A Fast Method for the Simultaneous Analysis of 26 Beta-Agonists in Swine Muscle with a Multi-Functional Filter by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Standard Preparation
2.3. Sample Preparation
2.4. UHPLC-MS/MS Analysis
2.5. Method Validation
3. Results and Discussion
3.1. Optimization of the Enzymatic Hydrolysis Process
3.2. Optimization of Cleanup Method
3.3. Selection of Redissolved Solvent
3.4. Matrix Effect
3.5. Method Validation
3.6. Application to Actual Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez-Navarro, J.F. Food poisoning related to consumption of illicit beta-agonist in liver. Lancet 1990, 336, 1311. [Google Scholar] [CrossRef]
- Guo, P.; Wan, J.; Zhan, C.; Zhu, C.; Jiang, W.; Ke, Y.; Ding, S.; Wang, D. A simplified sample pretreatment for the rapid determination of 22 beta-agonist residues in swine muscle and liver tissues by ultra-high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2018, 1096, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Miao, H.; Zhao, Y.; Chen, H.; Wu, Y. Simultaneous Detection of Residues of 25 beta(2)-Agonists and 23 beta-Blockers in Animal Foods by High-Performance Liquid Chromatography Coupled with Linear Ion Trap Mass Spectrometry. J. Agric. Food Chem. 2012, 60, 1898–1905. [Google Scholar]
- Shao, B.; Jia, X.; Zhang, J.; Meng, J.; Wu, Y.; Duan, H.; Tu, X. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chem. 2009, 114, 1115–1121. [Google Scholar] [CrossRef]
- The Ministry of Agriculture, PR China. Maximum Residue Limits of Veterinary Drugs in Animal Food; Announcement No. 235; The Ministry of Agriculture: Beijing, China, 2002.
- Directive, E. Council Directive 96/22EC of 29 April 1996 Concerning the Prohibition on the Use in Stockfarming of Certain Substances Having a Hormonal Other Thyrostatic Action and of Beta-Agonist, and Repealing Directives 81/602. Off. J. Eur. Union 1996, 125, 3–9. Available online: https://eur-lex.europa.eu/eli/dir/1996/22/oj (accessed on 21 April 2022).
- Barbosa, J.; Cruz, C.; Martins, J.; Silva, J.M.; Neves, C.; Alves, C.; Ramos, F.; da Silveira, M.I.N. Food poisoning by clenbuterol in Portugal. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2005, 22, 563–566. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, D.; Wu, K.; Yang, H.; Du, H.; Zhao, K.; Li, J.; Deng, A. Development of a sensitive monoclonal antibody-based ELISA for the determination of a beta-adrenergic agonist brombuterol in swine meat, liver and feed samples. Anal. Methods 2016, 8, 6941–6948. [Google Scholar] [CrossRef]
- Liu, C.; Wu, X.-H.; Xu, W.-D.; Chai, Y.-F. LC-MS/MS determination of 15 beta-agonists in animal borne food. Chin. J. Pharm. Anal. 2008, 28, 2085–2089. [Google Scholar]
- Li, H.; Zhang, J.; Song, H.; Gao, W. HPLC—TMS determination of 6 kinds of beta—agonist residues in muscle tissue. Chin. J. Pharm. Anal. 2011, 31, 2273–2277. [Google Scholar]
- Xu, C.; Gao, H.; Pan, N.; Jiang, M.; Huang, Y.; Zhu, K.; Gong, P.; Lv, S. Clenbuterol, salbutamol, and ractopamine in fresh meat products in Jilin province, China. Int. J. Food Prop. 2019, 22, 1183–1194. [Google Scholar] [CrossRef]
- Wang, X.; Liufu, T.; Beloglazova, N.V.; Luo, P.; Qu, J.; Jiang, W. Development of a Competitive Indirect Enzyme-Linked Immunosorbent Assay for Screening Phenylethanolamine A Residues in Swine muscle Samples. Food Anal. Methods 2016, 9, 3099–3106. [Google Scholar] [CrossRef]
- Ngom, B.; Guo, Y.; Wang, X.; Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: A review. Anal. Bioanal. Chem. 2010, 397, 1113–1135. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Saleem, K.; Gaitonde, V.D.; Aboul-Enein, H.Y.; Hussain, I. Chiral Separations of Some beta-Adrenergic Agonists and Antagonists on AmyCoat Column by HPLC. Chirality 2010, 22, 24–28. [Google Scholar] [CrossRef]
- Garcia, P.; Paris, A.C.; Gil, J.; Popot, M.A.; Bonnaire, Y. Analysis of beta-agonists by HPLC/ESI-MSn in horse doping control. Biomed. Chromatogr. 2011, 25, 147–154. [Google Scholar] [CrossRef]
- VanVyncht, G.; Preece, S.; Gaspar, P.; MaghuinRogister, G.; DePauw, E. Gas and liquid chromatography coupled to tandem mass spectrometry for the multiresidue analysis of beta-agonists in biological matrices. J. Chromatogr. A 1996, 750, 43–49. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P.; Kwiatkowski, M.; Migowska, N.; Kumirska, J. Determination of beta-blockers and beta-agonists using gas chromatography and gas chromatography-mass spectrometry—A comparative study of the derivatization step. J. Chromatogr. A 2011, 1218, 8110–8122. [Google Scholar] [CrossRef]
- Karamolegou, F.; Dasenaki, M.; Belessi, V.; Georgakilas, V.; Thomaidis, N. Multi-Residue Determination of 7 beta-Agonists in Liver and Meat Using Gas Chromatography-Mass Spectrometry. Food Anal. Methods 2018, 11, 2925–2942. [Google Scholar] [CrossRef]
- Wang, L.; Pu, R.-C.; Wang, X.-X.; Luo, C.-Y.; Zhang, L.-C.; Zhang, X.-S. Multiresidue Determination of beta(2)-Agonists Including Phenylethanolamine A in Animal-Derived Food by Ultra-High Performance Liquid Chromatography/Tandem Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-P.; Lee, Y.-L.; Hung, C.-Y.; Huang, W.-J.; Lin, S.-C. Determination of multiresidue analysis of beta-agonists in muscle and viscera using liquid chromatograph/tandem mass spectrometry with Quick, Easy, Cheap, Effective, Rugged, and Safe methodologies. J. Food Drug Anal. 2017, 25, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Gao, Y.-Q.; Li, W.-H.; Yang, X.-L.; Shimo, S.P. Simple and sensitive monitoring of beta(2)-agonist residues in meat by liquid chromatography-tandem mass spectrometry using a QuEChERS with preconcentration as the sample treatment. Meat Sci. 2015, 105, 96–107. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Jiang, W.; Zhang, S.; Shen, J.; Wen, K.; Wang, Z. Development and Application of a Gel-Based Immunoassay for the Rapid Screening of Salbutamol and Ractopamine Residues in Swine muscle. J. Agric. Food Chem. 2015, 63, 10556–10561. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Gao, Y.-Q.; Li, W.-H.; Guo, T.-F.; Yang, X.-L. A method for multiple identification of four beta(2)-Agonists in goat muscle and beef muscle meats using LC-MS/MS based on deproteinization by adjusting pH and SPE for sample cleanup. Food Sci. Biotechnol. 2015, 24, 1629–1635. [Google Scholar] [CrossRef]
- Valese, A.C.; Oliveira, G.A.P.; Kleemann, C.R.; Molognoni, L.; Daguer, H. A QuEChERS/LC-MS method for the analysis of ractopamine in swine muscle. J. Food Compos. Anal. 2016, 47, 38–44. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.-L.; Yang, T.; Zhang, Y.; Huang-Fu, W.-G. Simultaneous determination of clenbuterol, salbutamol and ractopamine in milk by reversed-phase liquid chromatography tandem mass spectrometry with isotope dilution. J. Chromatogr. A 2010, 1217, 7873–7877. [Google Scholar] [CrossRef]
- Castilla-Fernandez, D.; Moreno-Gonzalez, D.; Beneito-Cambra, M.; Molina-Diaz, A. Critical assessment of two sample treatment methods for multiresidue determination of veterinary drugs in milk by UHPLC-MS/MS. Anal. Bioanal. Chem. 2019, 411, 1433–1442. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. Aoac Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrianni, K.R.; Metavarayuth, K.; Brewer, W.E.; Wang, Q. Analysis of 10 beta-agonists in swine muscle meat using automated dispersive pipette extraction and LC-MS/MS. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2018, 1084, 64–68. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Su, Y.-Q.; Ding, X.-M.; Xia, W.-S.; Liu, H.-M.; Zhang, Y.-B. Single-Step Multiresidue Determination of beta-Lactam Antibiotics and beta-Agonists in Porcine Muscle by Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2017, 10, 2185–2193. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Y.; Jia, Q.; Zhang, L.; Zhang, W.; Mu, P.; Jia, Y.; Qian, Y.; Qiu, J. Simultaneous determination of 58 pesticides and relevant metabolites in eggs with a multi-functional filter by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2019, 1593, 81–90. [Google Scholar] [CrossRef]
- Gressler, V.; Feddern, V.; Peixoto, J.d.O.; Ledur, M.C.; Costa, O.A.D.; Mello Monteiro de Lima, G.J. Application of Enzyme Digestion and Deconjugation Followed by Quick, Easy, Cheap, Effective, Rugged, Safe Extraction and Liquid Chromatography-Tandem Mass Spectrometry Methodology To Determine Ractopamine Residue in Swine muscle. J. Food Prot. 2018, 81, 1258–1263. [Google Scholar] [CrossRef]
- European Commission. Commission Decision 2002/657/EC of 12 August 2002. Off. J. Eur. Communities 2002, 50, 8–36. [Google Scholar]
- European Union Reference Laboratories. CRLs View on State of the Art Analytical Methods for National Residue Control Plans. CRL Guidance Paper. December 2007, pp. 1–8. Available online: https://www.bvl.bund.de/SharedDocs/Downloads/07_Untersuchungen/EURL_Empfehlungen_Konzentrationsauswahl_Methodenvalierungen_EN.html?nn=11011448 (accessed on 21 April 2022).
- de Brabander, H.F.; Noppe, H.; Verheyden, K.; Bussche, J.V.; Wille, K.; Okerman, L.; Vanhaecke, L.; Reybroeck, W.; Ooghe, S.; Croubels, S. Residue analysis: Future trends from a historical perspective. J. Chromatogr. A 2009, 1216, 7964–7976. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Morante-Zarcero, S.; Perez-Quintanilla, D.; Sierra, I. Application of a hybrid ordered mesoporous silica as sorbent for solid-phase multi-residue extraction of veterinary drugs in meat by ultra-high-performance liquid chromatography coupled to ion-trap tandem mass spectrometry. J. Chromatogr. A 2016, 1459, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Mauro, D.; Ciardullo, S.; Civitareale, C.; Fiori, M.; Pastorelli, A.A.; Stacchini, P.; Palleschi, G. Development and validation of a multi-residue method for determination of 18 beta-agonists in bovine urine by UPLC-MS/MS. Microchem. J. 2014, 115, 70–77. [Google Scholar] [CrossRef]
- The Ministry of Agriculture and Rural Affairs, PR China. Determination of Beta-Agonists Residues in Animal Derived Food by Liquid Chromatography-Tandem Mass Spectrometry; The Ministry of Agriculture: Beijing, China, 2008.
- Gabriela, I.; Ibarra, I.S.; Prisciliano, H.; Miranda, J.M.; Alberto, C. Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: A review. Int. J. Anal. Chem. 2017, 2017, 1–16. [Google Scholar]
- Amate, C.F.; Unterluggauer, H.; Fischer, R.J.; ARFernández-Alba Masselter, S. Development and validation of a lc-ms/ms method for the simultaneous determination of aflatoxins, dyes and pesticides in spices. Anal. Bioanal. Chem. 2010, 397, 93–107. [Google Scholar] [CrossRef]
Analyte | Molecular | Q1 Ion (m/z) | Q 3 Ion (m/z) | Fragmentor (V) | Collision Energy (V) |
---|---|---|---|---|---|
Ion | |||||
Cimaterol | [M + H]+ | 220.1 | 202.1 | 80 | 4 |
160.1 | 80 | 12 | |||
Terbutaline | [M + H]+ | 226.1 | 152.1 | 90 | 10 |
107 | 90 | 25 | |||
Zilpaterol | [M + H]+ | 262.1 | 185 | 80 | 25 |
244.1 | 80 | 5 | |||
Salbutamol | [M + H]+ | 240.2 | 148.1 | 88 | 4 |
222.2 | 88 | 4 | |||
Cimbuterol | [M + H]+ | 234.1 | 143 | 75 | 25 |
160 | 75 | 5 | |||
Fenoterol | [M + H]+ | 304.1 | 135.2 | 120 | 20 |
286.2 | 120 | 40 | |||
Ritodrine | [M + H]+ | 288.1 | 121 | 100 | 6 |
270.1 | 100 | 18 | |||
Clencyclohexerol | [M + H]+ | 319.1 | 203.1 | 110 | 15 |
168.1 | 110 | 20 | |||
Clenbuterolhydroxymethyl | [M + H]+ | 293 | 275 | 110 | 10 |
203 | 110 | 20 | |||
Isoxsuprine | [M + H]+ | 302.1 | 107 | 80 | 30 |
284.1 | 80 | 5 | |||
Ractopamine | [M + H]+ | 302 | 121 | 110 | 10 |
164.1 | 110 | 22 | |||
Clenproperol | [M + H]+ | 263 | 245 | 100 | 10 |
203 | 100 | 15 | |||
Clorprenaline | [M + H]+ | 214 | 154 | 70 | 15 |
196 | 70 | 5 | |||
Formoterol | [M + H]+ | 345 | 149 | 120 | 15 |
121 | 120 | 20 | |||
Clenbuterol | [M + H]+ | 277.1 | 203 | 100 | 12 |
259.1 | 100 | 5 | |||
Metoprolol Tartrate | [M + H]+ | 268.1 | 116.1 | 75 | 20 |
98.1 | 75 | 25 | |||
Bromchlorbuterol | [M + H]+ | 321 | 247 | 110 | 10 |
168 | 110 | 15 | |||
Bromobuterol | [M + H]+ | 367 | 292.9 | 75 | 15 |
348.9 | 75 | 5 | |||
Tulobuterol | [M + H]+ | 228.1 | 154 | 100 | 13 |
107 | 100 | 5 | |||
Mabuterol | [M + H]+ | 311.1 | 237 | 80 | 20 |
216.9 | 80 | 15 | |||
Bambuterol | [M + H]+ | 368.1 | 294 | 100 | 20 |
312 | 100 | 8 | |||
Clenpenterol | [M + H]+ | 291.1 | 202.9 | 75 | 15 |
132 | 75 | 35 | |||
Labetalol | [M + H]+ | 329 | 311 | 120 | 10 |
207 | 120 | 5 | |||
Clenhexerol | [M + H]+ | 305.1 | 203 | 110 | 20 |
132 | 110 | 35 | |||
Salmeterol | [M + H]+ | 416.1 | 380.2 | 130 | 18 |
398.2 | 130 | 10 | |||
penbutolol | [M + H]+ | 292.2 | 236 | 122 | 12 |
133 | 122 | 24 | |||
Salbutamol-d3 | [M + H]+ | 243.1 | 151 | 73 | 21 |
Clenbuterol-d9 | [M + H]+ | 286.1 | 204.1 | 100 | 13 |
Ractopamine-d6 | [M + H]+ | 308.2 | 168.1 | 100 | 13 |
Fenoterol-d6 | [M + H]+ | 310 | 141 | 130 | 21 |
Cimaterol-d7 | [M + H]+ | 227.3 | 161.1 | 92 | 17 |
Terbutaline-d9 | [M + H]+ | 235.1 | 152.9 | 115 | 17 |
Analyte | R2 | LOD (μg/kg) | LOQ (μg/kg) | CCα (μg/kg) | CCβ (μg/kg) | ME (%) |
---|---|---|---|---|---|---|
Terbutaline | 0.9943 | 0.01 | 0.10 | 21.56 | 43.03 | 88.7 |
Clencyclohexerol | 0.9989 | 0.01 | 0.10 | 20.66 | 41.22 | 95.7 |
Clorprenaline | 0.9997 | 0.01 | 0.10 | 16.76 | 33.41 | 96.7 |
clenbuterol | 0.9997 | 0.01 | 0.10 | 15.66 | 31.22 | 94.4 |
Fenoterol | 0.9995 | 0.10 | 0.20 | 22.23 | 44.26 | 97.1 |
Ritodrine | 0.9994 | 0.01 | 0.20 | 21.93 | 43.66 | 97.0 |
Clenbuterolhydroxymethyl | 0.9993 | 0.05 | 0.20 | 22.98 | 45.76 | 98.1 |
Clenproperol | 0.9997 | 0.05 | 0.20 | 25.71 | 51.21 | 97.6 |
Bromchlorbuterol | 0.9994 | 0.01 | 0.20 | 23.64 | 47.09 | 99.2 |
Bambuterol | 0.9988 | 0.01 | 0.20 | 23.42 | 46.65 | 99.4 |
Clenpenterol | 0.9998 | 0.01 | 0.20 | 22.84 | 45.48 | 95.7 |
Labetalol | 0.9999 | 0.10 | 0.20 | 23.14 | 46.09 | 95.2 |
Clenhexerol | 0.9995 | 0.01 | 0.20 | 24.09 | 47.98 | 97.2 |
Salmeterol | 0.9992 | 0.01 | 0.20 | 21.93 | 43.66 | 93.4 |
penbutolol | 0.9994 | 0.01 | 0.20 | 22.61 | 45.02 | 97.7 |
Cimaterol | 0.9995 | 0.05 | 0.50 | 22.65 | 45.09 | 98.9 |
Salbutamol | 0.9907 | 0.01 | 0.50 | 4.40 | 8.31 | 94.6 |
Zilpaterol | 0.9926 | 0.05 | 0.50 | 3.44 | 6.38 | 87.6 |
Cimbuterol | 0.9997 | 0.01 | 0.50 | 11.47 | 22.44 | 94.4 |
Isoxsuprine | 0.9993 | 0.01 | 0.50 | 4.38 | 8.26 | 96.7 |
Ractopamine | 0.9998 | 0.01 | 0.50 | 4.68 | 8.87 | 95.8 |
Formoterol | 0.9999 | 0.01 | 0.50 | 3.96 | 7.42 | 81.0 |
Metoprolol Tartrate | 0.9998 | 0.01 | 0.50 | 4.41 | 8.33 | 97.8 |
Bromobuterol | 0.9996 | 0.01 | 0.50 | 7.19 | 13.89 | 98.2 |
Tulobuterol | 0.9996 | 0.01 | 0.50 | 4.02 | 7.54 | 97.5 |
Mabuterol | 0.9994 | 0.01 | 0.50 | 3.94 | 7.39 | 98.2 |
Procaterol | 0.9992 | 0.10 | 0.50 | 5.89 | 10.77 | 96.3 |
Analyte | Spike Level (n = 6) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 μg/kg | 0.2 μg/kg | 1 μg/kg | 2 μg/kg | 5 μg/kg | 10 μg/kg | 20 μg/kg | |||||||||||||||
Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | |
Terbutaline | 105.1 | 6.21 | 10.7 | 94.1 | 17.44 | 14.52 | 86.9 | 11.46 | 12.14 | 87.1 | 14.02 | 13.4 | 71.2 | 3.35 | 4.38 | 89.2 | 4.24 | 4.76 | 93 | 2.3 | 3.15 |
Clencyclohexerol | 116.2 | 6.59 | 9.89 | 97.5 | 10.12 | 12.3 | 101.5 | 5.14 | 4.84 | 97 | 12.03 | 12.03 | 89.6 | 3.95 | 3.38 | 108.5 | 4.47 | 3.55 | 105.6 | 2.65 | 2.26 |
Clorprenaline | 103 | 10.06 | 11.29 | 109.9 | 11.51 | 9.44 | 113.2 | 2.48 | 4.62 | 112.8 | 13.35 | 12.03 | 101 | 2.35 | 1.83 | 116.1 | 3.35 | 3.19 | 112.8 | 1.89 | 2.62 |
Clenbuterol | 107.4 | 13.5 | 11.41 | 100.7 | 4.04 | 9.14 | 106.4 | 2.89 | 3.89 | 104.8 | 14.04 | 12.82 | 94.7 | 2.79 | 2.51 | 110.8 | 1.58 | 1.74 | 110.6 | 0.89 | 1.72 |
Fenoterol | 103.4 | 6.85 | 6.97 | 95.1 | 8.43 | 5.75 | 97.7 | 15.18 | 14.08 | 81.7 | 2.58 | 3.22 | 103.4 | 3.53 | 3.79 | 102 | 2.41 | 2.71 | |||
Ritodrine | 110.3 | 5.63 | 7.17 | 106.2 | 2.31 | 3.57 | 107.1 | 12.37 | 12.33 | 95 | 3.42 | 2.68 | 112.3 | 4.63 | 4.07 | 111.5 | 2.78 | 3.02 | |||
Clenbuterolhydroxymethyl | 97.9 | 5.88 | 7.05 | 107.3 | 3.3 | 3.04 | 107.3 | 13.03 | 13.3 | 91.4 | 3.44 | 2.78 | 115.6 | 3.94 | 3.63 | 113.9 | 3.02 | 2.87 | |||
Clenproperol | 105.1 | 5.22 | 8.51 | 113.9 | 1.41 | 2.78 | 115.4 | 13.43 | 13.78 | 97.4 | 3.14 | 2.55 | 115.6 | 3.53 | 3.19 | 113.2 | 2.94 | 2.78 | |||
Bromchlorbuterol | 102.8 | 18.37 | 15.49 | 109.7 | 9.16 | 7.11 | 109 | 16.36 | 13.29 | 95.7 | 2.55 | 3.73 | 115.3 | 5.98 | 5.48 | 113.9 | 3.19 | 3.25 | |||
Bambuterol | 109.6 | 4.25 | 7.47 | 104.7 | 3.58 | 4.32 | 108.4 | 12.79 | 13.47 | 105.2 | 2.47 | 2.04 | 122.6 | 3.93 | 3.65 | 117.2 | 3.53 | 3.34 | |||
Clenpenterol | 109.4 | 3.26 | 4.19 | 114.1 | 3.11 | 4.41 | 110 | 13 | 12.83 | 99.1 | 1.9 | 1.59 | 115.8 | 4.05 | 3.82 | 111.7 | 2.78 | 2.91 | |||
Labetalol | 103.4 | 7.76 | 9.61 | 107.3 | 6.36 | 5.77 | 110 | 14.23 | 13.54 | 89.4 | 2.79 | 3.48 | 109.1 | 3.53 | 3.68 | 107.8 | 2.54 | 2.51 | |||
Clenhexerol | 107.5 | 5.69 | 5.01 | 109 | 4.05 | 3.08 | 108.6 | 12.88 | 12.38 | 100.4 | 2.08 | 1.86 | 118.7 | 4.36 | 4.09 | 114.4 | 2.89 | 3.42 | |||
Salmeterol | 110.6 | 4.87 | 5.8 | 102.3 | 3.9 | 5.79 | 102.1 | 13.2 | 13.89 | 89.5 | 2.68 | 2.45 | 111.8 | 4.02 | 3.76 | 108.3 | 3.61 | 3.22 | |||
penbutolol | 110.3 | 2.94 | 3.17 | 111 | 2.25 | 2.79 | 109.1 | 12.27 | 12.86 | 100.4 | 2.88 | 2.16 | 118.6 | 4.2 | 3.69 | 113.7 | 3.27 | 3.1 | |||
Cimaterol | 117.2 | 6.32 | 5.89 | 114 | 13.14 | 12.74 | 97.1 | 2.54 | 2.44 | 116 | 4.16 | 3.77 | 111.2 | 2.86 | 3.41 | ||||||
Salbutamol | 107 | 2.91 | 2.71 | 106.6 | 11.47 | 11.85 | 100.8 | 1.34 | 1.79 | 114.1 | 1.3 | 1.45 | 111.5 | 1.65 | 1.66 | ||||||
Zilpaterol | 102.6 | 4.78 | 6.65 | 100.6 | 7.85 | 13.37 | 74.6 | 4.39 | 8.68 | 94.2 | 3.37 | 7.61 | 95.6 | 0.87 | 8.11 | ||||||
Cimbuterol | 112 | 3.41 | 4.67 | 110.7 | 13.12 | 12.93 | 95.2 | 2.93 | 2.52 | 112.2 | 3.86 | 3.53 | 108 | 2.68 | 3.35 | ||||||
Isoxsuprine | 112.9 | 4.11 | 5.43 | 113.5 | 13.29 | 14.1 | 91.4 | 3.44 | 2.29 | 115.6 | 3.94 | 3.56 | 113.9 | 3.02 | 2.9 | ||||||
Ractopamine | 117.3 | 4.71 | 5.12 | 111.7 | 15.06 | 14.06 | 92.3 | 3.55 | 2.78 | 113.1 | 4.01 | 3.63 | 113.4 | 1.92 | 2.87 | ||||||
Formoterol | 99.4 | 5.59 | 5.26 | 96.7 | 11.84 | 12.71 | 94.7 | 2.79 | 2.51 | 110.8 | 1.58 | 1.74 | 110.6 | 0.89 | 1.72 | ||||||
Metoprolol Tartrate | 108.9 | 7 | 7.17 | 108.6 | 13.59 | 14.03 | 102.3 | 4.58 | 4.07 | 121 | 3.68 | 3.86 | 116.3 | 2.38 | 3.81 | ||||||
Bromobuterol | 108.2 | 4.7 | 4.31 | 106.8 | 13.07 | 13.49 | 95.1 | 2.25 | 2.25 | 118.1 | 5.23 | 4.82 | 115.8 | 2.32 | 2.61 | ||||||
Tulobuterol | 111.7 | 2.82 | 3.17 | 107.9 | 12.38 | 12.83 | 99.1 | 2.51 | 2.13 | 116.9 | 4.38 | 3.83 | 114.2 | 2.95 | 2.99 | ||||||
Mabuterol | 115.3 | 1.71 | 3.41 | 110 | 13.56 | 12.63 | 99.8 | 3.33 | 2.69 | 120.4 | 4.49 | 4.1 | 116.4 | 2.87 | 3.24 |
MFF-Based Method | Traditional SPE Method [37] | Guo’s Method [2] | Xiong’s Method [21] | |
---|---|---|---|---|
number of analytes | 26 | 9 | 22 | 10 |
analysis time (h) | 6 (enzymatic hydrolysis process) and 0.5 (other sample preparation time) | 16 (enzymatic hydrolysis process) and 2 (other sample preparation time) | >6 h | >6 h |
LODs (μg/kg) | 0.01–0.10 | 0.25 | 0.05–0.8 | 0.2–0.9 |
LOQs (μg/kg) | 0.10–0.50 | 0.5 | 0.2–2.5 | 0.8–3.2 |
dynamic range (μg/kg) | 0.1–20 | 0.5–2 | 0.2–10 | 1–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Jia, Q.; Liao, G.; Qian, Y.; Qiu, J. A Fast Method for the Simultaneous Analysis of 26 Beta-Agonists in Swine Muscle with a Multi-Functional Filter by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Separations 2022, 9, 121. https://doi.org/10.3390/separations9050121
Zhang L, Jia Q, Liao G, Qian Y, Qiu J. A Fast Method for the Simultaneous Analysis of 26 Beta-Agonists in Swine Muscle with a Multi-Functional Filter by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Separations. 2022; 9(5):121. https://doi.org/10.3390/separations9050121
Chicago/Turabian StyleZhang, Lin, Qi Jia, Guangqin Liao, Yongzhong Qian, and Jing Qiu. 2022. "A Fast Method for the Simultaneous Analysis of 26 Beta-Agonists in Swine Muscle with a Multi-Functional Filter by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry" Separations 9, no. 5: 121. https://doi.org/10.3390/separations9050121
APA StyleZhang, L., Jia, Q., Liao, G., Qian, Y., & Qiu, J. (2022). A Fast Method for the Simultaneous Analysis of 26 Beta-Agonists in Swine Muscle with a Multi-Functional Filter by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Separations, 9(5), 121. https://doi.org/10.3390/separations9050121