UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Reagents
2.2. Extraction
2.3. Fractionation Using Vacuum Liquid Chromatography (VLC)
2.4. Measurement of Radical Scavenging Activity Using the DPPH Method
2.5. Determination of Reducing/Antioxidant Power (FRAP)
2.6. Determination of Total Phenolic Content
2.7. Determination of Total Flavonoid Content
2.8. UPLC-MS Measurement
2.9. Statistical Analysis
3. Results
3.1. Antioxidant Activities of Patiwala Leaves
3.2. Reducing Power Assay (FRAP)
3.3. Determination of Total Phenolic and Total Flavonoids Content
3.4. Qualitative Characterization of Compounds Present in the Methanol Fraction of Lantana camara Leaves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramesh, P.; Subramani, A. Effect of antimicrobial activity of Eupatorium odoratum against clinical microbes. Int. J. Sci. Res. Biol. Sci. 2018, 5, 30–35. [Google Scholar]
- Ifeanyi, N.; Aliga, C.; Ukogo Ifeoma, U.C.F. In-Vitro Antibacterial Effect of Crude Extract of Chromolaena odorata Leaves on Wound Isolates. IOSR J. Pharm. Biol. Sci. 2016, 11, 49–52. [Google Scholar]
- Mahdi-pour, B.; Jothy, S.L.; Latha, L.Y.; Chen, Y.; Sasidharan, S. Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac. J. Trop. Biomed. 2012, 2, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 7, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagtap, S.; Katariya, T.; Pharate, M.; Najan, A. A Review on Mmedicinal Properties of Lantana camara. World J. Pharm. Pharm. Sci. 2018, 7, 288–294. [Google Scholar]
- Ramkumar, R.; Balasubramani, G.; Karthik, R.; Raja, M.; Govindan, R.; Girija, E.K. Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials. Artif. Cells Nanomed. Biotechnol. 2017, 45, 748–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatappa, A.H.; Amrutanand, T.; Majumdar, S.P.; Harish, M. Asian Journal of Biological Sciences Research Article Application of Lantana camara Flower Extract as a Natural Coloring Agent with Preservative Action. Asian J. Biol. Sci. 2020, 13, 361–369. [Google Scholar]
- Saraf, A.; Quereshi, S.; Sharma, K.; Khan, N.A. Antimicrobial activity of Lantana camara L. J. Exp. Sci. 2011, 2, 50–54. [Google Scholar]
- Santoni, A.; Kartika, M.Z.; Aziz, H. Antioxidant activity and total phenolic contentof ethyl acetate extract and fractions of Lantana camara L. leaf. Der Pharma Chem. 2016, 8, 92–96. [Google Scholar]
- Wojdyło, A.; Oszmian’ski, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 942–949. [Google Scholar] [CrossRef]
- Rahman, N.F.; Nursamsiar, N.; Megawati, M.; Handayani, H.; Suares, C.A. Total Phenolic and Flavonoid Total Phenolic and Flavonoid Contents and Antioxidant Activity of Kembang Bulan Leaves (Tithonia diversifolia (Hemsley) A. Gray). Indones. J. Pharm. Sci. Technol. 2021, 1, 57–65. [Google Scholar] [CrossRef]
- Hayati, E.K.; Ningsih, R.; Latifah, L. Antioxidant Activity of Flavonoid from Rhizome Kaemferia galanga L. Extract. ALCHEMY J. Chem. 2015, 4, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Suryati; Mardiah, E.; Efdi, M.; Mz, K.; Sari, Y.M. Bioactivity of compounds isolated from the leaves of the Lantana camara Linn plant. J. Chin. Pharm. Sci. 2019, 28, 360–368. [Google Scholar]
- Patil, G.; Khare, A.B.; Huang, K.-F.; Lin, F.-M. Bioactive chemical constituents from the leaves of Lantana camara L. Indian J. Chem. 2015, 54B, 691–697. [Google Scholar]
- Bursal, E.; Köksal, E. Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.). Food Res. Int. 2011, 44, 2217–2221. [Google Scholar] [CrossRef]
- Mistriyani; Riyanto, S.; Rohman, A. Antioxidant activities of rambutan (Nephelium lappaceum L) peel in vitro. Food Res. 2018, 2, 119–123. [Google Scholar]
- Olszowy, M.; Dawidowicz, A.L. Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem. Pap. 2018, 72, 393–400. [Google Scholar] [CrossRef]
- Kusumawati, N.; Haryoto, H. Antioxidant Activity of Extract and Fraction from Boesenbergia pandurata Rhizome by FRAP Method. In International Summit on Science Technology and Humanity; Universitas Muhammadiyah Surakarta: Jawa Tengah, Indonesia, 3–4 December 2019; pp. 630–634. [Google Scholar]
- Noreen, H.; Semmar, N.; Farman, M.; Mccullagh, J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017, 10, 792–801. [Google Scholar] [CrossRef]
- Bag, G.C.; Devi, P.G.; Bhaigyabati, T. Assessment of Total Flavonoid Content and Antioxidant Activity of Methanolic Rhizome Extract of Three Hedychium Species of Manipur Valley. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 154–159. [Google Scholar]
- Sembiring, E.N.; Elya, B.; Sauriasari, R. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacogn. J. 2018, 10, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Sahumena, M.; Andriani, R.; Manangkara, M.; Yamin, M. In vitro antioxidant activity test and determination of phenolic and flavonoid content of Moringa oleifera pulp and seeds. Food Res. 2021, 5, 59–65. [Google Scholar]
- Yuk, J.; Patel, D.N.; Isaac, G.; Smith, K.; Wrona, M.; Olivos, H.J.; Yu, K. Chemical Profiling of Ginseng Species and Ginseng Herbal Products Using UPLC/QTOF-MS. J. Braz. Chem. Soc. 2016, 27, 1476–1483. [Google Scholar] [CrossRef]
- Salah, H.B.; Smaoui, S.; Abdennabi, R.; Allouche, N. LC-ESI-MS/MS Phenolic Profile of Volutaria lippii (L.) Cass. Extracts and Evaluation of Their In Vitro and Antibacterial Activities. Evid. -Based Complementary Altern. Med. 2019, 2019, 9814537. [Google Scholar]
- Hu, L.; Yu, W.; Li, Y.; Prasad, N.; Tang, Z. Antioxidant Activity of Extract and Its Major Constituents from Okra Seed on Rat Hepatocytes Injured by Carbon Tetrachloride. Biomed. Res. Int. 2014, 2014, 341291. [Google Scholar] [CrossRef]
- Sabarudin, R.; Zubaydah, W.O.S.; Sartinah, A.B.S. Antiradical activity, total phenolic, and total flavonoids extract and fractions of pumpkin (Cucurbita moshata Duch) leaves. Food Res. 2021, 5, 348–353. [Google Scholar] [CrossRef]
- Manurung, H.; Kutiawan, W.; Kusuma, I.W.; Marjenah. Total flavonoid content and antioxidant activity in leaves and stems extract of cultivated and wild tabat barito (Ficus deltoidea Jack). AIP Conf. Proc. 2017, 1813, 020007. [Google Scholar]
- Mansoori, A.; Singh, N.; Dubey, S.K.; Thakur, T.K.; Alkan, N. Phytochemical Characterization and Assessment of Crude Extracts From Lantana camara L. for Antioxidant and Antimicrobial Activity. Front. Agron. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Fan, M.; Chen, G.; Zhang, Y.; Nahar, L.; Sarker, S.D.; Hu, G.; Guo, M. Antioxidant and Anti-Proliferative Properties of Hagenia abyssinica Roots and Their Potentially Active Components. Antioxidants 2020, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Anwar, F.; Shaheen, N.; Shabir, G.; Ashraf, M.; Alkharfy, K.M.; Gilani, A.-H. Variation in Antioxidant Activity and Phenolic and Flavonoid Contents in the Flowers and Leaves of Ghaneri (Lantana camara L.) as Affected by Different Extraction Solven. Int. J. Pharmacol. 2013, 9, 442–453. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, S.M.; Guyot, S.; Marnet, N.; Renard, C.M.G.C.; Coimbra, M.A. Characterisation of phenolic extracts from olive pulp and olive pomace by electrospray mass spectrometry. J. Sci. Food Agric. 2005, 85, 21–32. [Google Scholar] [CrossRef]
- De Nino, A.; Lombardo, N.; Perri, E.; Procopio, A.; Ra, A.; Sindona, G. Direct Identification of Phenolic Glucosides from Olive Leaf Extracts by Atmospheric Pressure Ionization Tandem Mass Spectrometry. J. Mass Spectrom. 1997, 32, 533–541. [Google Scholar] [CrossRef]
- Leyva-padrón, G.; Vanegas-espinoza, P.E.; Villar-martínez, A.A. Del Chemical analysis of callus extracts from toxic and non-toxic varieties of Jatropha. PeerJ 2020, 8, e10172. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Y.; Zhang, W.; Chen, Z. Identification and quantification of oleanolic acid and ursolic acid in Chinese herbs by liquid chromatography-ion trap mass spectrometry. Biomed. Chromatogr. 2011, 25, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, A.M.; Ezzat, S.M.; El Naggar, M.M.; El Hawary, S.S. In vivo diabetic wound healing effect and HPLC—DAD—ESI—MS/MS profiling of the methanol extracts of eight Aloe species. Rev. Bras. Farmacogn. 2016, 26, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Česlová, L.; Holčapek, M.; Fidler, M.; Drštičková, J.; Lísa, M. Characterization of prenylflavonoids and hop bitter acids in various classes of Czech beers and hop extracts using high-performance liquid chromatography—Mass spectrometry. J. Chromatogr. A 2009, 1216, 7249–7257. [Google Scholar] [CrossRef]
- Becker, L.; Carré, V.; Poutaraud, A.; Merdinoglu, D. MALDI Mass Spectrometry Imaging for the Simultaneous Location of Resveratrol, Pterostilbene and Viniferins on Grapevine Leaves. Molecules 2014, 19, 10587–10600. [Google Scholar] [CrossRef] [Green Version]
- Said, R.B.; Hamed, A.I.; Mahalel, U.A.; Al-ayed, A.S. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
- Susanti, E.; Ratnawati, R.; Rudijanto, A. Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS. Asian Pac. J. Trop. Biomed. 2015, 5, 1046–1050. [Google Scholar] [CrossRef]
- Van Der Doelen, G.A.; Van Den Berg, K.J.; Boon, J.J. Analysis of fresh triterpenoid resins and aged triterpenoid varnishes by high-performance liquid chromatography—Atmospheric pressure chemical ionisation (tandem) mass spectrometry. J. Chromatogr. A 1998, 809, 21–37. [Google Scholar] [CrossRef]
- Huang, L.; Chen, T.; Ye, Z.; Chen, G.; Hayata, A. Use of liquid chromatography—Atmospheric pressure chemical ionization-ion trap mass spectrometry for identification of oleanolic acid and ursolic acid in Anoectochilus roxburghii (wall.) Lindl. J. Mass Spectrom. 2007, 42, 910–917. [Google Scholar] [CrossRef]
- Sun, T.; Liang, X.; Zhu, H.; Peng, X.; Guo, X.; Zhao, L. Rapid separation and identification of 31 major saponins in Shizhu ginseng by ultra-high performance liquid chromatography e electron spray ionization e MS/MS. J. Ginseng Res. 2016, 40, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šuković, D.; Kneževic, B.; Gašic, U.; Sredojevic, M.; Iric, I.C.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and Quantification of Flavonoid Glycosides in the Prunus Genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2016, 25, 1622–1631. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Benites, J.; Areche, C.; Sepúlveda, B. Antioxidant Capacities and Analysis of Phenolic Compounds in Three Endemic Nolana Species by HPLC-PDA-ESI-MS. Molecules 2015, 20, 11490–11507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Luo, Y.; Lei, Z.; Wei, G. UHPLC-ESI-MS Analysis of Purified Flavonoids Fraction from Stem of Dendrobium denneaum Paxt. and Its Preliminary Study in Inducing Apoptosis of HepG2 Cells. Evid. -Based Complement. Altern. Med. 2018, 2018, 8936307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Liu, L.; Wang, L.; Hu, Y.; Zhang, W.; Liu, R. Structural Characterization and Identification of Major Constituents in Jitai Tablets by High-Performance Liquid Chromatography/Diode-Array Detection Coupled with Electrospray Ionization Tandem Mass Spectrometry. Molecules 2012, 17, 10470–10493. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Q.; Yu, F.; Huang, H.; Li, P.; Zhu, J.; He, X. Comprehensive Characterization and Quantification of Phillyrin in the Fruits of Forsythia suspensa and Its Medicinal Preparations by Liquid Chromatography—Ion Trap Mass Spectrometry. Acta Chromatogr. 2016, 28, 145–157. [Google Scholar] [CrossRef] [Green Version]
Sample | Eluents | Weight (gram) | |
---|---|---|---|
n-Hexane (mL) | Ethyl Acetate (mL) | ||
Fraction A | 100 | 0 | 0.62 |
90 | 10 | ||
Fraction B | 80 | 20 | 3.75 |
70 | 30 | ||
Fraction C | 60 | 40 | 5.63 |
50 | 50 | ||
Fraction D | 40 | 60 | 9.43 |
30 | 70 | ||
Fraction E | 20 | 80 | 11.02 |
10 | 90 | ||
0 | 100 |
Sample | IC50 Value (µg/mL) | |
---|---|---|
DPPH | FRAP | |
Methanol extract | 24.80 d ± 0.52 | 21.61 b ± 0.26 |
Fraction A | 34.65 b ± 1.26 | 4.93 f ± 0.22 |
Fraction B | 40.23 a ± 0.18 | 12.79 e ± 0.09 |
Fraction C | 40.22 a ± 0.58 | 15.32 d ± 0.32 |
Fraction D | 34.69 b ± 0.39 | 18.31 c ± 0.40 |
Fraction E | 32.84 c ± 0.09 | 22.67 a ± 0.23 |
ascorbic acid | 4.96 e ± 0.03 | 3.82 g ± 0.02 |
Sample | Phenolic Total Content (mg GAE/g Sample) | Flavonoid Total Content (mg QE/g Sample) |
---|---|---|
Methanol extract | 75.76 c ± 0.80 | 70.53 c ± 0.62 |
Fraction A | 20.25 f ± 0.41 | 19.85 f ± 0.65 |
Fraction B | 39.17 e ± 0.56 | 38.19 e ± 0,31 |
Fraction C | 60.43 d ± 0.27 | 61.31 d ± 0.31 |
Fraction D | 82.78 b ± 0.16 | 82.04 b ± 0,48 |
Fraction E | 98.81 a ± 0.27 | 97.56 a ± 0.63 |
Peak | tR (min) | [M + H] (m/z) | Main Fragment Ions (m/z) | Compound Prediction | References |
---|---|---|---|---|---|
1. | 0.35 | 453 | 397; 290; 274 | Resveratrol dimer (phenolic groups) | [43] |
2. | 3.16 | 701 | 588; 397; 340 | Oleuropein glucoside (phenolic groups) | [31] |
3. | 3.66 | 701 | 588; 397; 340 | Oleuropein glucoside isomer (phenolic groups) | [31] |
4. | 4.28 | 464 | 302; 274 | Quercetin-3-O-glycoside (Flavonoid) | [44] |
5. | 7.48 | 319 | 274; 230 | Myricetin (Flavonoid) | [37] |
6. | 7.71 | 379 | 363; 290; 274 | Oleuropein (Phenolic) | [32] |
7. | 8.44 | 365 | 288; 244; 203 | 12-deoxy-16-hydroxy-phorbol (diterpenes) | [35] |
8. | 10.39 | 541 | 457; 411; 393 | Aloeresin A (phenolic groups) | [35] |
9. | 11.03 | 363 | 347; 277; 203 | Humulones (Phenolic group) | [36] |
10. | 11.31 | 455 | 363; 347; 277 | Ursolic acid (triterpenoids) | [34] |
11. | 11.57 | 363 | 347; 275; 203 | Iso-humolones | [36] |
12. | 11.98 | 453 | 279; 258; 205 | Viniferin | [37] |
13. | 13.74 | 291 | 275; 257 | epicatechin | [39] |
14. | 14.24 | 439 | 333; 293; 261 | oleanolic acid | [40,41,42] |
15. | 14.70 | 331 | 309; 83 | 5-hydroxy-3′,4′,7-trimerthoxy-flavanone (Flavonoid) | [45] |
16. | 16.28 | 455 | 437; 291 | Apigenin-6,8-di-C-β-D-glucoside (Flavonoid) | [46] |
17. | 17.31 | 575 | 453; 407; 295 | Procyanidin A2 (phenolic groups) | [47] |
18. | 18.33 | 341 | 276; 243; 153 | Caffeoyl-O-hexoside | [38] |
19. | 18.86 | 295 | 263; 245; 165 | Tansihnone IIA | [48] |
20. | 19.90 | 557 | 407; 166; 152 | phillyrin | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruslin; Yamin; Rahma, N.A.; Irnawati; Rohman, A. UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract. Separations 2022, 9, 75. https://doi.org/10.3390/separations9030075
Ruslin, Yamin, Rahma NA, Irnawati, Rohman A. UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract. Separations. 2022; 9(3):75. https://doi.org/10.3390/separations9030075
Chicago/Turabian StyleRuslin, Yamin, Nur Arifka Rahma, Irnawati, and Abdul Rohman. 2022. "UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract" Separations 9, no. 3: 75. https://doi.org/10.3390/separations9030075
APA StyleRuslin, Yamin, Rahma, N. A., Irnawati, & Rohman, A. (2022). UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract. Separations, 9(3), 75. https://doi.org/10.3390/separations9030075