PMS- and SO4
•−-promoted

•OH formation.

No. Reaction Reaction Rate Constant References

11 HSO5
− + H2O→ HSO4

− + H2O2 none [17]
12 SO5

2− + H2O→ SO4
2− + H2O2 none [44]

13 H2O2 + 2O3 → 3O2 + 2•OH none [45]
14 SO4

•− + OH− → SO4
2− + •OH (6.5 ± 1.0) × 107 M−1·s−1 [46]

15 SO4
•− + H2O→ H+ + SO4

2− + •OH <3 × 103 M−1·s−1 [44]

2.2. Influence Factors
2.2.1. pH Value

pH value significantly influences the degradation efficiency of the O3/PMS process.
When the pH value rises from 6 to 7, the contribution rate of •OH to the degradation in the
system is the highest, but it shows a trend of gradual decline. When the pH value rises from
7 to 9, the degradation rate in the system gradually increases. This may be attributed to two
phenomena: (1) the increase in hydroxyl concentration further enhances the decomposition
rate of O3 to •OH. (2) The essence of PMS catalysing O3 is the reaction with deprotonated
PMS (SO5

2−), and their reaction rate constant is 2.12 × 104 M−1·s−1 (Reaction 1). The
secondary dissociation constant of PMS dissociation to SO5

2− is 9.4. Therefore, within
the studied pH range, the closer it is to 9.4, the higher the concentration of deprotonated
PMS, and the faster the catalytic decomposition of O3. When the pH increased to more
than 9.4, the degradation rate decreased slightly or remained unchanged, and then the
decline increased. The main reason is that PMS decomposes in a nonfree radical way,
the production rate of SO4

•− decreases, and a too-high pH concentration makes the free
radicals in the system lose their reactivity [17,47–51].

2.2.2. O3 Dosage

The concentration of O3 is critical to the yield of two free radicals in the system, and
a higher O3 concentration can significantly increase the rate of free radicals, especially
·OH. However, when excessive O3 is introduced, excessive molecular O3 in the system can
quench the free radicals, resulting in a decrease in the reaction rate [17,52–54].

2.2.3. PMS Dosage

The effect of the concentration of PMS is similar to that of O3, which shows that a
slight increase can improve the free radical generation rate. The only difference is that
when PMS is slightly excessive, the growth rate of SO4

•− generation rate is greater than
that of •OH. Excessive PMS reduces the pH value of the solution, and undissolved PMS
produces the phenomenon of quenching free radicals [42,55,56].

2.2.4. Ratio of O3 to PMS

The system’s molar mass ratio of O3 to PMS is also critical to the degradation process.
Research has shown that [23,24] the ratio of O3 to PMS of 1:1 is the optimal ratio, at which
point the degradation rate in the system is the fastest, indicating that sufficient O3 is the
key to producing free radicals efficiently. However, when further analysing the influence
of the concentration of O3 and PMS on the degradation rate, it was found that when the
degradation rate reached it is maximum, further increasing the concentration of O3 and
PMS reduced the removal efficiency. This may be due to the quenching effect of excessive
O3 and PMS on the two free radicals [57–59].

2.2.5. Temperature

A significant number of studies have confirmed that, in the range of 5–40 ◦C, with
the increase in temperature, the degradation rate increases in the experiment. This may
be that the O-O bond in PMS breaks at high temperatures, which increases the conversion
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of SO4
•− [60,61]. However, when the temperature is higher than 40 ◦C, increasing the

temperature causes the reaction rate of the system to decrease. This is probably because
the temperature is too high at this time, so O3 escapes from the solution into the air before
it decomposes.

2.2.6. Inorganic Anions

The influence of inorganic ions on the O3/PMS system is summarised in Table 3,
which is described as follows.

Common inorganic ions in solution, such as chloride ions, can react with •OH and
SO4

•− to generate chlorine-containing free radicals (Cl•, Cl2•−, etc.) with strong selectivity.
It can be seen from Reactions 16 and 17 that chloride ions and •OH can easily generate
ClOH•− and Cl− under acidic conditions. When the concentration of H+ is higher (i.e., the
pH value is lower), ClOH•− then reacts with H+ to generate Cl• (Reaction 22). However,
when in a neutral or alkaline environment, the hydrogen ion concentration is low, so the
capture effect of chloride ions on •OH is weak, and the degradation reaction dominated by
•OH is less affected. The reaction of chloride ions with SO4

•− (Reaction 18) is independent
of pH, so it has a noticeable capture effect on SO4

•− under experimental conditions and
generates Cl• and Cl2•− through Reactions 18–21 [62,63].

Carbonate is also the capture agent of •OH and SO4
•−, and its reaction formula for

capturing free radicals is shown in Reactions 24–27. Carbonate reduces the decomposition
rate of ozone and captures •OH and SO4

•− to generate a carbonate radical (CO3
•−), a more

selective free radical. This enhances the selectivity of the reaction in the system and reduces
the applicability of the O3/PMS process [62,64,65].

Nitrite and phosphate ions can also capture free radicals; see Reactions 26–35. How-
ever, the generated nitrate radical (NO2

•) and the phosphate radical (HPO4
•−) have higher

reaction selectivities and lower oxidation capacities, negatively affecting the system. There-
fore, when a phosphate buffer solution is used in the O3/PMS system, the concentration of
phosphate ions should be controlled [62,66,67].

Table 3. The reaction formula of each inorganic ion in the O3/PMS system.

Inorganic
Anions No. Reaction

Reaction Rate
Constant

(L·M−1·s−1)
References

Cl−

16 •OH + Cl− → ClOH•− 4.3 × 109 [68]
17 ClOH•− → •OH + Cl− 6.1 × 109 [68]
18 SO4

•− + Cl− → SO4
2−+Cl• 3.0 × 108 [69]

19 SO4
2−+Cl• → SO4

•− + Cl− 2.5 × 108 [69]
20 Cl−+Cl• → Cl•−2 8.5 × 109 [70]
21 Cl•−2 → Cl−+Cl• 6.0 × 104 [71]
22 ClOH•−+H+ → Cl•+H2O 2.1 × 1010 [68]
23 Cl•−2 +•OH→ HOCl + Cl− 1.0 × 109 [72]

HCO3
− 24 HCO−3 +•OH→ CO•−3 +H2O 8.6 × 106 [33]

25 HCO−3 + SO4
•− → CO•−3 + SO4

2− + H+ 3.9 × 108 [73]

CO3
2− 26 CO2−

3 + •OH→ CO•−3 2.8 × 106 [33]
27 CO2−

3 + SO4
•− → CO•−3 + SO4

2− 6.1 × 106 [74]

NO2
−

28 NO−2 +•OH→ NO •2 +OH− None [75]
29 NO−2 + SO4

•− → NO •2 +SO4
2− None [75]

30 NO−2 +HSO−5 → NO−3 +HSO−4 None [76]
31 NO−2 +O3 → NO−3 +O2 None [76]

HPO4
2−

32 •OH + HPO2−
4 → HPO•−4 +OH− 1.5 × 105 [35]

33 •OH + H2PO2−
4 → HPO•−4 +H2O 2.0 × 104 [35]

34 SO4
•−+HPO2−

4 → HPO•−4 + SO4
2− 1.2 × 106 [77]

35 SO4
•−+H2PO2−

4 → HPO•−4 + HSO4
2− 5.0 × 104 [77]
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2.2.7. NOM

NOM widely exists in actual water bodies, and some functional groups (such as phenols
and amines) can react with ozone to form •OH; further, their reaction with •OH can also
promote the reaction process, thus promoting the decomposition of O3 and the generation of
free radicals [78–80]. At the same time, NOM competes with the target for oxidants such as O3,
•OH and SO4

•−, thus reducing the removal rate of the target. Therefore, a low concentration of
NOM promotes ozone decomposition to produce •OH, but when the concentration of NOM is
too high, it competes with TrOCs in the system for two free radicals, inhibiting the degradation
efficiency. NOM accelerates the formation of •OH from O3, resulting in the concentration of
•OH being greater than that of SO4

•− [69,81–84].
To sum up, the main influencing factors in the O3/PMS system are presented in Table 4.

Table 4. The main influencing factors in the O3/PMS system.

Influence Factors Performance References

pH

pH = 6→7 pH = 7→9.4 pH > 9.4

[17,47–51]

1. The contribution
rate of •OH is
greater than that
of SO4

•−, but it
first increases and
then decreases with
the increase in pH
value.

1. The decomposition
rate of O3 and PMS
is improved.

2. The contribution
rate of SO4

•−

degradation
gradually increases.

3. SO4
•− increases the

generation rate of
•OH.

1. The degradation
rate decreases
gradually.

2. PMS decomposes
with nonfree
radicals, and SO4

•−

generation rate
decreases gradually.

O3 dosage
1. Higher O3 concentration can improve the yield of free radicals and degradation

efficiency.
2. Excessive O3 concentration quenches free radicals.

[17,52–54]

PMS dosage
1. Higher PMS concentration increases the decomposition rate of O3.
2. Excessive PMS causes the pH value of the solution to drop, and the

undecomposed PMS quenches free radicals.
[42,55,56]

O3: PMS
1. When the ratio of O3 to PMS is 1:1, the decomposition rate of O3 is the highest.
2. When the ratio of O3 to PMS is 1:2 or 2:1, the reaction rate has no significant

change.
[57–59]

Temperature

1. The decomposition of O3 is accelerated with the increase in temperature.
2. Higher temperature promotes the formation of free radicals and improves

degradation efficiency.
3. There is no obvious thermodynamic control effect within 5–40 ◦C.
4. When the temperature is higher than 40 ◦C, the formation rate of free radicals

decreases.

[60,61]

Inorganic anions

1. Chloride ions: when the concentration is low, the degradation of TrOCs is
promoted, the degradation effect gradually decreases as the concentration
increases until the effect is the same as that of no addition, and then if the
chloride ions are further increased, the degradation is inhibited.

2. Bicarbonate ions and carbonate ions: reduce the decomposition rate of ozone,
reduce the reaction rate and improve the selectivity of the reaction, reducing the
applicability of the O3/PMS process.

3. Nitrite ions and phosphate ions: have a strong inhibitory effect.

[62–67]

NOM

1. Low concentration of NOM promotes ozone decomposition to generate •OH, but
when the concentration of NOM is too high, it competes with TrOCs in the
system for two free radicals and inhibits the degradation efficiency.

2. NOM accelerates O3 to generate •OH, resulting in •OH concentration being
greater than that of SO4

•−.

[69,79–84]



Separations 2022, 9, 444 7 of 17

3. Research Status of the O3/PMS Process on Highly Concentrated Wastewater

The essence of the advanced oxidation process is to produce enough free radicals to
oxidise and degrade organics in water [85]. The advanced oxidation system is dominated
by •OH. It has a broader scope of application as it does not produce secondary pollution
and the cost of equipment and consumables is low, but it still faces problems such as
insufficient mineralisation capacity. While the advanced oxidation system based on SO4

•−

shows the advantages of a fast reaction and short cycle, compared with the system based
on •OH, SO4

•− has a more substantial selectivity for the reaction environment and smaller
scope of application [86,87]. As described below, extensive research has been carried out
on the O3/PMS process in treating highly concentrated organic wastewater.

TrOCs in high-concentration organic wastewater are challenging to degrade efficiently
in sewage treatment plants, resulting in pollution of receiving water bodies [17,88,89].
This usually requires pretreatment or advanced treatment of this organic wastewater [90].
When the O3/PMS process is used for pretreatment, O3 can decompose macromolecular
organic pollutants into small molecular organic pollutants with low toxicity and easy
biochemical degradation, and then SO4

•− and •OH degrade a part of TrOCs to improve
the biochemical index of the wastewater. On the other hand, when the O3/PMS process is
used for advanced treatment, TrOCs are directly oxidised by O3 or •OH or co-oxidised by
SO4

•− and •OH radicals and are eventually mineralised directly into CO2 and H2O, which
significantly reduces the COD and BOD in the water [91–94].

In terms of pretreatment, Ghanbari F. et al. [95] added ultraviolet (UV) to treat polluted
water with landfill leachate (PWLL) based on the O3/PMS system. In the O3/PMS/UV
process under the optimum conditions of pH 7, PMS = 5.7 g/L and O3 = 1.7 mg·min−1, after
75 min of reaction, the total organic carbon (TOC) in the system and chromaticity, ammonia
nitrogen, COD and BOD removal rates reached 74%, 98%, 93%, 81% and 69%, respectively.
The results showed that the generation rates of SO4

•− and •OH active radicals were
increased under the action of UV, and the removal ability of TOC in PWLL was significantly
improved. At the same time, adding ferrous ions could further increase the TOC removal
rate to 77%. The removal of TOC by O3/PMS/UV conformed to the quasi-first-order kinetic
model, and the pseudo-first-order rate constants (Kobs) were 0.0203 min−1. Compared
with H2O2/UV, O3/PMS/UV had higher removal rates of TOC, COD, chromaticity and
ammonia nitrogen. Wang H.W. et al. [96] added polymerised ferric sulfate (PFS) and
nanoscale zero-valent iron (NZVI) to the O3/PMS system to form a NZVI/PMS/O3 process
to treat the reverse osmosis concentrated leachate (ROCL). Under the optimum conditions
of PFS concentration of 8 g·L−1, O3 dosage of 100 mg·min−1, PMS dosage of 1.71 g/L and
NZVI dosage of 5.58 g/L, the maximum removal rates of COD and TOC were 89.1% and
83.2%, respectively, and the biochemical index (BOD5/COD) was increased from 0.02 to 0.32.
The analysis of excitation–emission matrix (EEM) fluorescence spectroscopy showed that
humus-like and fulvic-acid-like substances in ROCL were effectively removed, indicating
that most of the macromolecular organics in the system can be transformed into small
molecule organics, and the biodegradability was significantly improved after treatment.
Jaafarzadeh N. et al. [75] used the magnetic copper ferrite nanoparticle (MCFN) CuFe2O4
as a catalyst to treat 2,4-dichlorophenoxyacetic acid (2,4-D) based on the O3/PMS system
to reduce the toxicity of highly concentrated organic wastewater. After treatment with
the O3/PMS/MCFNs system, its biochemical index increased from 8.3% to 58.9%, toxicity
decreased from 76.5% to 3.8%, TOC removal rate was 67.3% and 2,4-D removal rate was
42.7%. Based on the breath measurement test, the O3/MCFNs/PMS process significantly
degraded the 2,4-D solution and improved the biodegradability of wastewater. Tan C.Q.
et al. [97] studied the degradation of aspirin (ASA) and phenacetin (PNT) by the O3/PMS
system. After O3 preoxidation, the toxicity of DBPs in the system decreased significantly. It
was found that the increase in pH value significantly promoted the degradation effect of
the above two TrOCs, and the Kobs values of ASA and PNT increased by 3.3 × 10−2 min−1

and 8.3 × 10−2 min−1, respectively. The degradation rates of SO4
•−, •OH and O3 for ASA

were 44.5%, 32.9% and 22.6%, respectively, which were relatively balanced, while •OH had
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the best degradation effect for PNT, which was 71.4%, followed by SO4
•− and O3 with

16.7% and 11.9%, respectively.
In terms of advanced treatment, Zheng Z.W. et al. [98] studied the synergistic effect of

the O3/PMS process on the degradation of isothiazolinone fungicide. It was found that
at pH 7, the degradation efficiency of methylisothia-zolinone (MIT) and chloro-methyl-
isothiazolinone (CMIT) increased to 91.0% and 81.8%, respectively, within 90 s. The total
radical formation value (Rct, •R) of the O3/PMS process was 24.6 times that of the O3
process. Because O3/PMS has a low selectivity for macromolecular organic pollutants
in the system and a good activation effect for some inorganic anions (such as HCO3

−)
precipitated by PMS, O3/PMS shows better adaptability to actual wastewater. Therefore,
the O3/PMS process has a good application prospect for the degradation of TrOCs in highly
concentrated organic wastewater. Tang G.M. et al. [99] combined the O3/PMS system with
upflow biological aerated filter (UBAF) for the biological treatment of biotreated Chinese
patent medicine wastewater (BCPMW). Under the conditions of an initial pH of 7.4–8.9,
O3 concentration of 20 mg·L−1, potassium bisulfate dosage of 50 mg·L−1, UBAF gas–
liquid ratio of 4:1, UBAF hydraulic retention time of 4 h, UBAF backwash time of 7 d and
temperature of 16–28 ◦C, the O3/PMS/UBAF combined process could effectively degrade
organic pollutants in the waste liquid. The removal rates of dissolved organic carbon (DOC),
COD and chromaticity were 77.60%, 85.68% and 81.79%, respectively. After O3/PMS/UBAF
treatment, the COD load was less than 48 mg·L−1, and the BCPMW chromaticity grade
was less than 25, meeting the requirements of the emission standard (GB21906-2008). In
addition, O3/PMS oxidation improved the overall removal rate and biodegradation rate of
dissolved organic matter (DOM) in BCPMW. Ghanbari F. et al. [48] investigated the effects
of different operating parameters on the degradation of benzotriazole (BTA) by ultrasonic
(US) combined with the O3/PMS process. The results showed that the O3/PMS/US process
was the best under the conditions of pH 7, O3 = 6.8 mg·L−1, PMS = 1.71 g/L and US power
= 200 W. After 60 min of reaction, BTA with a concentration of 40 mg·L−1 was completely
degraded, with a COD removal rate of about 85%, a TOC removal rate of 75% and a total
organic nitrogen (TON) removal rate of 73.3%. The removal test of BTA found that •OH
was the main oxidant for the oxidation of BTA in the O3/PMS/US collaborative process.
The inhibition of anions on BTA removal was NO2

− > HCO3
− > Cl− > NO3

− > SO4
2−. The

degradation intermediates of BTA were identified, and the oxidation pathway of BTA was
proposed, as shown in Figure 2.
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Figure 2. Degradation mechanism of BTA (O3 = 6.8 mg·L−1, pH = 7.0, PMS = 1.71 g/L, US
power = 200 W and 60 min).

The above studies showed that the O3/PMS process, as a sustainable and efficient
AOP, is feasible in treating highly concentrated organic wastewater, but there are still some
challenges. Firstly, the optimal reaction conditions of the O3/PMS process are neutral and
weakly alkaline. However, it is often difficult to control the pH value of the reaction due to
the complexity of various organic substances in the actual wastewater owing to complex



Separations 2022, 9, 444 9 of 17

organic substances in real wastewater. Secondly, for most TrOCs, it is often •OH that plays
the main role in oxidation. Nevertheless, for the degradation of some TrOCs, O3 and SO4

•−

both play a role that cannot be ignored. Therefore, in practical application, it is necessary to
summarise and form a systematic quantitative dosing standard to realise the optimisation
of the effectiveness and economy of the O3/PMS process. The applications of the O3/PMS
method in highly concentrated organic wastewater treatment are summarised briefly in
Table 5.

Table 5. O3/PMS method applications in organic degradation in highly concentrated organic wastewater.

Application Scenario Process Category Research Findings Ref.

High-concentration organic
wastewater

O3/PMS

At pH = 7.0, the degradation
efficiency of MIT and CMIT
increased to 91.0% and 81.8%,
respectively, within 90 s. Rct, •R
of the O3/PMS process was 24.6
times that of ozonation alone.

[63]

After O3 preoxidation, the toxicity
of DBPs in the system reduced
from 6.63 × 10−2 min−1 to 5.27 ×
10−2 min−1. However, the
increase in pH value could
significantly promote the
degradation of the two TrOCs,
and the kobs values of ASA and
PNT increased by 3.3 × 10−2

min−1 and 8.3 × 10−2 min−1,
respectively.

[62]

PMS/O3/UV

Under the optimal conditions of
pH = 7, PMS = 5.7 g/L and O3 =
1.7 mg/min, the removal rates of
TOC, chromaticity, ammonia,
COD and BOD by PMS/O3/UV
at 75 min were 74%, 98%, 93% and
69%, respectively.

[59]

NZVI/PMS/O3

Under the optimal conditions of 8
g/L FPS, 100 mg/min O3, 1.71
mg/L PMS and 5.58 g/L NZVI,
the maximum removal rates of
COD and TOC were 89.1% and
83.2%, respectively, and the
biodegradability index
(BOD5/COD) was increased from
0.02 to 0.32.

[60]

PMS/MCFNs/O3

The biodegradability of activated
sludge containing 2,4-D increased
from 8.3% to 58.9%, the toxicity
decreased from 76.5% to 3.8%, the
removal rate of TOC was 67.3%
and the removal rate of 2,4-D was
42.7%.

[61]

O3/PMS-UBAF

After O3/PMS/UBAF treatment,
the COD load was less than 48
mg·L−1, and the BCPMW
chromaticity grade was lower
than 25. In addition, the overall
removal rate and biodegradation
rate of DOM in BCPMW were
improved by O3/PMS oxidation.

[64]

O3/PMS/US

Hydroxyl radical was the main
oxidant of BTA oxidation by the
O3/PMS/US combined process.
The inhibition of anions on BTA
removal was NO2

− > HCO3
− >

Cl− > NO3
− > SO4

2−.

[36]
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4. Evaluation of O3/PMS Process Operation Characteristics

Currently, the O3/PMS process research is still in the laboratory stage, and the relevant
economic evaluation is still relatively lacking. Therefore, researchers should optimise the
treatment parameters in their different environments to achieve maximum effectiveness
and economic benefits.

In the previous combined process based on O3, the reaction between O3 and OH− was
often mistaken as the main source of •OH. As a result, the rate constant of this reaction
was very low, and a considerable reaction rate could be achieved only at a very high pH,
while other competitive reactions are usually much faster, such as the ozone reaction with
DOM [100,101]. However, in this process, some O3 enters the system and reacts with TrOCs
and inorganic ions in the system too early, leading to the premature consumption of O3
and the generation of various OBPs [59,102]. Researchers have gradually solved this defect;
that is, by adding other catalysts and optimising the reaction device, O3 is preferentially
consumed to produce two free radicals [103,104]. Subsequently, H2O2 generated by PMS
hydrolysis is also converted into •OH. At the same time, excess SO4

•− in the system also
reacts with H2O or hydroxide ions to form •OH, reaching dynamic equilibrium [34,35].
During the degradation process, the concentration of O3, the concentration of PMS and the
molar mass ratio of O3 to PMS are the keys to an efficient reaction. Sufficient O3 and PMS
can keep the reaction at a high level. See Figure 3 for details.
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Therefore, to ensure the production rate of •OH in a neutral environment, it usually
needs to be achieved by adding a catalyst or by electrolysis [105]. In addition, the decom-
position of O3 is very slow when •OH is used as the main active oxidation free radical
under acidic conditions in an OH−-deficient system. This can affect the formation of •OH
and SO4

•− active free radicals [106]. At this time, TrOCs were directly oxidised in the form
of O3 molecules in the system. Neutral and alkaline environments can often improve the
degradation efficiency of TrOCs. However, in a system where SO4

•− is the main active
oxidation radical or •OH does not occupy the main degradation position, the increase in
pH has a minor impact on the degradation efficiency of TrOCs. The main reason is that
increasing pH can increase the O3 consumption rate constant, OH− triggers the decomposi-
tion of ozone to generate •OH, and •OH can accelerate the decomposition of PMS [107].
O3/PMS usually shows the strongest oxidation performance when the pH is about 9. More
free radicals are produced in the system with increasing pH, and these free radicals may
quench each other, resulting in a decline in the degradation effect, which may be the reason
for the decline in the oxidation effect of the O3/PMS process in a high-pH environment.

Generally, •OH and SO4
•− are the main reactive oxygen species (ROS) in O3/PMS.

Researchers deduced the degradation path of TrOCs in the system by considering the
preferential attack sites of these two free radicals. On the one hand, SO4

•− was electrophilic
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and was easy to react with electron donor groups such as hydroxyl (•OH), alkoxy (•RO) and
amino (•NH2) but not easy to react with nitro (•NO2), carbonyl (C=O), or other electron-
withdrawing groups [23,108]. On the other hand, •OH had a low selectivity for most
TrOCs in the system. Therefore, the two active radicals had good synergy under general
conditions. For example, prometon (PMT)’s aromatic ring or side chain (isopropylamino
and alkoxy) may be attacked by •OH and SO4

•−, mainly through addition to unsaturated
carbon, H-abstraction and electron abstraction [109–111]. SO4

•− mainly degrades organics
through electron transfer, while •OH degrades TrOCs through its addition. This also
reflects how selective SO4

•− is in the degradation of organic matter.
Generally speaking, the greater the amount of O3 added, the higher the degradation

rate of TrOCs. In this process, O3 can directly oxidise TrOCs or react with H2O to generate
•OH to further improve the oxidation capacity of the system. The higher the concentration
of O3, the faster the rate of •OH formation. However, there is an optimal value for
the additional amount of PMS. If the addition exceeds this optimal value, the reaction
rate remains unchanged, and the degradation rate does not increase significantly. This
phenomenon may be because excessive HSO5

− can react with •OH and SO4
•−, so only a

few oxide species can be generated. Another reason may be that excessive PMS quenches
free radicals. It can be seen that excessive PMS can promote not only the degradation of
pollutants but also increase the operation cost [47,112].

Additionally, the impact of other reaction parameters (such as reactant concentration),
reaction conditions (such as pH and temperature), water quality (such as the concentration
of inorganic substances (Cl−, Br− and I3−) and organic compounds) on the reaction system
is also one of the urgent key points in the O3/PMS process to explore. The SO4

•−-based
traditional advanced oxidation technology can be used for degrading organic pollutants in
the O3/PMS system to realise technical iteration in the future.

5. Outlook

The above analysis concludes that the following improvements can be made in the
future use of the O3/PMS process to obtain a broader application scenario. See Table 6
for details.

Table 6. Recommendations for improvement of the O3/PMS process.

Scheme Advantages Disadvantages

Enhancing reactor [113]

It can enable a rapid consumption
of O3 to produce free radicals. On
the one hand, it can reduce the
production of OBPs in the system
and the toxicity of secondary
effluent. On the other hand, it can
reduce the consumption of O3,
thereby reducing energy
consumption and cost.

It increases equipment costs.

Adding catalyst [114]

The addition of a catalyst can
increase the formation rate of two
free radicals by adding metal ions
such as Fe2+, M2+ or other
catalysts.

The catalyst can react with other
inorganic ions or NOM in the
system to form DBPs.

Integrating with other processes
[115]

Integration with UV, US and other
processes can increase the
generation rate of the two free
radicals.

Currently, this scheme does not
qualitatively improve the
degradation efficiency of the
O3/PMS process but increases the
cost.

Preremoval of inorganic ions and
NOM [116]

Inorganic ions with adverse
effects in the system can be
removed in advance, or the
concentration of NOM can be
controlled by biosorption or
sludge method.

The cost increases, and the
degradation process becomes
complex and lengthy.
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At present, there is still a lack of a comprehensive understanding of the O3/PMS
system, including specific degradation effects and mechanisms of various TrOCs in high-
concentration organic wastewater, OBPs generated in the degradation process, toxicity
changes in the degradation process, residual toxicity of the secondary effluent and reliable
economic research of this process. Therefore, the above problems limit the application of
this process to specific water treatment schemes.

6. Conclusions

The O3/PMS process has the characteristics of high efficiency. When used in the
pretreatment of highly concentrated organic wastewater, O3/PMS can decompose macro-
molecular organic pollutants into small molecular organic pollutants with low toxicity
and easy biochemical degradation to improve the efficiency of subsequent biochemical
degradation. When used as an advanced treatment, TrOCs are directly oxidised by O3 or
•OH or co-oxidised by SO4

•− and •OH. In the future, the traditional advanced oxidation
technology based on SO4

•− can be used for degrading organic pollutants in the O3/PMS
system. The O3/PMS process has high degradation efficiency for TrOCs, but there are
differences in the treatment effects of different organics under different pH environments,
so the optimal reaction conditions still need to be further studied.

Finally, it is proposed that further research should explore the relevant reaction mech-
anism further; that is, the concentration of a single oxidant is relatively accurately detected
in the oxidation system containing many oxidising substances, and the system displays
relatively accurate identification of reactive oxygen species. When used for pretreatment, it
is essential to distinguish the individual effects of each reactive oxygen species relatively
and accurately on subsequent biological treatment. When used for advanced treatment,
identifying the type or structure of organic matter in nonbiodegradable or biodegradable
parts is crucial. In addition, at present, the economy of the O3/PMS process is relatively
poor. Therefore, researchers should also focus on sustainable economic development and
develop more cost-effective advanced oxidation water treatment schemes.
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Abbreviations

AOPs advanced oxidation processes
ASA aspirin
BCPMW biotreated Chinese patent medicine wastewater
BOD biochemical oxygen demand
BTA benzotriazole
COD chemical oxygen demand
CMIT chloro-methyl-isothiazolinone
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DBPs disinfection byproducts
DOC dissolved organic carbon
DOM dissolved organic matter
EEM excitation-emission matrix
MCFNs magnetic copper ferrite nanoparticles
MIT methyl-isothiazolinone
NZVI nanoscale zerovalent iron
NOM natural organic matter
OBPs oxidation byproducts
O3 ozone
PMS peroxymonosulfate
PMT prometon
PNT phenacetin
PFS polymerised ferric sulfate
PWLL polluted water with landfill leachate
Rct, •R total radical formation value
ROCL reverse osmosis concentrated leachate
ROS reactive oxygen species
TOC total organic carbon
TON total organic nitrogen
TrOCs refractory trace organic compounds
UBAF upflow biological aerated filter
US ultrasound
UV ultraviolet
WWTP wastewater treatment plant
2,4-D 2,4-dichlorophenoxyacetic
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