
����������
�������

Citation: Pérez-Cova, M.; Tauler, R.;

Jaumot, J. Adverse Effects of Arsenic

Uptake in Rice Metabolome and

Lipidome Revealed by Untargeted

Liquid Chromatography Coupled to

Mass Spectrometry (LC-MS) and

Regions of Interest Multivariate

Curve Resolution. Separations 2022, 9,

79. https://doi.org/10.3390/

separations9030079

Academic Editor: Szymon Bocian

Received: 19 February 2022

Accepted: 16 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

separations

Article

Adverse Effects of Arsenic Uptake in Rice Metabolome and
Lipidome Revealed by Untargeted Liquid Chromatography
Coupled to Mass Spectrometry (LC-MS) and Regions of Interest
Multivariate Curve Resolution
Miriam Pérez-Cova 1,2, Romà Tauler 1 and Joaquim Jaumot 1,*

1 Department of Environmental Chemistry, Instituto de Diagnóstico Ambiental y Estudios del Agua, Jordi
Girona 18-26, 08034 Barcelona, Spain; mpcqam@idaea.csic.es (M.P.-C.); rtaqam@idaea.csic.es (R.T.)

2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Diagonal 647,
08028 Barcelona, Spain

* Correspondence: joaquim.jaumot@idaea.csic.es

Abstract: Rice crops are especially vulnerable to arsenic exposure compared to other cereal crops
because flooding growing conditions facilitates its uptake. Besides, there are still many unknown
questions about arsenic’s mode of action in rice. Here, we apply two untargeted approaches using
liquid chromatography coupled to mass spectrometry (LC-MS) to unravel the effects on rice lipidome
and metabolome in the early stages of growth. The exposure is evaluated through two different
treatments, watering with arsenic-contaminated water and soil containing arsenic. The combination
of regions of interest (ROI) and multivariate curve resolution (MCR) strategies in the ROIMCR data
analyses workflow is proposed and complemented with other multivariate analyses such as partial
least square discriminant analysis (PLS-DA) for the identification of potential markers of arsenic
exposure and toxicity effects. The results of this study showed that rice metabolome (and lipidome)
in root tissues seemed to be more affected by the watering and soil treatment. In contrast, aerial
tissues alterations were accentuated by the arsenic dose, rather than with the watering and soil
treatment itself. Up to a hundred lipids and 40 metabolites were significantly altered due to arsenic
exposure. Major metabolic alterations were found in glycerophospholipids, glycerolipids, and amino
acid-related pathways.

Keywords: rice; arsenic; metabolomics; lipidomics; LC-MS; ROIMCR

1. Introduction

Nowadays, there is a need for a better understanding of molecular processes that take
place in cereal crops (e.g., rice (Oryza sativa L.), maize (Zea mays L.), or wheat (Triticum
aestivum L.)), which are one of the major food staples worldwide [1]. This increasing knowl-
edge leads to an enhancement in their growth, production, and quality [2]. Omics sciences
(e.g., genomics, transcriptomics, proteomics, or metabolomics) have arisen as powerful
tools for crop improvements from different biological perspectives. These technologies
allow, for instance, studying developmental stages and breeding to increase yield, quality,
and the bioavailability of nutrients [3–6]. Besides, these omics have been employed in
the assessment of the effects of biotic stresses on crops, such as viruses and bacteria [7],
but also environmental stressors such as high temperatures [8], salinity [9], or emerging
contaminants (e.g., microplastics [10] and heavy metals [11,12]).

Among cereals, rice (O. sativa L.) is the most suitable candidate to sequence its DNA
and perform genetic modifications, due to its small and well-mapped genome. Hence,
rice is currently considered the second-best plant model, after Arabidopsis thaliana. Rice
metabolome has been widely studied [13–15]. However, metabolite annotation is still a
major challenge, due to the huge number of metabolites present in O. sativa L. and the
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limitations of currently available databases [16]. From the different emerging contaminants,
there is a special interest in evaluating the effects of heavy metals and metalloids on
rice [17,18]. The reason is that metals tend to accumulate in different parts of the plant (e.g.,
in the leaves, roots, or stems), becoming a concern not only for the development of the
organism itself, but also for human populations through the food chain [19]. Arsenic is a
metalloid included in the top ten chemicals of major public health concern by the World
Health Organization (WHO) [20]. Arsenic contamination has been related to natural sources
like volcanism and geothermal activity, also in addition to anthropogenic sources such as
industrial and agricultural activities [21–23]. The arsenic occurrence has been reported
to be up to 183 µg L−1 in groundwaters [24] and 8 mg kg−1 in agricultural soils [25], but
can also be highly absorbed by composts and biochars [26]. Besides, recent changes in
land-use have led to an increase in arsenic levels, compromising human health [27]. The
Food and Drug Administration (FDA) from the United States stated that rice presented
the second highest arsenic levels, following seafood, and was the most consumed product
with high arsenic content, due to its presence in many daily products [28]. Arsenic levels
in polished rice have been reported up to 0.629 and 0.055 mg kg−1, for total arsenic and
inorganic arsenic content, respectively [29]. From the different arsenic forms, the inorganic
is the most toxic. It is highly bioavailable because roots capture it and accumulate in the
edible parts using the same transport system as silicon or phosphorus [30]. Therefore, the
accumulation and translocation of arsenic is a major concern in rice crops [31–33].

Untargeted metabolomics (and lipidomics) based on liquid chromatography coupled
to mass spectrometry (LC-MS) seem suitable approaches for the discovery of unknown
metabolites and lipids, respectively [34]. On the one hand, LC-MS is a versatile analytical
technique that allows the identification and quantification of a variety of metabolites,
ranging from small and polar to big and non-polar, without the need for derivatization
steps [35–37]. On the other hand, the goal of untargeted approaches is to have a qualitative
profile of the major changes in metabolic pathways due to, for instance, exposure to certain
stressors. Therefore, the focus is not on individual metabolites or lipids, but rather a global
perspective without any a priori assumptions on the effects these exposures may have on
specific biological pathways [38]. This work employed untargeted LC-MS metabolomic
and lipidomic workflows to characterize rice metabolome and lipidome, respectively.

Here, the objective is to shed some light on the absorption and translocation (uptake)
mechanisms of arsenic in rice together, with its potential impact on their metabolome
and lipidome. Previous research in our group already addressed how arsenic affects rice
lipidome when supplied by watering the crop [39]. This study aims to complement the
previous work with a comparison with the scenario where arsenic content comes from
contaminated soil. Therefore, arsenic was supplied through two main routes: watering
with contaminated water or soil containing arsenic. In addition, this new study includes
metabolomic as well as lipidomic analysis, in order to have a more global overview of
arsenic exposure. Two analytical platforms based on LC-MS were employed for the anal-
ysis of polar and non-polar metabolites, including lipid species, that were affected by
this contaminant. First, a compression strategy based on regions of interest (ROI) was
performed to filter the data feature matrices. This step was followed by the application
of multivariate curve resolution alternating least squares (MCR-ALS) analysis to resolve
the elution and the spectra profiles of the compounds of interest and obtain the areas of
the chromatographic peaks necessary to perform subsequent multivariate analyses. The
untargeted metabolomic and lipidomic workflows proposed were able to discover potential
markers of arsenic exposure and facilitate the identification of the metabolic pathways
affected in the different treatments.

2. Materials and Methods
2.1. Chemicals and Reagents

Sodium arsenate dibasic heptahydrate (≥98.0%), calcium carbonate (CaCO3, ≥99.0%),
ammonium acetate (≥99.0%), acetic acid (≥95.0%), ammonium formate (≥98.0%), and
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formic acid (≥95.0%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). HPLC
grade water, HPLC grade acetonitrile (AcN), HPLC grade methanol (MeOH), methyl tert-
butyl ether (MTBE), and chloroform (CHCl3) were supplied by Merck KGaA (Darmstadt,
Germany). Water used for plant irrigation and preparing arsenic solutions was filtered
through a 0.22 µm nylon filter and purified with an Elix 3 Milli-Q system (Millipore, Belford,
MA, USA).

For the lipidomics study, thirteen lipid standards from several lipid families were
used as extraction standards: 17:0 monoacylglycerol, 1,2,3-17:0 triglyceride, 17:1 lysophos-
phatidylethanolamine, 17:0 lysophosphatidylcholine, 17:0 lysophosphatidic acid, 17:0 lysophos-
phatidylglycerol, 17:0 lysophosphatidylserine, 17:0 cholesteryl ester, 16:0D31-18:1 phosphatidic
acid, 16:0D31-18:1 phosphatidylethanolamine, 16:0D31-18:1 phosphatidyl glycerol, 16:0D31-
18:1 phosphatidylcholine, and 16:0 D31-18:1 phosphatidylserine. Three sphingolipids were
used as internal instrumental standards: N-lauroyl-D-erythro-sphingosylphosphorylcholine,
N-(dodecanoyl)-1-ß-glucosyl-sphing-4-ene, and N-(dodecanoyl)-sphing-4-enine. All these
lipid standards were purchased from Avanti Polar Lipids (Alabaster, AL, US). For the
metabolomics study, L-methionine sulfone and piperazine-1,4-bis (2-ethanesulfonic acid)
(PIPES) were used as the extraction and internal instrumental standards, respectively, and
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

A stock solution of arsenic (V), from now on As (V), at 10,000 µM, was prepared from
the sodium arsenate salt. For the watering treatment, solutions containing 1 and 1000 µM
of As (V) were prepared weakly by diluting the initial concentrated stock. For the soil
treatment, solutions of 5 and 50 mg L−1 were prepared directly from the sodium arsenate
salt. The solution containing 0.001 µM of As (V) used for watering the soil treatment harvest
was prepared daily diluting from the initial concentrated stock.

The following abbreviations have been used to describe lipid families: lysophos-
phatidic acid (LPA), lysophosphatidylcholines (LPC), lysophosphatidylglycerol (LPG),
lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), phosphatidic acid
(PA), phosphatidylcholines (PC), phosphatidylglycerol (PG), phosphatidylinositols (PI),
phosphatidylethanolamine (PE), lysophosphatidylserine (LPS), sphingomyelin (SM), ce-
ramides (Cer), hexosylceramide (HexCer), monogalactosyldiacylglycerol (MGDG), digalac-
tosyldiacylglycerol (DGDG), sulfolipid sulfoquinovosyldiacylglycerol (SQDG), diacylglyc-
erol (DG), triacylglycerol (TG), fatty acid (FA), cholesteryl ester (CE), sterol lipid (ST), and
eicosanoyl-EA (NAE).

2.2. Plant Growth, Arsenic Treatments, and Extraction Protocols
2.2.1. General Growing Conditions and Harvesting

Plant growth and lipid extraction were performed using the procedure described else-
where [39–41]. Briefly, rice seeds were obtained from the Centre for Research in Agricultural
Genomics (CRAG, Bellaterra, Spain). Seeds were incubated for 48 h at 30 ◦C in an oven (J.P.
Selecta) in a wet environment. After incubation, plants were grown on an Environmental
Test Chamber MLE-352H (Panasonic) for 22 days, where cyclic environmental changes of
temperature and light intensity were simulated, as shown in Supplementary Material A
Figure S1. Soil employed for planting included a mixture of peat, vermiculite, fertilizer,
and CaCO3. Plates containing different samples were placed in random order inside the
chamber, and re-located each watering cycle, established at three times per week.

During the harvest, roots and aerial tissues (i.e., corresponding to the part of the plant
above ground) were separated, quenched with liquid nitrogen, and kept at −80 ◦C until
extraction. Before extraction, rice samples were ground to a fine powder with a liquid
nitrogen mortar and lyophilized to dryness for 24 h.

2.2.2. Watering and Soil Treatments

For the watering treatment, during the first 11 days, rice was irrigated with Milli-Q
water. From that day until harvesting, plants were watered with 1 and 1000 µM of As (V)
for the two concentration levels of exposure, and with Milli-Q water for control samples.
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European legislation established the lowest concentration at 1 µM as it is the limit of the
acceptable arsenic concentration in water [42]. The upper concentration was set at 1000 µM,
a threshold established to ensure that the experiment was performed under sub-lethal
arsenic concentration for the plant, based on previous studies [39].

For the soil treatment, two containers were prepared with 1 kg of soil two days before
planting. Soil from the container was exposed to two arsenic concentration levels (5 and
50 mg L−1). Once sowing, rice was irrigated for the whole growth period with a solution
containing 0.001 µM of As (V). The lowest arsenic limit in this treatment was set at 5 mg
L−1 as a maximum value of common arsenic leaches without toxic characteristics [43].
However, the background soil content of arsenic varies between 1 and 40 ppm, according
to the US Food and Drug Administration (FDA) report [28]. The highest arsenic limit
was established to 50 mg L−1, as a considerably high arsenic content in the soil, slightly
above the maximum frequently encountered levels. Table S1 summarizes the arsenic
concentration levels selected in this work, expressed in µM for the sake of clarity. The two
treatments are referred to with a W (watering) or an S (soil), followed by the concentration
dose (L for low and H for high).

2.2.3. Lipid Extraction

A general lipid extraction for untargeted analysis was performed following a previous
extraction protocol [39,44]. Briefly, 5 mg of the dried tissue were weighted in individual
tubes for each replicate and dissolved in 1 mL of MTBE:MeOH (3:1). Extraction standards
mix were added (10 µL at 20 µM, per sample), and then, the mixture was vortexed for 1 min
and sonicated for 10 min. Afterwards, 0.5 mL of H2O:MeOH (3:1) were added, vortexed
for 1 min again, and centrifuged for 5 min at 14,500 rpm. The upper organic fraction was
collected, whereas the lower aqueous phase was re-extracted with 0.65 mL of MTBE and
0.35 mL of MeOH:H2O (1:0.85), vortexed for 1 min and centrifuged for 5 min at 2000× g.
Next, combined organic phases were evaporated to dryness under nitrogen gas. Extracts
were stored at −20 ◦C until analysis, and resuspended before injection with 250 µL of
MeOH:H2O (4:1). Finally, 10 µL of the internal standards mix at 20 µM were added to
each sample.

2.2.4. Metabolite Extraction

For metabolite extraction, based on previous works from Ortiz-Villanueva et al. [45]
and Navarro-Reig et al. [46], 40 mg of the dried tissue were weighted in individual tubes
for each replicate and 1 mL of MeOH, and 50 µL of L-methionine sulfone (L-met) at 50 mg
L−1 were added, acting as a surrogate. The mixture was vortexed for 1 min, and sonicated
for 10 min, twice. Then, it was centrifuged at 14,500 rpm, and 750 µL of the supernatant
were taken, and mixed with 500 µL of CHCl3 and 400 µL H2O. Next, it was vortex for
1 min, kept during 15 min at 4◦C, and centrifuged again for 20 min at 14,500 rpm. The
aqueous fraction was collected and evaporated to dryness under nitrogen gas. Extracts
were stored at −20 ◦C until analysis, and resuspended before injection with 450 µL of
AcN:H2O (1:1). Finally, 50 µL of 50 mg L−1 solution of the instrumental internal standard,
PIPES, was added.

2.3. LC-MS Analysis

Five biological replicates were analyzed for each sample condition (control, low, and
high exposure concentrations), each treatment (watering or soil treatments) and each
extraction type (lipid or metabolite extractions). In total, 60 samples were analyzed in
each analytical platform (lipidomics or metabolomics). In addition, quality control (QCs)
pools composed of 70 (lipidomics) or 50 µL (metabolomics) of solution of each sample
condition were prepared separately for different tissues (roots or aerial parts) and extrac-
tion types (lipid or metabolite extractions). QCs were repeatedly analyzed during the
chromatographic batch every five samples.
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2.3.1. Lipidomic Analysis

The lipidomic analysis was performed using a Waters Acquity UPLC system (Waters
Corporation, MA, USA), connected to a Waters LCT Premier orthogonal accelerated time
of flight mass spectrometer (Waters), operated in both positive and negative electrospray
(ESI) ionization modes. Full scan spectra were acquired from 50 to 1500 Da at a scan cycle
time of 0.3 s. The following parameters were set for positive ionization mode: capillary
voltage, 3000.0 V; sample cone voltage, 50.0 V; desolvation temperature, 350.0 ◦C; source
temperature, 100.0 ◦C; desolvation gas flow 600.0 L h−1. The same parameters were also
used for negative ionization mode, except capillary voltage, set to 2800.0 V instead.

The chromatographic column employed was a Kinetex C8 (100 × 2.1 mm, 1.7 µm)
(Phenomenex) under the following conditions (already used in [47]): temperature at 30 ◦C,
injection volume at 10 µL, and flow rate at 0.3 mL min−1. Mobile phases selected were
(A) MeOH 1 mM ammonium formate and (B) H2O 2 mM ammonium formate, both at
0.2% formic acid. The gradient started at 80% A, increased to 90% A in 3 min, from 3 to
6 min remained at 90% A, changed to 99% A until minute 15, remained constant 1 min, and
returned to initial conditions until minute 20.

2.3.2. Metabolomic Analysis

The metabolomic analysis was performed using a Waters Acquity UPLC system
connected to a Q-Exactive (Thermo Fisher Scientific, Hemel Hempstead, UK) equipped
with a quadrupole-Orbitrap mass analyzer. Electrospray (ESI) was used as an ionization
source in both positive and negative ion modes. Full scan mass range was set from m/z 90 to
1000. The following parameters were set for positive ionization mode: electrospray voltage,
3000.0 V; sheath gas flow rate, 25 arbitrary units (a.u.); auxiliary gas flow rate, 10 a.u.;
capillary temperature, 350 ◦C; and S-lens level, 60%. Negative ionization mode conditions
were the same, except for the sheath gas flow rate, set to 40 a.u. All ion fragmentation (AIF)
was performed with normalized collision energy (NCE) of 35 eV.

The column employed was a HILIC TSK gel amide-80 column (250 × 2.0 mm i.d.,
5 µm) provided by Tosoh Bioscience (Tokyo, Japan), under the following experimental
conditions (already employed in [45]): flow rate at 0.15 mL min−1, at room temperature,
and 5 µL injection volume. Mobile phases were (A) AcN and (B) 5 mM ammonium acetate,
adjusted at pH 5.5 with acetic acid. The gradient employed was: starting conditions at 25%
B, then increased until 30% B in 8 min; a 60% B was reached at 10 min, held for 2 min more
and then back to 25% B until minute 14 min; lastly, a re-equilibration step was added and
from 14 to 20 min at 25% B.

2.4. Data Analysis
2.4.1. Data Compression, Filtering, and Normalization

For data acquisition control and initial data preprocessing, MassLynx 4.1 (Waters
Corporation, MA, USA) and Thermo Xcalibur 3.1.66.7 (Thermo Scientific, Hemel, UK) were
used for lipidomics and metabolomics studies, respectively. In lipidomics analysis, LC–MS
raw files (.raw) were converted to the ‘common data format’, cdf files using the DataBridge
file converter tool available from MassLynx software suite. In the metabolomic analysis,
raw files were converted into mzXML format using MS Convert GUI (Palo Alto, CA, USA)
using the Proteowizard open-source software [48].

Raw data were then imported to MATLAB computer and visualization environment
(Release 2020a, The Mathworks Inc, Natick, MA, US) and analyzed with the ROIMCR
chemometrics strategy [49]. This approach was employed for data compression and fil-
tering on one side, and for the resolution of the elution and mass spectra profiles of the
different constituents (metabolites or lipids) present in the analyzed rice samples. More
information about the ROIMCR approach can be found in Supplementary Material A
Section S2. Briefly, spectral compression based on regions of interest (ROI) was performed
through the MATLAB MSroi app [50]. ROI strategy allows significant data compression in
the spectral dimension without losing their instrumental spectral accuracy. The approach
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establishes an intensity threshold value, and MS signals below this threshold are discarded
(considered noise). Two additional parameters should be defined, the mass error toler-
ance (related to the mass spectrometer maximum spectral resolution), and the minimum
number of values (minimum number of MS signal occurrences) required to define a chro-
matographic peak across all the samples (which depends on the type of chromatographic
column and conditions used). The main parameters used for the ROI procedure in this
work are, briefly, mass error tolerance of 30 and 10 ppm (lipidomics and metabolomics
analysis, respectively), a minimum signal factor of 2, a minimum occurrence value of
100, and ROIs were calculated with the median of the m/z values determined for each
chromatographic peak. More details can be found in Supplementary Material A Table S2.
The ROI approach provides two main outputs: a vector including the list of relevant m/z
ROI values (according to the previously mentioned parameters selected for the analysis),
and a data matrix with the MS intensities at the selected ROIs (for all considered retention
times and samples).

Then, MCR-ALS was applied to the ROI feature data matrices obtained by the work-
flow described above. Details on the MCR-ALS procedure and parameters employed in
the analysis of the data sets in this work are given in Supplementary Material A Section
S2. Briefly, MCR-ALS is a bilinear model that decomposes the original data matrix into
two-factor matrices related to the elution and spectral profile of the different components.
Ideally, each component can be associated with lipid or metabolite constituents of the
analyzed samples and possible contributions to the solvent and backgrounds instrument
signals. The sample constituents can be identified using the information from the MCR-
ALS resolved spectra profiles. MS signals from the same chemical compound, including
multiple isotopic forms or adducts and possible mass and ion fragments, are merged in the
same MCR-ALS component (i.e., componentization). On the other hand, quantitative infor-
mation can be retrieved from the elution profiles of the resolved MCR-ALS components,
by integrating the areas of their resolved chromatographic peaks. Hence, a data matrix
containing the peak areas of each MCR-ALS component is one of the outputs of this method
(i.e., component matrix). In this work, four peak area data matrices were obtained for each
analytical platform (i.e., lipidomics and metabolomics). Each data matrix corresponded
to a specific tissue of the rice plant (roots and aerial parts) and an electrospray ionization
mode (positive and negative mode). Finally, these peak areas were normalized by the
internal standards added before instrumental analysis, the surrogates employed to correct
extraction losses and the dried weight of each replicate. QCs were used as an internal
check of the data quality, obtaining similar values within each batch and between different
batches. Therefore, no further normalization based on QCs was required.

2.4.2. Statistical Assessment, Exploratory Analysis, and Discovery of Markers of
the Exposure

Chemometric analysis of the normalized peak areas of the different components
resolved by MCR-ALS was performed with the PLS Toolbox 8.9.1 (Eigenvector Research
Inc, Wenatchee, WA, US) under MATLAB (Release 2020b, The Mathworks Inc, Natick, MA,
US) Different types of data analyses were applied for statistical assessment, exploratory
analysis, and discrimination analysis of markers of the exposure.

The first step was the statistical assessment of the different rice sample treatments with
ANOVA-simultaneous component analysis (ASCA) [51]. ASCA combines the multivariate
analysis of variance, ANOVA, and simultaneous component analysis (SCA). The null
hypothesis of ASCA is that the experimental factors from the experimental design have
no effect on the observed results. ASCA was applied to the component matrices for both
sample treatments (soil and watering), at the different concentration levels (high, low and
control samples). Statistical assessment is performed by a permutation test considering
10,000 replicates.

Principal component analysis (PCA) [52] and hierarchical clustering analysis (HCA) [53]
were used for the exploratory study of the effects produced by the different treatments
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and conditions, on each of the MCR-ALS component peak area data matrices (related
with the metabolites and lipids present in the analyzed samples). PCA describes the
experimental data variation in a few components or contributions, explaining the most
relevant information from the original variables. The scores plot visualizes the major
trends in samples, clustering or discerning them according to their different levels of
exposure compared to control samples. In this work, PCA was especially useful to analyze
sample trends in an unsupervised manner (no prior information is provided about the
different sample classes, i.e., type of treatment or arsenic concentration levels). Biological
replicates are expected to cluster together, whereas control samples and samples at similar
exposure concentration levels will hopefully cluster separately. On the other hand, HCA
using a dendrogram (clustergram) representation allows visualizing trends in the different
compounds (i.e., lipids/metabolites that cluster due to similar behavior) and in the samples
(i.e., samples ordered by sample type). HCA was performed on data matrices with the fold
changes (FC) in the logarithm scale. FC is a standard measurement in metabolomics to
compare how much an original condition (control) has changed when related to another
condition (exposed or treated). Thus, in untargeted type of data analysis, FCs are usually
calculated as the ratio between areas of exposed samples divided by the areas of control
samples. Therefore, FCs are expressed as relative abundances. In this case, the area of
each component and each exposed replicate was divided by the mean value of the control
samples. In this work, HCA was performed using only the more significant peak areas of
the MCR-ALS resolved components from each dataset.

Finally, partial least squares discriminant analysis (PLS-DA) [54,55] was applied to
the same data matrix of the peak areas of the MCR-ALS resolved components. PLS-
DA is a useful and powerful approach for discriminating samples from a supervised
perspective. Contrary to PCA, the model is built using information regarding the class
membership of each sample (e.g., watering or soil treatment, and exposure levels). The
analysis was performed by considering pairs of exposure concentrations (e.g., control
samples versus lowest exposure level of the watering treatment, C vs. WL, etc.). A leave-
one-out cross-validation method was applied. Variables important in projection (VIPs)
of the PLS-DA models allow the identification of possible markers of arsenic exposure
and unravel the uptake mechanisms by comparing the significant MCR-ALS components
resulted from the different treatments, especially against control samples. Matthews
correlation coefficient (MCC) was evaluated as an indicator of the quality of the binary
classifications, ranging from −1 to 1 (1 represents a perfect model, −1 a wrong prediction,
and 0 random predictions) [56]. In this work, the variables (peak areas of the different
MCR-ALS components) associated with VIPs higher than 1.0 were considered relevant
according to the various As (V) treatments. Each significant component was then associated
with the most intense m/z value from their spectral profile for annotation purposes. Hence,
only the compounds related to the relevant MCR-ALS components (with higher VIP values)
were finally investigated and annotated.

For PCA and PLS-DA analysis, MCR-ALS resolved component peak area matrices
were normalized with probabilistic quotient normalization (PQN) and autoscaled. For
ASCA, the same peak areas data matrices were mean-centered. In HCA analysis, a logarith-
mic normalization was applied to the fold peak area changes before analysis.

2.4.3. Compound Identification

Relevant compounds (MCR-ALS components whose peak areas changed significantly
between treatments) from the PLS-DA analysis were selected for identification, due to
their implication in the metabolic changes caused by the different arsenic treatments. On
one side, lipids were identified according to an in-house built database composed of a list
of retention times (RT) associated with compounds frequently detected in plant matrices
using the same LC-MS method employed in this work. Besides, LIPIDMAPS [57] and
online spectral library human metabolite database [58] were also used for lipid annotation,
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selecting the candidates that provided a lower error comparing m/z values of the mass
spectra resolved by MCR-ALS and the theoretical one.

In addition, metabolites present in QC samples could be confirmed based on MS/MS
spectral matches using public metabolite libraries from the MS-DIAL website [59]. The-
oretical and experimental spectra provided by HMDB [58], Massbank [60], and Global
Natural Product Social Molecular Networking (GNPS) [61] were compared with our exper-
imental MS/MS data. Plantcyc online database [62] was employed to confirm whether the
annotated compounds have been previously found in rice (Oryza sativa L.).

3. Results
3.1. Statistical Assessment and Exploratory Analysis of Arsenic Exposure

First, ASCA was employed to evaluate the statistical significance of the experimental
treatment (watering/soil) and the As (V) concentration levels (high/low/control), as well
as the interaction between these two factors. Both “treatment” factor, and the potential in-
teraction between “treatment” and “As (V) concentration” resulted in being not significant,
whereas the “As (V) concentration” factor (with all levels considered at a time) was statisti-
cally significant in all cases (i.e., in both tissues: roots and aerial parts, in both ionization
modes: positive and negative, and in both platforms: lipidomics and metabolomics; for the
eight datasets analyzed in total). Individual studies were also analyzed at two concentra-
tion levels (e.g., C vs. WL, etc.) or simultaneously at all concentration levels (e.g., C vs. WL
vs. WH). In lipidomics datasets, all combinations (even at the lowest concentration level)
were significant (with p-values between 0.003 and 0.0001), regardless of the two types of
tissue (roots or aerial) and ionization (positive or negative) modes. Metabolomic datasets
exhibited the same behavior (p-values ranging from 0.0346 to 0.0001), with some exceptions.
Indeed, the lowest concentration level in soil treatment (C vs. SL) and, consequently, soil
treatment in general (C vs. SL vs. SH) were not statistically significant, neither in aerial
parts positive ionization nor in roots negative ionization for the metabolomic datasets.
Besides, the lowest watering treatment (WL) was not significant in aerial parts positive
ionization. In conclusion, aerial parts positive ionization metabolomic set was the least
affected by the arsenic exposure in this study. The only clear significant factor for this data
set was watering at the highest concentration level (with p-values C vs. WH: 0.0249, and C
vs. WL vs. WH: 0.0045). All ASCA results are summarized in Table S3 in Supplementary
Material A.

Second, PCA was applied to all datasets to visualize the effects of arsenic exposure.
In all cases, more than 40% of all data variance was explained only with the first two
components (PC1 and PC2) of the model. On one side, PCA scores plots of the lipidomic
datasets showed a clear differentiation between control and exposed groups (samples were
separated by PC1 in aerial tissues and by PC2 in roots), as expected and in agreement with
previous ASCA results. In addition, a distinction between the two treatments (watering
and soil) was found in the analysis of root samples. In contrast, aerial tissue samples were
separated in PC2 accordingly to the concentration level, rather than with the treatment itself.
Figure 1A,B summarize this trend for both tissues in negative ionization mode, although a
similar tendency was obtained for positive mode as well (Figure S3A,B in Supplementary
Material A). Hence, root lipids were affected differently according to how rice was exposed
to arsenic (from soil or watering). However, this discernment was not present for lipids in
aerial parts of the plant, which were more affected by the total arsenic content.
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Figure 1. PCA score plots are shown for negative ionization mode obtained in the analysis of
both tissues, roots, and aerial parts. (A,B) represent lipidomic analysis of roots and aerial tissues,
respectively. Analogously, (C,D) refer to metabolomic analysis of roots and aerials. Both in lipidomic
and metabolomic samples from root tissue are more affected by treatment rather than by concentration
level, whereas aerial parts have the opposite scenario.

On the other side, similar exposure effects were observed for metabolomic datasets.
Concentration levels differentiated metabolites from aerial parts, as shown in Figure 1D
for negative mode (and in Figure S3D in Supplementary Material A for positive mode).
Three clusters apart from controls were identified, one corresponding to the two lowest
exposures (WL and SL), and the other two levels in an increasing order regarding its
concentration (WH the most isolated). PCA score plots for metabolites in roots negative
ionization (Figure 1C) were basically defined by the lack of differentiation between control
and SL groups, separated in PC1 (also observed with ASCA). However, a closer look at
PCAs by treatment (only considering C, WL, and WH) revealed that WH and WL clustered
together separated from control samples in PC1, which explained 47% of the variance
(data not shown). The same C-WL-WH trend was observed for roots positive ionization
(Figure S3C in Supplementary Material A). Again, this fact confirmed that the treatment
itself affected metabolites from roots more than by the different concentration levels.

3.2. MCR-ALS Component Selection and Annotation

PLS-DA models were built to identify the MCR-ALS components responsible for
sample discrimination between different treatments and concentration levels (comparing
control vs. treated samples by pairs). Thus, the chemical compounds associated with these
components would be considered potential markers of arsenic exposure and helpful in
unravelling metabolic changes caused in rice by this metalloid. Table S4 in Supplementary
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Material A summarizes the total number of relevant VIPs > 1.0 and MCC values obtained
for all datasets. Sample classification was excellent for all lipidomic datasets (MCC equal to
1.0 in all cases). Good discrimination was also achieved for all metabolomic datasets (MCC
ranging from 0.7 to 1.0). The first 50 and 20 MCR-ALS components (for lipidomics and
metabolomics analysis, respectively) with the higher VIP values for each pair of control vs.
treated samples were considered significant, and therefore, contemplated for annotation.

Lipids were annotated using an in-house built retention time database in plant matrices
and using the external aid of LIPIDMAPS [57] and HMDB [58]. Up to 100 significant lipids
were annotated in total, considering both ionization modes. Metabolites MS/MS spectra
from QCs samples were deconvoluted using MS-DIAL [63]. Up to 40 significant metabolites
were annotated in total. Figure S4 in Supplementary Material A shows MS/MS spectrum
match (experimental vs. theoretical) for L-tryptophan as an example. Tables S5 and S6
in Supplementary Material A list all parameters used in MS-DIAL analysis, employed
exclusively for annotation purposes.

Annotation confidence corresponded to level 3 for lipids (no MS/MS information, only
exact mass and retention time) and level 2 for metabolites (MS/MS, retention time, exact
mass), according to the confidence level of compound annotation re-defined the Compound
Identification workgroup of the Metabolomics Society in 2017 [64]. In these cases, when
fragment ions were not detected under the mass range conditions of this study, the corre-
sponding metabolites were only tentatively annotated (level 3). Supplementary Material
B provides all significant annotated MCR-ALS components. Tables S7–S10 correspond to
lipids grouped by tissue and ionization mode, whereas Tables S11–S14 are analogous for
metabolites. In addition to compound information, each table furnishes details on which
variables were significant for each of the treatments and concentration levels, fold change
ratios (areas of all samples in one class divided by the mean area of control samples), and
the global tendency of all replicates compared to controls (up/down).

3.3. Lipidomic Results

Annotated lipids, selected from those MCR-ALS resolved components whose peak
areas were significant (higher VIPs from PLS-DA results, see above), mainly belonged to
three lipid classes: glycerophospholipids (52%), glycerolipids (30%), and sphingolipids
(12%). Figure 2A shows the proportion of significant lipids among each family in aerial
parts, roots, and both tissues simultaneously. There is an increase of affected glycerolipids
in roots (e.g., DGs, MGDGs, and DGDGs), in contrast with a slight increment in certain
glycerophospholipids (e.g., PGs and PAs) in aerial tissues. Figure 2B depicts the number
of significantly affected lipids is given for the different treatments. Most of the annotated
lipids were found significant in all four treatments (WH, WL, SH, and SL) in comparison to
control samples. Nevertheless, some specific compounds were related only to watering or
soil exposure (e.g., four DGs suffered changes in roots when soil treatment was applied).

HCA was applied to the logarithm of the fold changes of the annotated MCR-ALS
components to give a global perspective on lipid changes with the different treatments.,
There were primarily two clusters found for both tissues and ionization modes: upregulated
(marked in red) and downregulated (marked in blue). HCA maps plus dendrograms
(clustergrams) are included in Figure 3 for aerial positive ionization, and in Supplementary
Figure S5 for aerial negative ionization, roots positive, and negative ionization. Besides,
certain lipids in both aerial and root tissues exhibited differences regarding the treatments
(watering and soil), although this effect was clearer in roots (in agreement with previous
results from PCAs). Among the lipids that increased their concentration regarding controls
in aerials, several LPCs, PAs, and DGs stood out, whereas PCs, PGs, and PSs generally
decreased. Concerning roots, PCs have also reduced their concentrations, as well as DGDGs
and MGDGs. Again, PAs abundances were also incremented due to arsenic exposure.
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Some potential markers of arsenic exposure had already been suggested in a previous
lipidomics study [39]. In this previous work, the main aim was to develop a multidimen-
sional chromatographic method and evaluate the effects only at the two concentration
levels referred to as “watering treatment”. However, the coincident lipids from the prior
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work and this study did not show an exclusive behavior for watering exposure, but they
were instead associated with increasing concentration levels of arsenic (e.g., PA (36:2), PG
(34:1), or PC (36:6), which were also markers of soil treatment). The present work also
pointed out new lipids highly affected by arsenic exposure regardless of the treatment (e.g.,
LPC(18:3) in aerial tissues). Besides, the present study showed new insights regarding how
arsenic can access rice, and allowed detecting potential markers of the different treatments.
For instance, lipids that showed the same tendency in both tissues but accentuated in one of
them (e.g., PS (39:3), especially decreased with watering treatments in aerials; or LPE (18:2),
more affected by soil treatments in roots). Other lipids presented other remarkable changes.
For instance, LPC (16:0) augmented in aerials tissues for the lower doses, but decreased in
roots at the highest doses. In other cases, relevant lipids were only annotated for a single
tissue (e.g., PG (34:2), PG (32:2), or DG (34:2) diminished due to watering treatment in
roots). Nevertheless, further complementary targeted studies and MS/MS confirmation
are necessary to assess the effects of arsenic exposure in rice lipidome completely.

3.4. Metabolomic Results

Significant annotated metabolites in Tables S11–S14 were previously detected in Oryza
sativa L. according to the Plantcyc database [62]. Contrarily to lipids, no clear specific
effect based on treatments (watering/soil) was detected in roots. In addition, control and
SL groups for this tissue in negative mode cannot be distinguished, as already observed
in PCA and ASCA. Most of the annotated metabolites were found in WH, SH, and WL
groups, as shown in Figure 4A, (e.g., palmitic acid, allantoin, norvaline, succinic acid,
tryptophan, and isoleucine). In addition, the arsenic effect in aerial tissues was dominated
by its concentration level rather than by the treatment itself, as previously seen in PCA
results. MetaboAnalyst pathway analysis [65] was performed to have a closer look into the
metabolic pathways that could be affected by arsenic exposure in general (without tissue
differentiation). Table 1 exhibits a detailed list of these pathways, ordered by decreasing
significance, including the number of significant metabolites found for each pathway, their p-
values and False Discovery Rate (FDR) results. Moreover, Figure 4B graphically displays the
obtained results, pointing out the main pathways with letters. The five principal metabolic
pathways altered by arsenic exposure in this study were amino acid related, i.e., aminoacyl-
tRNA biosynthesis (A); alanine, aspartate, and glutamate metabolism (B); glycine, serine,
and threonine metabolism (C); phenylalanine, tyrosine, and tryptophan biosynthesis (H);
arginine and proline metabolism (I); arginine biosynthesis (G) (Figure 4B). A pathway
comparison based on the analyzed tissue is provided in Figure 4C. Overlapping altered
pathways were found for both roots and aerials, but the individual metabolites related to
these pathways were not necessarily the same. For instance, some common metabolites
in both tissues were tryptophan, phenylalanine, serine, proline, glutamine, shikimic acid,
allantoin, and succinic acid. On the contrary, adenosine, palmitic acid, and betaine were
exclusively detected as significant for roots, and dimethylglycine, pyroglutamic acid, and
benzoic acid were only significant in aerials. A more in-depth characterization of the
specific metabolic routes affected (e.g., via targeted analysis) could complement these
findings and confirm metabolic changes in both tissues according to the treatments applied.
Besides, larger spectral databases for secondary metabolites in plants are still lacking,
which in the end, still limits their potential discovery to those with an already available
MS/MS spectrum.
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Figure 4. (A) Summary of the common metabolites expressed by the different treatments, with
especial emphasis in the lower effect on SL group in roots. (B) Visualization of MetaboAnalyst
results indicating the most affected metabolic pathways regarding arsenic exposure from Table 1, for
the simultaneous analysis of all tissues and ionization modes. Letter code for the pathways corre-
sponds to: (A) aminoacyl-tRNA biosynthesis; (B) alanine, aspartate, and glutamate metabolism; (C)
glycine, serine, and threonine metabolism; (D) phenylalanine metabolism; (E) isoquinoline alkaloid
biosynthesis; (F) tryptophan metabolism; (G) arginine biosynthesis; (H) phenylalanine, tyrosine,
and tryptophan biosynthesis; (I) arginine and proline metabolism; (J) butanoate metabolism; (K)
glyoxylate and dicarboxylate metabolism. (C) Comparison of the number of significant metabolites
related to the main metabolic pathways affected by the exposure from (B), according to the tissue
analyzed (roots vs. aerials).
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Table 1. Metabolomic results from pathway analysis in Metaboanalyst online platform, for all tissues and ionization modes simultaneously. Metabolic pathways
affected are ordered according to their significance.

Result from Pathway Analysis Total Expected Hits Raw p −Log10(p) Holm Adjust FDR Impact

Aminoacyl-tRNA biosynthesis 46 1.31 12 9.86 × 10−10 9.01 9.37 × 10−8 9.37 × 10−8 0.11

Alanine, aspartate, and glutamate metabolism 22 0.63 6 1.951 × 0−5 4.71 1.83 × 10-3 9.26 × 10-4 0.52

Glycine, serine, and threonine metabolism 33 0.94 6 2.29 × 10−4 3.64 2.13 × 10-2 7.26 × 10−3 0.37

Arginine biosynthesis 18 0.51 4 1.30 × 10−3 2.89 1.20 × 10-1 3.09 × 10−2 0.08

Phenylalanine, tyrosine, and tryptophan biosynthesis 22 0.63 4 2.86 × 10−3 2.54 2.61 × 10-1 5.44 × 10−2 0.10

Arginine and proline metabolism 28 0.80 4 7.08 × 10−3 2.15 6.37 × 10−1 1.09 × 10−1 0.14

Glyoxylate and dicarboxylate metabolism 29 0.83 4 8.04 × 10−3 2.09 7.16 × 10−1 1.09 × 10−1 0.06

Butanoate metabolism 17 0.48 3 1.11 × 10−2 1.96 9.74 × 10−1 1.31 × 10−1 0.14

Valine, leucine, and isoleucine biosynthesis 22 0.63 3 2.27 × 10−2 1.64 1.00 2.21 × 10−1 0.00

Lysine biosynthesis 9 0.26 2 2.51 × 10−2 1.60 1.00 2.21 × 10−1 0.00

Tryptophan metabolism 23 0.66 3 2.56 × 10−2 1.59 1.00 2.21 × 10−1 0.24

Cyanoamino acid metabolism 26 0.74 3 3.54 × 10−2 1.45 1.00 2.81 × 10−1 0.00

Cysteine and methionine metabolism 46 1.31 4 3.90 × 10−2 1.41 1.00 2.85 × 10−1 0.02

Sulfur metabolism 15 0.43 2 6.59 × 10−2 1.18 1.00 4.47 × 10−1 0.03

Phenylpropanoid biosynthesis 35 1.00 3 7.48 × 10−2 1.13 1.00 4.74 × 10−1 0.00

beta-Alanine metabolism 18 0.51 2 9.10 × 10−2 1.04 1.00 5.40 × 10−1 0.07

Purine metabolism 63 1.80 4 1.01 × 10−1 9.9710−1 1.00 5.63 × 10−1 0.00

Citrate cycle (TCA cycle) 20 0.57 2 1.09 × 10−1 9.6210−1 1.00 5.76 × 10−1 0.10

Isoquinoline alkaloid biosynthesis 6 0.17 1 1.60 × 10−1 7.9710−1 1.00 7.98 × 10−1 0.41

Galactose metabolism 27 0.77 2 1.78 × 10−1 7.4910−1 1.00 8.47 × 10−1 0.00

Monobactam biosynthesis 8 0.23 1 2.07 × 10−1 6.8410−1 1.00 8.94 × 10−1 0.00

Tropane, piperidine, and pyridine alkaloid biosynthesis 8 0.23 1 2.07 × 10−1 6.8410−1 1.00 8.94 × 10−1 0.00

Valine, leucine, and isoleucine degradation 37 1.05 2 2.85 × 10−1 5.4510−1 1.00 1.00 0.00
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Table 1. Cont.

Result from Pathway Analysis Total Expected Hits Raw p −Log10(p) Holm Adjust FDR Impact

Nitrogen metabolism 12 0.34 1 2.94 × 10−1 5.3110−1 1.00 1.00 0.00

Phenylalanine metabolism 12 0.34 1 2.94 × 10−1 5.3110−1 1.00 1.00 0.42

Pyrimidine metabolism 38 1.08 2 2.96 × 10−1 5.2910−1 1.00 1.00 0.03

Nicotinate and nicotinamide metabolism 13 0.37 1 3.15 × 10−1 5.0210−1 1.00 1.00 0.00

Cutin, suberine, and wax biosynthesis 14 0.40 1 3.34 × 10−1 4.76 × 10−1 1.00 1.00 0.00

Sphingolipid metabolism 17 0.48 1 3.90 × 10−1 4.09 × 10−1 1.00 1.00 0.00

Ascorbate and aldarate metabolism 18 0.51 1 4.08 × 10−1 3.90 × 10−1 1.00 1.00 0.00

Tyrosine metabolism 18 0.51 1 4.08 × 10−1 3.90 × 10−1 1.00 1.00 0.17

Fructose and mannose metabolism 20 0.57 1 4.42 × 10−1 3.55 × 10−1 1.00 1.00 0.00

Propanoate metabolism 20 0.57 1 4.42 × 10−1 3.55 × 10−1 1.00 1.00 0.00

Carbon fixation in photosynthetic organisms 21 0.60 1 4.58 × 10−1 3.39 × 10−1 1.00 1.00 0.00

Zeatin biosynthesis 21 0.60 1 4.58 × 10−1 3.39 × 10−1 1.00 1.00 0.00

Biosynthesis of unsaturated fatty acids 22 0.63 1 4.73 × 10−1 3.25 × 10−1 1.00 1.00 0.00

Fatty acid elongation 23 0.66 1 4.89 × 10−1 3.11 × 10−1 1.00 1.00 0.00

Pantothenate and CoA biosynthesis 23 0.66 1 4.89 × 10−1 3.11 × 10−1 1.00 1.00 0.03

Phosphatidylinositol signaling system 26 0.74 1 5.32 × 10−1 2.74 × 10−1 1.00 1.00 0.03

Glutathione metabolism 27 0.77 1 5.45 × 10−1 2.63 × 10−1 1.00 1.00 0.01

Inositol phosphate metabolism 28 0.80 1 5.59 × 10−1 2.53 × 10−1 1.00 1.00 0.10

Ubiquinone and other terpenoid-quinone biosynthesis 35 1.00 1 6.41 × 10−1 1.93 × 10−1 1.00 1.00 0.00

Fatty acid degradation 37 1.05 1 6.62 × 10−1 1.79 × 10−1 1.00 1.00 0.00

Flavonoid biosynthesis 47 1.34 1 7.49 × 10−1 1.25 × 10−1 1.00 1.00 0.00

Fatty acid biosynthesis 56 1.60 1 8.08 × 10−1 9.23 × 10−2 1.00 1.00 0.01
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4. Discussion

Previous studies in the literature have evaluated arsenic species accumulation and
translocation from roots to shoots or grains [31,33,66]. For instance, specific transfer factors
have been measured to understand how several arsenic species were transported from
roots to other plant parts [66]. As a general conclusion, the higher the uptake, the more
arsenic content translocates to the grains. Moreover, elevated concentrations of arsenic
had a negative effect on plant development. These facts were in agreement with our study,
where higher concentration levels of exposure caused severer changes in the phenotype
(lighter colors in the aerial parts and darker in the roots, especially for the WH group), and
also in the lipidome and metabolome, as already discussed in the previous sections. The
work presented here also demonstrates that regardless of the treatment tested (watering
and soil), arsenic alters metabolic pathways in both tissues (roots and aerials), leading to
severe damage in the whole plant, including the grain. Furthermore, the arsenic tendency
to translocate from roots to shoots, and from shoots to grain, poses a threat on human
populations, which take in this element and biomagnifies through the food chain [32].

Since rice is cultivated in flooded conditions, where arsenic mobility is higher [33], the
plant is susceptible to uptake arsenic from two main sources, i.e., contaminated ground-
waters [24] and contaminated agricultural soils [25]. This study demonstrates that both
scenarios of contamination threaten the development and growth of rice. The effects in the
roots lipidome differed with the two tested treatments (watering and soil), whereas aerials
seem more affected by the total arsenic dosage supplied. Hence, the findings in the study
draw attention to the importance of arsenic sources when proposing detoxification strategies.

Untargeted metabolomics is a useful tool to assess metal and metalloid toxicity in
model organisms, such as plants [18]. This omic approach provides a snapshot of what
happens at the cellular level at the moment of the harvest, which means real-time infor-
mation on arsenic exposure. Main lipidic changes detected in this study were related to
key alterations in glycerophospholipids and glycerolipids, which are the dominant lipid
families in rice [67]. The first group is a principal component of biological membranes in
animals and plants, but also a major class of lipid in rice grain, often related to its quality
and nutritional significance [68]. More specifically, lysoglycerophopholipids seem to be
particularly vulnerable to environmental changes, which is in agreement with the accentu-
ated alterations found in the current study for some LPCs and LPEs. There was also a link
between some of our significant annotated metabolites and glycerophospholipid pathways
(e.g., serine). The second group is also found in plant cell membranes [69], and has also
been linked to photosynthesis, especially glyceroglycolipids (e.g., MGDG, DGDG) [70,71].
Among glycerolipids, DGs may play a crucial role in rice. Some studies suggested that
DGs derived from phosphatidic acid, and that glycerophospholipid synthesis in rice may
be linked to 1,2-diacylglycerol pathways [68]. Therefore, according to our study, arsenic
exposure is damaging key lipidomic pathways related to important functions in plant cells
and also linked to the grain’s quality.

Our metabolomic study found major effects in amino acid-related pathways, such as
aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate metabolism or glycine,
serine, and threonine metabolism. These molecules are known for their essential role in the
development, growth, and stress responses of plants, as they have been related to their im-
mune system [72]. A recent review from Guo et al. summarizes current knowledge of what
is the function of amino acids in rice as signal molecules, how are they transported from
the roots, and how these molecules regulate plant architecture and defense against abiotic
stresses, specifically mentioning the role of proline, glycine, glutamate, and glutamine in
stress responses [73]. Thus, our results suggest that rice defense mechanism against arsenic
involves alterations in the amino acid-related pathways, as a response of their immune
system against this contaminant.

Although our study was only performed at one harvesting time, further informa-
tion could be obtained with time-course experiments at several sampling times. Besides,
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untangling the mode of action of this metalloid leads us to potentially identify novel
detoxification mechanisms. Lastly, not all arsenic species exhibit the same toxicity and
translocation [31], and the cultivar tolerance is also a key aspect to consider. For instance, a
previous study evaluated the role of amino acids and thiolic ligands on arsenite tolerance
in rice [74]. Results were dependent on the cultivar’s tolerance. Although in our work we
supplied arsenic (V) solution to rice instead of arsenic (III), both studies have in common
that amino acids were altered due to this contaminant regardless of the arsenic species
provided. Besides, amino acids are not only involved in rice response against arsenic stress,
but could also be employed for detoxification purposes, as well as other molecules such as
thiol ligands [74]. Further metabolomic studies in combination with speciation analysis
could shed more light on arsenic uptake mechanism and way of action.

5. Conclusions

Untargeted lipidomic and metabolomic approaches have allowed increasing our
current knowledge on arsenic exposure in rice at early stages of growth (up to 22 days),
through two different treatments (watering with arsenic contaminated water or growth in
contaminated soil). Metabolic and lipidomic alterations caused by As (V) treatment were
present in both root and aerial tissues. The application of a proper chemometrics workflow
has allowed the proposal of potential markers of these metabolic disturbances.

Specifically, arsenic impact in the roots lipidome differed according to the treatment,
watering, and soil contaminations, which revealed that the nature of the arsenic source
produced a different type of effects on this root tissue. In addition, severe damage in the
metabolome (and lipidome) was also found in aerial tissues, confirming the presence of
adverse effects due to arsenic exposure throughout the whole plant (and eventually, to the
rice grains). In contrast to roots, adverse arsenic effects in aerials were more related to the
arsenic dose rather than the treatment itself. Some of the lipids most affected by arsenic
exposure belonged to the following lipid families: LPCs, PAs, DGs, PGs, and PSs in aerial
tissues, and PCs, PAs, DGDGs, MGDGs in roots. Regarding the metabolomic alterations, the
comparison of significant changes in roots and aerial metabolomes showed a considerable
overlapping of biochemical pathway alterations between both tissues, although the affected
metabolites did not necessarily coincide in both cases. Most of the metabolic pathways
disturbed were amino acid related. In rice, amino acids have been previously associated
with defense mechanisms against abiotic stresses and they also play a key role in plant
immune system. These changes in amino acids may be a consequence of stress response of
rice to defend itself against arsenic exposure, and they could be used as an indication of
arsenic detoxification.

In conclusion, untargeted analysis has proven to be a powerful tool to generate hy-
pothesis regarding the modes of action of toxics such as arsenic, because it furnishes a wider
overview of metabolic changes; in this case, of adverse effects caused by As (V) solutions
in rice lipidome and metabolome. Targeted analysis of the potential markers found in
previous untargeted analysis can confirm and validate the proposed discoveries. Other
complementary omic analysis, such as transcriptomics, will complementarily improve the
characterization and role of specific metabolites and lipids involved in arsenic exposure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations9030079/s1, Figure S1: Experimental conditions em-
ployed for rice growing in the chamber MLE-352H: light intensity and temperature; Figure S2:
Scheme of the ROIMCR workflow; Figure S3: PCA score plots positive ionization mode obtained
for lipidomic results for roots (A) and aerial parts (B), and metabolomic results for roots (C) and
aerial parts (D); Figure S4: Experimental MS/MS spectrum of L-tryptophan compared to a theoretical
MS/MS spectrum for the same compound in aerial tissues with ESI (+); Figure S5: Hierarchical
clustering heatmaps applied to the logarithm of the fold changes of the annotated lipids for aerial
in positive mode, roots in positive and negative modes, respectively; Table S1: Summary of the
As (V) concentration levels employed in this study; Table S2: ROI parameters employed and MCR
components obtained for each dataset; Table S3: Statistical results from ASCA; Table S4: PLS-DA

https://www.mdpi.com/article/10.3390/separations9030079/s1
https://www.mdpi.com/article/10.3390/separations9030079/s1


Separations 2022, 9, 79 18 of 21

results: no. of Variables Important in Projection > 1.0 and Matthew Correlation Coefficients; Table
S5: MS-DIAL parameters used in metabolomic annotation; Table S6: Experiment file used in MS
method type section from start a project window in MS-DIAL; Table S7: Lipid identification of the
most relevant features responsible for the changes induced by arsenic exposure on rice in root tissues,
in positive ionization mode; Table S8: Lipid identification of the most relevant features responsible
for the changes induced by arsenic exposure on rice in root tissues, in negative ionization mode;
Table S9: Lipid identification of the most relevant features responsible for the changes induced by
arsenic exposure on rice in aerial tissues, in positive ionization mode; Table S10: Lipid identification
of the most relevant features responsible for the changes induced by arsenic exposure on rice in
aerial tissues, in negative ionization mode; Table S11: Metabolite identification of the most relevant
features responsible for the changes induced by arsenic exposure on rice in root tissues, in positive
ionization mode; Table S12: Metabolite identification of the most relevant features responsible for the
changes induced by arsenic exposure on rice in root tissues, in negative ionization mode; Table S13:
Metabolite identification of the most relevant features responsible for the changes induced by arsenic
exposure on rice in aerial tissues, in positive ionization mode; Table S14: Metabolite identification of
the most relevant features responsible for the changes induced by arsenic exposure on rice in aerial
tissues, in negative ionization mode [75,76].
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