Research and Application of In Situ Sample-Processing Methods for Rapid Simultaneous Detection of Pyrethroid Pesticides in Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. GC Analytical Conditions
2.3. TLC Analytical Conditions
2.4. Analysis of Quick Test Strip
2.5. Sample Preparation
2.6. Matrix Effects
3. Results and Discussion
3.1. Optimization of the Extraction Procedure
3.2. Optimization and Comparison of the Cleanup Procedure
3.2.1. Optimization of Purification Column
3.2.2. Effect of Centrifugation
3.2.3. Effect of Filtration
3.2.4. Effect of Standing Time
3.3. Method Validation
3.4. Comparison with Standard Methods
3.5. Application of Pre-Processing Method in Pyrethroid-Containing Practical Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schettgen, T.; Koch, H.; Drexler, H.; Angerer, J. New Gas Chromatographic–Mass Spectrometric Method for the Determination of Urinary Pyrethroid Metabolites in Environmental Medicine. J. Chromatogr. B 2002, 778, 121–130. [Google Scholar] [CrossRef]
- Lin, X.; Mou, R.; Cao, Z.; Cao, Z.; Chen, M. Analysis of pyrethroid pesticides in Chinese vegetables and fruits by GC–MS/MS. Chem. Pap. 2018, 72, 1953–1962. [Google Scholar] [CrossRef]
- Zhu, P.; Miao, H.; Du, J.; Zou, J.-H.; Zhang, G.-W.; Zhao, Y.-F.; Wu, Y.-N. Organochlorine Pesticides and Pyrethroids in Chinese Tea by Screening and Confirmatory Detection Using Gc-Nci-Ms and Gc-Ms/Ms. J. Agric. Food. Chem. 2014, 62, 7092–7100. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.; Lim, Y.-H.; Kim, T.; Lee, D.; Hong, Y.-C. Association between Urinary 3-Phenoxybenzoic Acid and Body Mass Index in Korean Adults: 1st Korean National Environmental Health Survey. Ann. Occup. Environ. Med. 2016, 28, 2. [Google Scholar] [CrossRef] [Green Version]
- Tuck, S.; Furey, A.; Crooks, S.; Danaher, M. A review of methodology for the analysis of pyrethrin and pyrethroid residues in food of animal origin. Food Addit. Contam. A 2018, 35, 911–940. [Google Scholar] [CrossRef]
- Farkas, Z.; Slate, A.; Whitaker, T.B.; Suszter, G.; Ambrus, A. Use of Combined Uncertainty of Pesticide Residue Results for Testing Compliance with Maximum Residue Limits (Mrls). J. Agric. Food. Chem. 2015, 63, 4418–4428. [Google Scholar] [CrossRef]
- Martel, A.-C.; Mangoni, P.; Gastaldi-Thiéry, C. Validation of a Multiresidue Method for the Determination of Pesticides in Honeybees by Gas Chromatography. Int. J. Environ. Anal. Chem. 2018, 98, 31–44. [Google Scholar] [CrossRef]
- Mahugija, J.A.; Khamis, F.A.; Lugwisha, E.H. Determination of Levels of Organochlorine, Organophosphorus, and Pyrethroid Pesticide Residues in Vegetables from Markets in Dar Es Salaam by Gc-Ms. Int. J. Anal. Chem. 2017, 2017, 4676724. [Google Scholar] [CrossRef]
- Wang, P.; Yang, X.; Wang, J.; Cui, J.; Dong, A.; Zhao, H.; Zhang, L.; Wang, Z.; Xu, R.; Li, W. Multi-Residue Method for Determination of Seven Neonicotinoid Insecticides in Grains Using Dispersive Solid-Phase Extraction and Dispersive Liquid–Liquid Micro-Extraction by High Performance Liquid Chromatography. Food Chem. 2012, 134, 1691–1698. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Liu, P.; Jia, Q.; Han, H.; Jiang, C.; Qiu, J. Determination of Three Typical Metabolites of Pyrethroid Pesticides in Tea Using a Modified Quechers Sample Preparation by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Foods 2021, 10, 189. [Google Scholar] [CrossRef]
- Madej, K.; Kalenik, T.K.; Piekoszewski, W. Sample Preparation and Determination of Pesticides in Fat-Containing Foods. Food Chem. 2018, 269, 527–541. [Google Scholar] [CrossRef]
- Samsidar, A.; Siddiquee, S.; Shaarani, S.M. A Review of Extraction, Analytical and Advanced Methods for Determination of Pesticides in Environment and Foodstuffs. Trends. Food Sci. Technol. 2018, 71, 188–201. [Google Scholar] [CrossRef]
- Xu, Z.; Huan, Z.; Luo, J.; Xie, D. Simultaneous Determination of Eight Pesticide Residues in Cowpeas by Gc–Ecd. J. Chromatogr. Sci. 2016, 55, 680–684. [Google Scholar] [CrossRef]
- Wu, L.; Cao, Z.; Mou, R.; Lin, X.; Chen, M. Determination of 10 Pyrethroids Pesticide Residues in Rice by Gc-Ms-Ms. Agric. Sci. Technol. 2017, 18, 1526–1530. [Google Scholar]
- Tsoutsi, C.; Konstantinou, I.; Hela, D.; Albanis, T. Screening Method for Organophosphorus Insecticides and Their Metabolites in Olive Oil Samples Based on Headspace Solid-Phase Microextraction Coupled with Gas Chromatography. Anal. Chim. Acta 2006, 573, 216–222. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, P. Determination of Five Pyrethroid Pesticides Residue in Liquid Milk by Gas Chromatography Using Multi-Walled Carbon Nanotubes as Dispersion Solid Phase Extraction Sorbent. Acta Chromatogr. 2018, 30, 141–146. [Google Scholar] [CrossRef]
- Hildmann, F.; Gottert, C.; Frenzel, T.; Kempe, G.; Speer, K. Pesticide Residues in Chicken Eggs—A Sample Preparation Methodology for Analysis by Gas and Liquid Chromatography/Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1403, 1–20. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Khoshmaram, L. A Rapid and Sensitive Method for the Analysis of Pyrethroid Pesticides Using the Combination of Liquid–Liquid Extraction and Dispersive Liquid–Liquid Microextraction. CLEAN Soil Air Water 2015, 43, 51–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Jiao, B. Determination of Ten Pyrethroids in Various Fruit Juices: Comparison of Dispersive Liquid–Liquid Microextraction Sample Preparation and Quechers Method Combined with Dispersive Liquid–Liquid Microextraction. Food Chem. 2014, 159, 367–373. [Google Scholar] [CrossRef]
- Shamsipur, M.; Yazdanfar, N.; Ghambarian, M. Combination of Solid-Phase Extraction with Dispersive Liquid–Liquid Microextraction Followed by Gc–Ms for Determination of Pesticide Residues from Water, Milk, Honey and Fruit Juice. Food Chem. 2016, 204, 289–297. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Labella, G.F.; Panseri, S.; Britti, D.; Galbiati, F.; Villa, R.; Arioli, F. Accelerated Solvent Extraction by Using an ‘in-Line’clean-up Approach for Multiresidue Analysis of Pesticides in Organic Honey. Food. Addit. Contam. A 2017, 34, 809–818. [Google Scholar]
- David, F.; Devos, C.; Dumont, E.; Yang, Z.; Sandra, P.; Huertas-Pérez, J.F. Determination of Pesticides in Fatty Matrices Using Gel Permeation Clean-up Followed by Gc-Ms/Ms and Lc-Ms/Ms Analysis: A Comparison of Low-and High-Pressure Gel Permeation Columns. Talanta 2017, 165, 201–210. [Google Scholar] [CrossRef]
- Anastassiades, M.; Scherbaum, E.; Bertsch, D. Validation of a Simple and Rapid Multiresidue Method (Quechers) and Its Implementation in Routine Pesticide Analysis. Presented at the MGPR Symposium, Aix en Provence, France, 20–24 May 2003. [Google Scholar]
- Camara, M.A.; Barba, A.; Cermeño, S.; Martinez, G.; Oliva, J. Effect of Processing on the Disappearance of Pesticide Residues in Fresh-Cut Lettuce: Bioavailability and Dietary Risk. J. Environ. Sci. Health Part B 2017, 52, 880–886. [Google Scholar] [CrossRef]
- Yan, H.; Liu, X.; Cui, F.; Yun, H.; Li, J.; Ding, S.; Yang, D.; Zhang, Z. Determination of Amantadine and Rimantadine in Chicken Muscle by Quechers Pretreatment Method and Uhplc Coupled with Ltq Orbitrap Mass Spectrometry. J. Chromatogr. B 2013, 938, 8–13. [Google Scholar] [CrossRef]
- Frenich, A.G.; Romero-González, R.; Gómez-Pérez, M.L.; Vidal, J.L.M. Multi-Mycotoxin Analysis in Eggs Using a Quechers-Based Extraction Procedure and Ultra-High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. J. Chromatogr. A 2011, 1218, 4349–4356. [Google Scholar] [CrossRef]
- Masiá, A.; Blasco, C.; Picó, Y. Last Trends in Pesticide Residue Determination by Liquid Chromatography–Mass Spectrometry. Trends. Environ. Anal 2014, 2, 11–24. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, L.; Zhou, L.; Zhang, F.; Kang, S.; Pan, C. Multi-Walled Carbon Nanotubes as Alternative Reversed-Dispersive Solid Phase Extraction Materials in Pesticide Multi-Residue Analysis with Quechers Method. J. Chromatogr. A 2012, 1225, 17–25. [Google Scholar] [CrossRef]
- Kolberg, D.I.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Development of a Fast Multiresidue Method for the Determination of Pesticides in Dry Samples (Wheat Grains, Flour and Bran) Using Quechers Based Method and Gc–Ms. Food Chem. 2011, 125, 1436–1442. [Google Scholar] [CrossRef]
- Zhao, P.; Fan, S.; Yu, C.; Zhang, J.; Pan, C. Multiplug Filtration Clean-up with Multiwalled Carbon Nanotubes in the Analysis of Pesticide Residues Using Lc–Esi-Ms/Ms. J. Sep. Sci. 2013, 36, 3379–3386. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Computational-Based Study of Quechers Extraction of Cyclohexanedione Herbicide Residues in Soil by Chemometric Modeling. Molecules 2018, 23, 2009. [Google Scholar] [CrossRef] [Green Version]
- Dashtbozorgi, Z.; Ramezani, M.K.; Waqif-Husain, S. Optimization and Validation of a New Pesticide Residue Method for Cucumber and Tomato Using Acetonitrile-Based Extraction-Dispersive Liquid–Liquid Microextraction Followed by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods 2013, 5, 1192–1198. [Google Scholar] [CrossRef]
- Chen, J.-N.; Lian, Y.-J.; Zhou, Y.-R.; Wang, M.-H.; Zhang, X.-Q.; Wang, J.-H.; Wu, Y.-N.; Wang, M.-L. Determination of 107 Pesticide Residues in Wolfberry with Acetate-Buffered Salt Extraction and Sin-Quechers Nano Column Purification Coupled with Ultra Performance Liquid Chromatography Tandem Mass Spectrometry. Molecules 2019, 24, 2918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Xu, X.; Luo, J.; Jin, S.; Chen, W.; Liu, Z.; Tian, C. Simultaneous Determination of 131 Pesticides in Tea by on-Line Gpc-Gc–Ms/Ms Using Graphitized Multi-Walled Carbon Nanotubes as Dispersive Solid Phase Extraction Sorbent. Food Chem. 2019, 276, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Lei, S.; Qiu, S.; Guo, L.; Yi, S.; Liu, W. A Multi-Residue Method for the Determination of Pesticides in Tea Using Multi-Walled Carbon Nanotubes as a Dispersive Solid Phase Extraction Absorbent. Food Chem. 2014, 153, 121–129. [Google Scholar] [CrossRef]
- Zhao, Q.; Wei, F.; Luo, Y.-B.; Ding, J.; Xiao, N.; Feng, Y.-Q. Rapid Magnetic Solid-Phase Extraction Based on Magnetic Multiwalled Carbon Nanotubes for the Determination of Polycyclic Aromatic Hydrocarbons in Edible Oils. J. Agric. Food. Chem. 2011, 59, 12794–12800. [Google Scholar] [CrossRef]
- Wang, S.; Qi, P.; Di, S.; Wang, J.; Wu, S.; Wang, X.; Wang, Z.; Wang, Q.; Wang, X.; Zhao, C. Significant Role of Supercritical Fluid Chromatography-Mass Spectrometry in Improving the Matrix Effect and Analytical Efficiency During Multi-Pesticides Residue Analysis of Complex Chrysanthemum Samples. Anal. Chim. Acta 2019, 1074, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wang, Z.; Li, K.; Guo, X.; Zhao, L. Multi-Residue Enantiomeric Analysis of 18 Chiral Pesticides in Water, Soil and River Sediment Using Magnetic Solid-Phase Extraction Based on Amino Modified Multiwalled Carbon Nanotubes and Chiral Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1568, 8–21. [Google Scholar] [CrossRef]
- Dong, J.; Feng, Z.; Kang, S.; An, M.; Wu, G. Magnetic Solid-Phase Extraction Based on Magnetic Amino Modified Multiwalled Carbon Nanotubes for the Fast Determination of Seven Pesticide Residues in Water Samples. Anal. Methods 2020, 12, 2747–2756. [Google Scholar] [CrossRef]
- Han, Y.; Zou, N.; Song, L.; Li, Y.; Qin, Y.; Liu, S.; Li, X.; Pan, C. Simultaneous Determination of 70 Pesticide Residues in Leek, Leaf Lettuce and Garland Chrysanthemum Using Modified Quechers Method with Multi-Walled Carbon Nanotubes as Reversed-Dispersive Solid-Phase Extraction Materials. J. Chromatogr. B 2015, 1005, 56–64. [Google Scholar] [CrossRef]
- Fan, S.; Zhao, P.; Yu, C.; Pan, C.; Li, X. Simultaneous Determination of 36 Pesticide Residues in Spinach and Cauliflower by Lc-Ms/Ms Using Multi-Walled Carbon Nanotubes-Based Dispersive Solid-Phase Clean-Up. Food Additi. Contam. A 2014, 31, 73–82. [Google Scholar] [CrossRef]
- Han, Y.; Song, L.; Zou, N.; Chen, R.; Qin, Y.; Pan, C. Multi-Residue Determination of 171 Pesticides in Cowpea Using Modified Quechers Method with Multi-Walled Carbon Nanotubes as Reversed-Dispersive Solid-Phase Extraction Materials. J. Chromatogr. B 2016, 1031, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Song, L.; Liu, S.; Zou, N.; Li, Y.; Qin, Y.; Li, X.; Pan, C. Simultaneous Determination of 124 Pesticide Residues in Chinese Liquor and Liquor-Making Raw Materials (Sorghum and Rice Hull) by Rapid Multi-Plug Filtration Cleanup and Gas Chromatography–Tandem Mass Spectrometry. Food Chem. 2018, 241, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Huang, B.; Zhang, J.; Han, Y.; Li, Y.; Zou, N.; Yang, J.; Pan, C. Analytical Method for 44 Pesticide Residues in Spinach Using Multi-Plug-Filtration Cleanup Based on Multiwalled Carbon Nanotubes with Liquid Chromatography and Tandem Mass Spectrometry Detection. J. Sep. Sci. 2016, 39, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Zou, N.; Han, Y.; Li, Y.; Qin, Y.; Gu, K.; Zhang, J.; Pan, C.; Li, X. Multiresidue Method for Determination of 183 Pesticide Residues in Leeks by Rapid Multiplug Filtration Cleanup and Gas Chromatography–Tandem Mass Spectrometry. J. Agric. Food. Chem. 2016, 64, 6061–6070. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Wang, J.; Hua, Q.; Wu, J.; Shen, X.; Sun, Y.; Lei, H. Three Lateral Flow Immunochromatographic Assays Based on Different Nanoparticle Probes for on-Site Detection of Tylosin and Tilmicosin in Milk and Pork. Sens. Actuators B Chem. 2019, 301, 127059. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Mao, S.; Su, D.; Jin, H.; Wang, Y.; Xu, F.; Li, H.; Wang, Y. In Situ-Generated Co0-Co3o4/N-Doped Carbon Nanotubes Hybrids as Efficient and Chemoselective Catalysts for Hydrogenation of Nitroarenes. ACS Catal. 2015, 5, 4783–4789. [Google Scholar] [CrossRef]
- Pan, X.; Dong, F.; Xu, J.; Liu, X.; Chen, Z.; Liu, N.; Chen, X.; Tao, Y.; Zhang, H.; Zheng, Y. Simultaneous Determination of Chlorantraniliprole and Cyantraniliprole in Fruits, Vegetables and Cereals Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry with the Isotope-Labelled Internal Standard Method. Anal. Bioanal. Chem. 2015, 407, 4111–4120. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Li, L.; Wang, Y. Determination of 103 Pesticides and Their Main Metabolites in Animal Origin Food by Quechers and Liquid Chromatography–Tandem Mass Spectrometry. Food Anal. Method 2017, 10, 1826–1843. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.; Chavez-Eng, C. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on Hplc–Ms/Ms. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Maštovská, K.; Yun, S.J. Evaluation of Two Fast and Easy Methods for Pesticide Residue Analysis in Fatty Food Matrixes. J. AOAC Int. 2005, 88, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of Quechers Sample Preparation Methods for the Analysis of Pesticide Residues in Fruits and Vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef]
- González-Curbelo, M.; Socas-Rodríguez, B.; Herrera-Herrera, A.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Evolution and Applications of the Quechers Method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Coello-Villanueva, J.M.; Acereto-Escoffié, P.O.M.; Barrón-Zambrano, J.A.; Muñoz-Rodríguez, D. Evaluation of Quechers Method for Gc Analysis of Pesticides in Tropical Fruits from Yucatan, Mexico. J. Mex. Chem. Soc. 2017, 61, 290–296. [Google Scholar] [CrossRef]
- GB 23200.113-2018; National Food Safety Standard Determination of 208 Pesticides and Their Metabolites Residues in Plant-Derived Foods by Gas Chromatography-Mass Spectrometry. National Health and Family Planning Commission: Beijing, China, 2018.
- NY/T 761-2008; Determination of Multi-Residues of Organophosphorus, Organochlorine, Pyrethroid and Carbamate Pesticides in Vegetables and Fruits. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2008.
- SANTE/12682/2019; Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. European Commission Directorate General for Health and Food Safety: Maastricht, The Netherlands, 2019.
Pesticides | Recovery Rate/% (RSD/%) | ME | ||||||
---|---|---|---|---|---|---|---|---|
Cucumber (MPF2) | Greengrocery (MPF1) | MPF2 | MPF1 | |||||
N | Y | N | Y | N | Y | N | Y | |
Bifenthrin | 94 (3.0) | 90 (1.3) | 95 (0.2) | 99 (3.2) | 0.92 | 0.92 | 0.93 | 1.03 |
Fenpropathrin | 87 (3.7) | 89 (1.8) | 88 (2.5) | 85 (9.2) | 0.99 | 0.99 | 1.04 | 1.03 |
Cyhalothrin | 87 (4.6) | 91 (1.3) | 111 (1.4) | 112 (6.0) | 1.29 | 1.33 | 1.16 | 1.19 |
Permethrin | 86 (4.6) | 88 (3.1) | 71 (0.1) | 74 (3.5) | 0.76 | 0.76 | 0.96 | 1.06 |
Cyfluthrin | 84 (3.5) | 86 (2.0) | 105 (2.1) | 101 (8.4) | 1.38 | 1.4 | 1.29 | 1.22 |
Cypermethrin | 86 (6.0) | 81 (3.2) | 96 (8.1) | 96 (6.2) | 0.84 | 0.86 | 1.07 | 1.15 |
Flucythrinate | 85 (3.2) | 94 (4.4) | 108 (5.6) | 104 (4.4) | 0.94 | 0.92 | 1.15 | 1.14 |
Fenvalerate | 87 (4.7) | 85 (1.4) | 99 (0.8) | 96 (5.5) | 1.37 | 1.42 | 1.18 | 1.11 |
Fluvalinate | 88 (2.9) | 92 (1.8) | 104 (1.7) | 103 (2.4) | 1.38 | 1.43 | 1.21 | 1.21 |
Deltamethrin | 90 (1.1) | 93 (2.8) | 98 (3.6) | 99 (1.0) | 1.43 | 1.45 | 1.21 | 1.19 |
Pesticides | Recovery Rate/% (RSD/%) | |||
---|---|---|---|---|
Cucumber (Simple Substrate) | Greengrocery (Complex Substrate) | |||
N | Y | N | Y | |
Bifenthrin | 81 (3.5) | 82 (3.0) | 72 (4.2) | 80 (2.0) |
Fenpropathrin | 79 (4.9) | 82 (3.2) | 70 (9.6) | 80 (8.5) |
Cyhalothrin | 81 (6.4) | 81 (4.3) | 71 (6.6) | 85 (4.3) |
Permethrin | 79 (6.5) | 84 (2.8) | 56 (9.2) | 70 (9.3) |
Cyfluthrin | 79 (3.5) | 81 (3.1) | 58 (8.6) | 75 (3.1) |
Cypermethrin | 80 (8.5) | 81 (5.5) | 62 (8.2) | 80 (4.0) |
Flucythrinate | 81 (4.1) | 83 (4.3) | 62 (12.0) | 79 (8.4) |
Fenvalerate | 80 (4.9) | 76 (4.7) | 69 (10.2) | 89 (5.5) |
Fluvalinate | 84 (3.0) | 84 (1.5) | 63 (9.9) | 78 (9.2) |
Deltamethrin | 73 (8.7) | 77 (5.0) | 58 (8.3) | 71 (8.9) |
Pesticides | Chinese Cabbage (Simple Substrate) | Tomato (Simple Substrate) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | |||||
0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | 0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | |||||||
Bifenthrin | 0.9968 | 0.0002 | 0.0006 | 101 (3.8) | 99 (1.2) | 89 (2.5) | 0.9959 | 0.0001 | 0.0004 | 99 (3.5) | 100 (1.1) | 101 (4.3) |
Fenpropathrin | 0.9946 | 0.0002 | 0.0006 | 90 (5.8) | 89 (1.6) | 78 (4.0) | 0.9969 | 0.0001 | 0.0004 | 101 (3.4) | 100 (0.7) | 102 (2.0) |
Cyhalothrin | 0.9937 | 0.0001 | 0.0004 | 70 (9.0) | 71 (3.1) | 72 (7.2) | 0.9949 | 0.0002 | 0.0007 | 93 (5.6) | 107 (1.4) | 110 (8.9) |
Permethrin | 0.9971 | 0.0005 | 0.002 | 107 (8.7) | 110 (2.2) | 96 (0.7) | 0.9981 | 0.0003 | 0.001 | 106 (5.5) | 96 (1.9) | 89 (1.3) |
Cyfluthrin | 0.9949 | 0.0001 | 0.0003 | 78 (9.3) | 72 (4.2) | 79 (8.2) | 0.9964 | 0.0001 | 0.0003 | 99 (7.9) | 97 (0.9) | 103 (6.9) |
Cypermethrin | 0.9918 | 0.0001 | 0.0002 | 93 (1.9) | 94 (2.5) | 85 (5.5) | 0.9963 | 0.0001 | 0.0002 | 102 (4.0) | 99 (2.6) | 100 (6.8) |
Flucythrinate | 0.9909 | 0.0003 | 0.0009 | 81 (9.1) | 85 (1.4) | 76 (5.3) | 0.9975 | 0.0002 | 0.0008 | 94 (3.2) | 100 (0.4) | 106 (1.1) |
Fenvalerate | 0.9736 | 0.0006 | 0.002 | 73 (9.2) | 76 (3.6) | 78 (7.3) | 0.9962 | 0.001 | 0.004 | 95 (3.9) | 100 (0.1) | 107 (7.1) |
Fluvalinate | 0.9647 | 0.0003 | 0.0009 | 86 (9.6) | 77 (5.7) | 79 (5.3) | 0.9928 | 0.0005 | 0.002 | 106 (5.0) | 107 (1.0) | 108 (5.5) |
Deltamethrin | 0.9958 | 0.0007 | 0.002 | 76 (2.5) | 73 (5.4) | 79 (8.3) | 0.9932 | 0.002 | 0.005 | 97 (6.2) | 108 (2.4) | 105 (8.2) |
Pesticides | Wax Gourd (Simple Substrate) | Bitter Gourd (Simple Substrate) | ||||||||||
R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | |||||
0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | 0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | |||||||
Bifenthrin | 0.9999 | 0.0002 | 0.0005 | 93 (0.6) | 92 (3.4) | 77 (3.1) | 0.9999 | 0.0003 | 0.0009 | 82 (2.1) | 77 (1.0) | 83 (6.8) |
Fenpropathrin | 0.9997 | 0.0002 | 0.0005 | 98 (1.2) | 91 (4.5) | 76 (7.3) | 0.9999 | 0.0003 | 0.0008 | 87 (1.5) | 75 (1.3) | 79 (1.4) |
Cyhalothrin | 0.9993 | 0.0001 | 0.0005 | 96 (2.7) | 89 (3.2) | 76 (7.5) | 0.9998 | 0.0001 | 0.0003 | 85 (0.7) | 72 (1.9) | 77 (5.2) |
Permethrin | 0.9997 | 0.0004 | 0.001 | 78 (4.6) | 84 (4.0) | 70 (4.3) | 0.9998 | 0.0005 | 0.002 | 83 (5.1) | 77 (7.8) | 76 (7.7) |
Cyfluthrin | 0.9980 | 0.0001 | 0.0002 | 98 (1.8) | 85 (3.6) | 76 (7.2) | 0.9997 | 0.0001 | 0.0003 | 86 (8.5) | 77 (2.9) | 79 (2.0) |
Cypermethrin | 0.9981 | 0.0001 | 0.0002 | 106 (1.4) | 89 (3.4) | 79 (4.2) | 0.9997 | 0.0001 | 0.0003 | 83 (4.7) | 78 (4.3) | 71 (4.8) |
Flucythrinate | 0.9977 | 0.0003 | 0.0009 | 107 (0.5) | 90 (3.5) | 70 (2.2) | 0.9996 | 0.0003 | 0.001 | 88 (1.4) | 80 (2.5) | 72 (2.3) |
Fenvalerate | 0.9976 | 0.0004 | 0.001 | 104 (1.5) | 86 (3.0) | 76 (2.8) | 0.9996 | 0.0004 | 0.001 | 83 (3.3) | 76 (6.4) | 78 (8.3) |
Fluvalinate | 0.9969 | 0.0002 | 0.0006 | 113 (1.2) | 90 (3.3) | 76 (3.2) | 0.9994 | 0.0002 | 0.0007 | 96 (9.5) | 79 (2.6) | 70 (2.8) |
Deltamethrin | 0.9974 | 0.0004 | 0.001 | 90 (3.5) | 77 (3.6) | 70 (7.1) | 0.9996 | 0.0004 | 0.001 | 78 (3.5) | 71 (6.7) | 74 (3.1) |
Pesticides | Asparagus (Simple Substrate) | Water Spinach (Complex Substrate) | ||||||||||
R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | |||||
0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | 0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | |||||||
Bifenthrin | 0.9947 | 0.0001 | 0.0005 | 91 (4.7) | 90 (4.2) | 90 (2.4) | 0.9960 | 0.001 | 0.005 | 103 (3.3) | 104 (7.4) | 97 (6.8) |
Fenpropathrin | 0.9945 | 0.0001 | 0.0004 | 97 (4.1) | 99 (1.5) | 101 (6.1) | 0.9963 | 0.002 | 0.005 | 93 (5.3) | 99 (3.2) | 92 (6.9) |
Cyhalothrin | 0.9951 | 0.0002 | 0.0005 | 93 (1.6) | 95 (7.4) | 104 (3.5) | 0.9956 | 0.0002 | 0.0007 | 87 (3.7) | 86 (7.3) | 83 (7.4) |
Permethrin | 0.9918 | 0.0005 | 0.002 | 88 (4.8) | 81 (2.4) | 72 (1.1) | 0.9958 | 0.003 | 0.01 | 103 (9.9) | 96 (5.6) | 98 (5.4) |
Cyfluthrin | 0.9944 | 0.0001 | 0.0003 | 97 (2.5) | 82 (1.1) | 85 (8.4) | 0.9959 | 0.0009 | 0.003 | 83 (1.6) | 87 (8.8) | 78 (6.8) |
Cypermethrin | 0.9945 | 0.0001 | 0.0002 | 101 (3.8) | 109 (1.4) | 115 (5.8) | 0.9968 | 0.0007 | 0.002 | 93 (4.4) | 98 (7.6) | 98 (7.4) |
Flucythrinate | 0.9943 | 0.0003 | 0.0009 | 102 (1.1) | 107 (1.1) | 105 (1.5) | 0.9967 | 0.002 | 0.008 | 89 (3.8) | 98 (8.8) | 94 (2.5) |
Fenvalerate | 0.9949 | 0.0007 | 0.002 | 97 (3.3) | 104 (1.3) | 102 (4.4) | 0.9958 | 0.003 | 0.01 | 71 (6.3) | 87 (7.2) | 81 (6.8) |
Fluvalinate | 0.9942 | 0.0003 | 0.001 | 105 (1.0) | 109 (0.8) | 111 (6.3) | 0.9967 | 0.001 | 0.005 | 90 (3.4) | 99 (3.3) | 82 (1.7) |
Deltamethrin | 0.9944 | 0.0008 | 0.003 | 88 (7.6) | 92 (9.3) | 102 (6.6) | 0.9937 | 0.004 | 0.01 | 72 (5.7) | 78 (7.6) | 72 (9.1) |
Pesticides | Cowpea (Complex Substrate) | Eggplant (Complex Substrate) | ||||||||||
R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | |||||
0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | 0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | |||||||
Bifenthrin | 0.9961 | 0.0001 | 0.0005 | 104 (1.1) | 103 (0.3) | 107 (1.4) | 0.9951 | 0.0006 | 0.002 | 102 (0.9) | 100 (0.7) | 102 (4.4) |
Fenpropathrin | 0.9963 | 0.0001 | 0.0005 | 106 (1.3) | 105 (1.0) | 112 (1.2) | 0.9961 | 0.0007 | 0.002 | 104 (3.9) | 102 (6.8) | 107 (4.7) |
Cyhalothrin | 0.9967 | 0.0002 | 0.0005 | 96 (2.1) | 102 (0.4) | 105 (1.8) | 0.9987 | 0.0007 | 0.002 | 89 (4.6) | 95 (6.4) | 115 (2.3) |
Permethrin | 0.9917 | 0.0005 | 0.002 | 103 (1.8) | 100 (1.7) | 106 (5.6) | 0.9874 | 0.007 | 0.02 | 103 (6.6) | 97 (4.8) | 103 (9.5) |
Cyfluthrin | 0.9964 | 0.0001 | 0.0003 | 102 (8.6) | 97 (2.3) | 108 (7.3) | 0.9982 | 0.004 | 0.01 | 86 (4.4) | 86 (1.4) | 106 (6.6) |
Cypermethrin | 0.9963 | 0.0001 | 0.0003 | 96 (1.8) | 106 (0.9) | 114 (7.4) | 0.9957 | 0.002 | 0.008 | 103 (5.5) | 95 (7.5) | 108 (3.5) |
Flucythrinate | 0.9964 | 0.0003 | 0.001 | 105 (2.6) | 109 (1.0) | 103 (8.6) | 0.9963 | 0.007 | 0.02 | 95 (1.2) | 98 (6.3) | 115 (4.8) |
Fenvalerate | 0.9955 | 0.001 | 0.003 | 105 (2.6) | 95 (1.9) | 117 (3.9) | 0.9986 | 0.003 | 0.009 | 94 (7.8) | 83 (5.4) | 105 (5.6) |
Fluvalinate | 0.9963 | 0.0004 | 0.001 | 107 (3.9) | 101 (0.2) | 106 (1.6) | 0.9984 | 0.002 | 0.005 | 104 (4.1) | 98 (1.6) | 99 (4.4) |
Deltamethrin | 0.9961 | 0.001 | 0.004 | 75 (2.5) | 74 (7.7) | 89 (3.5) | 0.9980 | 0.005 | 0.02 | 76 (4.5) | 80 (8.1) | 89 (8.6) |
Pesticides | Leeks (Complex Substrate) | Cabbage (Complex Substrate) | ||||||||||
R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | R2 | LOD/mg/kg | LOQ/mg/kg | Recovery Rate/% (RSD/%) | |||||
0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | 0.05 mg/kg | 0.10 mg/kg | 0.20 mg/kg | |||||||
Bifenthrin | 1.0000 | 0.002 | 0.007 | 102 (2.1) | 100 (1.1) | 98 (1.1) | 0.9999 | 0.0005 | 0.002 | 99 (1.9) | 97 (2.6) | 95 (2.8) |
Fenpropathrin | 0.9997 | 0.002 | 0.007 | 107 (5.1) | 98 (1.2) | 79 (2.9) | 0.9999 | 0.0005 | 0.002 | 101 (1.6) | 96 (1.4) | 95 (4.9) |
Cyhalothrin | 0.9997 | 0.0007 | 0.002 | 92 (2.8) | 98 (0.8) | 101 (2.5) | 0.9997 | 0.0001 | 0.0005 | 90 (2.3) | 96 (2.5) | 101 (5.4) |
Permethrin | 0.9995 | 0.003 | 0.01 | 101 (2.8) | 94 (2.4) | 75 (5.6) | 0.9990 | 0.0005 | 0.002 | 95 (8.5) | 89 (4.8) | 81 (1.4) |
Cyfluthrin | 0.9994 | 0.0007 | 0.002 | 97 (5.6) | 92 (0.8) | 92 (2.1) | 0.9996 | 0.0001 | 0.0004 | 90 (4.6) | 93 (6.0) | 91 (3.0) |
Cypermethrin | 0.9995 | 0.0006 | 0.002 | 98 (1.7) | 100 (1.9) | 100 (1.1) | 0.9996 | 0.0001 | 0.0004 | 90 (3.0) | 93 (4.8) | 96 (7.6) |
Flucythrinate | 0.9994 | 0.003 | 0.008 | 97 (1.4) | 100 (2.8) | 101 (3.0) | 0.9996 | 0.0005 | 0.002 | 91 (2.4) | 93 (3.4) | 94 (8.7) |
Fenvalerate | 0.9994 | 0.0007 | 0.002 | 120 (4.0) | 107 (3.8) | 91 (1.7) | 0.9996 | 0.0006 | 0.002 | 86 (2.9) | 88 (4.4) | 89 (5.1) |
Fluvalinate | 0.9989 | 0.0004 | 0.001 | 105 (4.3) | 92 (4.0) | 87 (3.5) | 0.9993 | 0.0003 | 0.001 | 115 (2.0) | 96 (6.2) | 90 (5.3) |
Deltamethrin | 0.9988 | 0.0009 | 0.003 | 82 (7.7) | 84 (7.5) | 81 (9.1) | 0.9989 | 0.0007 | 0.002 | 73 (4.3) | 79 (8.8) | 77 (9.3) |
Pesticides | Recovery Rate/% (RSD/%) | |||||
---|---|---|---|---|---|---|
Cucumber (Simple Substrate) | Greengrocery (Complex Substrate) | |||||
This Method | AOAC2007.1 | GB23200.113 | This Method | AOAC2007.1 | GB23200.113 | |
Bifenthrin | 94 (3.0) | 91 (1.4) | 88 (1.1) | 95 (0.2) | 94 (8.8) | 93 (4.9) |
Fenpropathrin | 87 (3.7) | 89 (2.3) | 89 (0.2) | 88 (2.5) | 90 (3.9) | 88 (3.7) |
Cyhalothrin | 87 (4.6) | 90 (4.0) | 94 (0.6) | 111 (1.4) | 103 (3.5) | 100 (4.3) |
Permethrin | 86(4.6) | 89 (1.4) | 98 (4.7) | 71 (0.1) | 82 (7.9) | 74 (4.4) |
Cyfluthrin | 84 (3.5) | 90 (3.8) | 92 (2.1) | 105 (2.1) | 99 (0.8) | 95 (3.4) |
Cypermethrin | 86 (6.0) | 88 (1.8) | 90 (1.2) | 96 (8.1) | 89 (0.9) | 84 (1.8) |
Flucythrinate | 85 (3.2) | 87 (3.5) | 90 (2.2) | 108 (5.6) | 102 (7.6) | 96 (7.9) |
Fenvalerate | 87 (4.7) | 92 (2.5) | 97 (1.5) | 99 (0.8) | 92 (3.4) | 85 (9.3) |
Fluvalinate | 88 (2.9) | 94 (4.2) | 95 (4.4) | 104 (1.7) | 106 (0.2) | 99 (4.5) |
Deltamethrin | 90 (1.1) | 91 (4.9) | 97 (2.3) | 98 (3.6) | 98 (1.4) | 93 (9.2) |
Number | Sample | Pesticides | Results (mg/kg) | MRLs (mg/kg) | ||
---|---|---|---|---|---|---|
GC | TLC | Gold Colloidal Test Strip | ||||
1 | Greengrocery 1 | Fenpropathrin | 0.16 | − | − | 1 |
Cypermethrin | 0.94 | − | − | 2 | ||
2 | Greengrocery 2 | Cypermethrin | 0.65 | − | − | 2 |
3 | Greengrocery 3 | Cypermethrin | 0.80 | − | − | 2 |
4 | Greengrocery 4 | Cypermethrin | 0.79 | − | − | 2 |
5 | Greengrocery 5 | Cypermethrin | 0.84 | − | − | 2 |
6 | Greengrocery 6 | Cypermethrin | 0.27 | − | − | 2 |
7 | Water spinach 1 | Cyhalothrin | 0.051 | − | − | / |
Cypermethrin | 1.27 | + | + | 0.7 | ||
8 | Water spinach 2 | Cyhalothrin | 0.035 | − | − | / |
Cypermethrin | 1.29 | + | + | 0.7 | ||
9 | Water spinach 3 | Cyhalothrin | 0.034 | − | − | / |
Cypermethrin | 1.24 | + | + | 0.7 | ||
10 | Water spinach 4 | Cypermethrin | 0.69 | + | + | 0.7 |
11 | Bell pepper | Bifenthrin | 0.22 | − | − | / |
12 | potato leaves 1 | Bifenthrin | 0.034 | − | − | / |
13 | potato leaves 2 | Bifenthrin | 0.75 | + | + | / |
14 | Chinese cabbage 1 | Cyhalothrin | 0.16 | − | − | 2 |
Flucythrinate | 0.23 | − | − | - | ||
15 | Chinese cabbage 2 | Cypermethrin | 0.50 | − | − | 2 |
16 | Chinese cabbage 3 | Cypermethrin | 0.35 | − | − | 2 |
17 | Chinese cabbage 4 | Cypermethrin | 0.32 | − | − | 2 |
18 | Chinese cabbage 5 | Cypermethrin | 0.12 | − | − | 2 |
19 | Feminine 1 | Cyhalothrin | 0.096 | − | − | 2 |
Cypermethrin | 0.10 | − | − | 2 | ||
20 | Feminine 2 | Cypermethrin | 0.13 | − | − | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, B.; Zhang, W.; Chen, M.; Wang, X.; Wang, M.; Ma, Y.; Zhu, C.; Deng, B.; Wang, H.; Shen, S.; et al. Research and Application of In Situ Sample-Processing Methods for Rapid Simultaneous Detection of Pyrethroid Pesticides in Vegetables. Separations 2022, 9, 59. https://doi.org/10.3390/separations9030059
Mei B, Zhang W, Chen M, Wang X, Wang M, Ma Y, Zhu C, Deng B, Wang H, Shen S, et al. Research and Application of In Situ Sample-Processing Methods for Rapid Simultaneous Detection of Pyrethroid Pesticides in Vegetables. Separations. 2022; 9(3):59. https://doi.org/10.3390/separations9030059
Chicago/Turabian StyleMei, Bo, Weiyi Zhang, Meilian Chen, Xia Wang, Min Wang, Yinqing Ma, Chunyan Zhu, Bo Deng, Hongkang Wang, Siwen Shen, and et al. 2022. "Research and Application of In Situ Sample-Processing Methods for Rapid Simultaneous Detection of Pyrethroid Pesticides in Vegetables" Separations 9, no. 3: 59. https://doi.org/10.3390/separations9030059
APA StyleMei, B., Zhang, W., Chen, M., Wang, X., Wang, M., Ma, Y., Zhu, C., Deng, B., Wang, H., Shen, S., Tong, J., Gao, M., Han, Y., & Feng, D. (2022). Research and Application of In Situ Sample-Processing Methods for Rapid Simultaneous Detection of Pyrethroid Pesticides in Vegetables. Separations, 9(3), 59. https://doi.org/10.3390/separations9030059