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and Jakub Trawiński
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Featured Application: Short-chain fatty acids (SCFAs), produced by microbes when dietary fiber
ferments in the colon, are one of the most studied microbial products despite their volatility and
complex matrices, which make analysis challenging. In the current study, we sought to address re-
search gaps by exploring the commonalities and differences between the retention time changes
for SCFAs in polar solvents. In one such solvent, dimethyl sulfoxide (DMSO), the retention time
of the SCFA acetic acid shows a linear positive correlation with the equal volume increase in
the DMSO solvent. Then, some experiments and quantum chemical calculations enabled us to
identify the mechanism for changes in the retention time for SCFAs in polar solvents because we
found that, when the solute compound contains active hydrogens that form hydrogen bonds, this
results in an important force that affects retention behavior.

Abstract: Short-chain fatty acids (SCFAs), produced by microbes when dietary fiber ferments in the
colon, are one of the most studied microbial products despite their volatility and complex matrices,
which make analysis challenging. In the current study, we sought to address research gaps by
exploring the commonalities and differences between the retention time changes for SCFAs in polar
solvents. In one such solvent, dimethyl sulfoxide (DMSO), the retention time of the SCFA acetic acid
shows a linear positive correlation with the equal volume increase in the DMSO solvent. We used gas
chromatography–mass spectrometry to analyze the retention times of mixed solutions of formic acid,
acetic acid, butyric acid, valeric acid, and toluene in the solvents DMSO and water and found that
only the retention times of formic acid and acetic acid changed. We further compared the effect of
three solvents with similar polarities, DMSO, N-methylpyrrolidone (NMP), and dimethylformamide
(DMF), on the retention time of acetic acid and found that it increased in the DMSO–water solution
more than in the NMP–water solution and remained unchanged in the DMF–water solution. This
finding is consistent with quantum chemical calculations showing that the strength of the hydrogen
bond between DMSO and acetic acid is greater than between NMP and acetic acid. Taken together,
the chromatographic results and quantum chemical calculations indicate that, in all three solvents,
the portion of the molecule with the smallest negative electrostatic potential (red) has high electron
density and can easily donate electrons, forming a hydrogen bond with acetic acid. However, the
portion with the largest positive electrostatic potential (blue) forms a bond with polyethylene glycol,
a column stationary solution with a strong dipole moment, and is adsorbed on the stationary solution
in the direction of the dipole moment. Therefore, the retention times of formic acid and acetic
acid change under the combined influence of a series of complex intermolecular forces. In the
chromatographic column, the outflow rate of DMF is higher than that of acetic acid, and the force of
the hydrogen bond between DMF and acetic acid cannot overcome the outflow resistance of acetic
acid, so the retention time of the acetic acid in the DMF–water solution does not change. The retention
times of butyric acid and valeric acid are unchanged in aprotic polar solvents for the same reason.
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1. Introduction

Short-chain fatty acids (SCFAs) are saturated fatty acids consisting of five or fewer
carbon atoms in which the carboxyl group (C(=O)OH) is attached to a chain of additional
carbons through carbon–carbon bonds [1]. SCFAs are well-studied microbial products
that have a strong influence on gut metabolism, the immune system, and neurological
function [2], and they can effectively inhibit cancer, diabetes, and cardiovascular diseases [1].
Changes in the gut concentration of SCFAs can trigger neurological diseases, such as
Parkinson’s disease, Alzheimer’s disease, and anorexia [3–5].

For measuring SCFA content, several methods can be used, but each has its weaknesses.
Chromatography is the most commonly used method [6–11], and polar aprotic solvents
are one of several organic solvents employed [12]. During gas chromatography, the strong
polarity of the carboxyl group generates different forces in the gas chromatography column,
resulting in poor reproducibility, especially at low concentrations of SCFAs. Derivatization
methods are typically used to measure SCFAs to avoid the problems inherent to gas
chromatography and reduce the evaporative loss of these volatile acids [13]. However,
with this method, it is impossible to explore the mechanism regulating SCFA retention time
change in capillary chromatographic columns.

A polar solvent is an organic compound with a dipole, making it soluble in ionic
liquids or polar compounds. Polar solvents can effectively control the elution strength of
the mobile phase and achieve selective interactions with solutes by adjusting the capacity
of both the mobile and stationary phases [14]. In chromatography, the retention time of
each component is primarily determined by the strength of the interaction between the
component and the stationary phase when the same chromatographic column is used to
separate the mixed component under the same column temperature and carrier gas flow
rate conditions [15]. Therefore, chromatography selectivity is determined by the physico-
chemical interactions between the solute molecules and the stationary phase. Selectivity is
the ability of the stationary phase to differentiate between two solute molecules based on
their chemical or physical properties. Separation is possible when the interaction forces
between the stationary phase and the solute differ.

Three main interactions determine the liquid or colloidal stationary phase (polysilox-
ane and polyethylene glycol) in the capillary column: London dispersion force, dipole–
dipole force, and hydrogen bonding force. Of these, the London dispersion and dipole–
dipole forces have been demonstrated to affect retention time, although the effect of hydro-
gen bonds has not yet been determined. Hydrogen bonds are one of the most important
intermolecular interactions [16], and their bond energy is between that of van der Waals
attraction and chemical bond attraction [17]. When the solute compound contains active hy-
drogens that form hydrogen bonds, this results in an important force that affects retention
behavior. Although hydrogen bonding has been well-studied for decades, it is difficult to
identify general principles regarding hydrogen bonding, and the specifics of how hydrogen
bonding affects retention time and how polar solvents affect the interaction between the
substance and the stationary phase are poorly understood. This is due to both the breadth
of the subject and the complexity of the research.

In the current study, gas chromatography–mass spectrometry (GC–MS) was used to
determine the mechanism regulating the retention time of SCFAs with different carbon
numbers in polar aprotic solvents. GC was used to compare the retention time of the same
acetic acid solution in three different aprotic solvents with similar polarities, while quantum
chemical calculations were performed using the B3LYP/6-31+G(d,p) method for the three
solvents with similar polarities and determining the hydrogen bonds formed. These
experiments and quantum chemical calculations enabled us to identify the mechanism for
changes in retention time for SCFAs in polar solvents.

2. Materials and Methods

Formic acid (HCOOH; >99.5%), butyric acid (C3H7COOH; >99.5%), and valeric
acid (C4H9COOH; >99.5%) were purchased from Dikma Technologies Inc.; acetic acid
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(CH3COOH; >99.5%) was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd.
(TianJin, China); dimethyl sulfoxide (DMSO; >99.5%), N-methylpyrrolidone (NMP; >99.5%),
and dimethylformamide (DMF; >99.5%) were purchased from ACS Co., Ltd. (Shanghai,
China). All solutions were prepared with deionized water (DI H2O, Milli-Q system, Ger-
many, Purchased in China).

The volume concentration ratio ranged from 0 to 100%. 10% DMSO–water solution
was prepared according to the following DMSO: water volume ratios: 0:10, 1:9, 2:8, 3:7, 4:6,
5:5, 6:4, 7:3, 8:2, 9:1, and 10:0.

The 5% acetic acid DMSO–water solution was prepared by volume: 50 µL acetic acid
was added to 950 µL of 10% DMSO–water solution.

Aqueous solutions were prepared with different acid concentrations: 100 µL formic
acid, 50 µL acetic acid, 20 µL butyric acid, 20 µL valeric acid, and 10 µL toluene were
diluted to 1000 µL with water.

DMSO solutions were prepared with different acid concentrations: 100 µL formic acid,
50 µL acetic acid, 20 µL butyric acid, 20 µL valeric acid, and 10 µL toluene were diluted to
1000 µL with DMSO.

NMP–water solution was prepared with a volume concentration ratio of 0 to 100%
and a concentration gradient of 10%: the volume ratios of NMP to water were 0:10, 1:9, 2:8,
3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, and 10:0.

The 5% acetic acid solute and solvent was prepared with NMP–water gradient: 50 µL
acetic acid was added to 950 µL of 10% NMP–water gradient.

The DMF–water solution was prepared with a 0 to 100% volume concentration ratio
and 10% concentration gradient: the volume ratios of DMF to water were 0:10, 1:9, 2:8, 3:7,
4:6, 5:5, 6:4, 7:3, 8:2, 9:1, and 10:0.

The 5% (by volume) acetic acid solute and solvent was prepared with gradient DMF–
water: 50 µL acetic acid was added to 950 µL of 10% gradient of DMF–water.

A 8890 Gas Chromatograph (GC-FID, DB-624, DB-WAX, Agilent Technologies, Inc.,
Santa Clara, CA, USA) with different chromatographic columns was used to perform
gas chromatographic separation for samples, including 5% acetic acid solute and solvent
gradient DMSO–water solution, 5% acetic acid solute and solvent gradient NMP–water,
and 5% acetic acid solute and solvent gradient DMF–water.

A 7890 gas chromatography-5977 (quadrupole mass spectrometer GC-FID-MSD, Agi-
lent Technologies, Inc., Santa Clara, CA, USA, Purchased in China) was used to perform
chromatographic separation for samples, including a solution of 10% formic acid solute
and a gradient of DMSO–water as the solvent, mixed aqueous solutions of formic acid,
acetic acid, butyric acid, valeric acid, and toluene, and a mixed DMSO solution of formic
acid, acetic acid, butyric acid, valeric acid, and toluene; we also used a GCK3308 automatic
gas source (Beijing BCHP Analytical Technology Institute, Beijing, China) and a TH-500
pure water type high-purity hydrogen generator (Beijing BCHP Analytical Technology
Institute, Beijing, China); Gaussian16 and GaussView6 software were used for quantum
chemical calculations.

Gas chromatography parameters: GC-FID: Sample injection: ALS; Injection volume:
0.2 µL; Inject temperature: 260 ◦C; Injection mode: Split, Split ratio: 100:1; Columns: DB-624,
UI 30 m × 0.25 mm × 1.40 µm (P/N: 122-1334UI) and DB-WAX, UI 30 m × 0.25 mm × 0.25 µm
(P/N: 122-7032UI); Carrier gas types: Nitrogen, Constant flow, 1.5 mL/min; Initial oven temper-
ature: 40 ◦C; Initial Time: 1 min; Oven ramp rate 10 ◦C/min; Oven final first ramp: 70 ◦C; Final
time first ramp: 0 min; Oven ramp rate: 20 ◦C/min; Oven final temperature: 220 ◦C; Final time:
3 min; Detector: FID; Heater temperature: 250 ◦C; H2 flow: 30 mL/min; Air flow: 300 mL/min;
Makeup flow: ~25 mL/min. GC–MS: Sample injection: ALS; Injection volume: 0.2 µL; Inject
temperature: 260 ◦C; Injection mode: Split, Split ratio: 100:1; Columns: DB-WAX, UI 30 m ×
0.25 mm × 0.25 µm (P/N: 122-7032UI); Carrier gas types: Helium, Constant flow, 1.5 mL/min;
Initial oven temperature: 40 ◦C; Initial Time: 1 min; Oven ramp rate 10 ◦C/min; Oven final first
ramp: 70 ◦C; Final time first ramp: 0 min; Oven ramp rate: 20 ◦C/min; Oven final temperature:
220 ◦C; Final time: 3 min; GC outlet: Mass selective detector; Tune type: EI; energy: 70 eV; Ion
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source temperature: 230 ◦C; MS transfer temperature: 250 ◦C; Quadrupole temperature: 150 ◦C;
Solvent delay: 0 min; Acquisition mode: Scan; Scan Range: 15–300.

3. Results and Discussion
3.1. Acetic Acid Separation Results in Capillary Columns with Different Polarities

The commonly used capillary gas chromatography columns primarily include non-
polar (DB-1), polar (DB-624), and strong polar columns (DB-WAX) (Table 1). The strong
polar column has an adequate separation effect for SCFAs [18–20]. The change in retention
time for acetic acid with increasing DMSO concentration in DMSO–water with a gradient
of 5% acetic acid was determined using DB-624 and DB-WAX capillary columns under
GC-FID conditions (Figure 1). The retention time of acetic acid in water was 8.099 min
when DB-WAX was used. The acetic acid retention time in gradient DMSO–water so-
lution was 8.108, 8.123, 8.132, 8.143, 8.153, 8.178, 8.186, 8.193, 8.207, 8.216 min when
V(DMSO):V(H2O) = 1:9, 2:8, 3:7 . . . 10:0, respectively. Linear fitting demonstrated that the
volume equivalent increase in DMSO had a linear positive correlation with the change
in acetic acid retention time (R2 = 0.99301). The acetic acid peak was split, and more
severe tailing was observed, with the same DMSO concentration when the DB-624 col-
umn was used. Therefore, the strong polar column DB-WAX was selected for use in the
follow-up experiments.

Table 1. Gas chromatography columns with three different polarities.

Stationary Phases Column Type Polarity Level

100% dimethylpolysiloxane DB-1 non-polar
6% cyanopropylphenyl—94%

dimethylpolysiloxane DB-624 mid-polar

100% PEG (polyethylene glycol) DB-WAX high-polar
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Figure 1. Change in retention time of acetic acid in gradient DMSO–water solution in different
columns. (a) Result with DB-624 column; (b) result with the DB-WAX column.

3.2. Gas Chromatographic Separation of SCFAs in Water and DMSO

Formic acid is the simplest carboxylic acid and typically requires derivatization when
it is measured by gas chromatography [21,22]. To verify the commonalities and differences
in the SCFA retention time changes, we first directly detected and analyzed formic acid
without derivatization. To improve the detection accuracy and analyte resolution, the
high-accuracy GC–MS method and the strong-polarity DB-WAX capillary column were
used. When we tested formic acid using GC-FID under the same conditions as the acetic
acid determination, the formic acid sensitivity could not meet the observation requirements.
Therefore, we chose GC–MS based on the results of a comparative test that determined it
could meet our experimental requirements.
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The retention time change of the tested substance was detected using both water and
DMSO as solvents. The solute was a mixture of formic acid, acetic acid, butyric acid, valeric
acid, and toluene. Only the retention times of formic acid and acetic acid in the mixture
changed (Figure 2a), increasing from 8.32 min to 8.45 min for formic acid (Figure 2b) and
from 7.82 min to 7.90 min for acetic acid (Figure 2c).
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Figure 2. Comparison of retention times of six compounds in water and DMSO. (a) Retention times
of six compounds in water and DMSO; (b) enlarged view of the peak of acetic acid (green circled area
indicated by position 4 from Figure 2a; (c) Enlarged view of the peak of formic acid (green circled
area indicated by position 5 from Figure 2a. Peak identifications: 1. toluene; 2. water; 3. acetic acid;
4. formic acid; 5. DMSO; 6. butyric acid; 7. valeric acid.

3.3. Chromatographic Separation of Acetic Acid in Three Polar Aprotic Solvents

The change in the retention time of acetic acid in solutions with gradient DMSO–water,
gradient NMP–water, and gradient DMF–water, with 5% acetic acid in each solution, was
measured using DB-WAX and GC-FID gas chromatography. The structure and properties of
the three solvents are shown in Figure 3 and Table 2. The retention time of the acetic acid in
DMSO–water and NMP–water changed as the solvent concentration increased, with greater
increases observed in the DMSO–water than in the NMP–water solution. However, the
retention time of the acetic acid in the DMF–water solution remained unchanged (Figure 4).
Therefore, the retention time of acetic acid is affected when the outflow rate of the solvent
is lower than that of acetic acid.

Table 2. Properties of different solvents.

Solvent MW
Boiling
Point
(◦C)

Density
(g/mL)

Solubility
in H2O

(g/100 g)

Dielectric
Constant
(20 ◦C)

Flash
Point
(◦C)

DMSO 78 189 1.092 Miscible 47 95
NMP 99 202 1.033 Miscible 32 91
DMF 73 153 0.9445 Miscible 38.25 58
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3.4. Hydrogen Bonding between Acetic Acid and Polar Aprotic Solvents

The carboxyl group in SCFAs is a combination of two functional groups attached to
a single carbon atom: hydroxyl (-OH) and carbonyl (=O). These have unique properties,
including polarity, highly electronegativity, and weak acidity, and are capable of hydrogen
bonding by donating and accepting protons [23]. Therefore, they can interact with DMSO,
NMP, and DMF isopolar aprotic solvents to produce stronger hydrogen bonds. Quantum
chemical calculations can be used to characterize the interactions and interaction sites
between molecules. In this study, the B3LYP/6-31+G(d,p) method and DFT-D3BJ dispersion
correction were used to optimize the structure of DMSO and acetic acid molecules and
to calculate their frequency. This included NBO [24] analysis and characterization of
hydrogen bonding sites between the acetic acid solute and the DMSO, NMP, and DMF
solvents. Structures without imaginary frequencies after optimization are considered stable
structures. The structure-optimized acetic acid molecule and three solvent molecules are
shown in Figure 5.
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Figure 5. Hydrogen bonding sites of formic acid–DMSO and acetic acid–polar aprotic solvent molecules.

The qualitative size of the electrostatic potential corresponds to shaded regions of
the molecular surface: red areas represent negative electrostatic potential with aggregated
electrons, where positively charged particles can have a strong interaction and are easy to
approach; blue regions represent positive electrostatic potential, where negatively charged
particles are easily approached [25]. The maximum positive electrostatic potential of formic
acid and acetic acid molecules is concentrated in the upper part of the carboxyl functional
group -OH, while the upper part of S = O, with the smallest negative electrostatic potential
in the DMSO molecule, will generate hydrogen bonds with the hydroxyl group of formic
acid and acetic acid [26]. The electrostatic potential results for the solvents DMSO, NMP,
DMF, and for formic acid and acetic acid, indicate that the -OH groups in the formic acid
and acetic acid molecules are placed above the S = O bond of the DMSO molecule. Similarly,
the -OH group in the acetic acid molecule is placed above the C = O bond of the NMP and
DMF molecules. The B3LYP/6-31+G(d,p) [27–30] method and DFT-D3BJ [31,32] dispersion
correction were used to optimize the structure of these three systems (Figure 6 and Table 3).
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Figure 6. Schematic diagram of the hydrogen bond length formed by acetic acid and three solvent
molecules, and the NPA charge of each atom.

Table 3. NPA charges of hydrogen bond atoms, hydrogen bond length, and energy.

Project Formic Acid-DMSO Acetic Acid-DMSO Acetic Acid-NMP Acetic Acid-DMF

NPA charge
(Hydrogen atom) * 0.534 0.540 0.546 0.539

NPA charge
(Oxygen atom) * −1.028 −0.997 −0.69 −0.732

Hydrogen bond length (Å) 1.530 1.560 1.605 1.634
Hydrogen bond energy (kJ/mol) 45.668 39.987 31.734 28.794

* NPA charge (Hydrogen atom) is the NPA charge of the hydrogen atoms of formic acid and acetic acid involved
in hydrogen bonding; * NPA charge (Oxygen atom) is the NPA charge of the oxygen atoms of DMSO, NMP, and
DMF involved in hydrogen bonding.

Formula for calculating hydrogen bond energy:
E (Interaction) = E (Complex Corrected)—E (Solvent)—E (Acetic acid)
E (Complex Corrected) is the BSSE correction value, while the molecular fragments in the
complex molecule must be defined when calculating the BSSE correction value
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3.5. Mechanism of Change in Retention Time for SCFAs in Polar Solvents

Hydrogen bonding during capillary column separation is the primary reason for
changes in the retention time of formic acid and acetic acid. The part of DMSO with the
smallest negative electrostatic potential (red, Figure 3) has a high electron density and can
easily donate electrons, forming a hydrogen bond with formic acid and acetic acid. The part
of DMSO with the largest positive electrostatic potential (blue, Figure 3) forms a bond
with the column stationary phase polyethylene glycol (PEG) with a strong dipole moment
and is adsorbed on the stationary phase in the direction of the dipole moment of DMSO.
Compared with those of acetic acid, the hydrogen bond length between formic acid-DMSO
is shorter, the bond energy is larger, and the retention time changes more (Figure 7c).
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Figure 7. Effect of polar aprotic solvents on the retention time of SCFA gas chromatography and
mechanism. (a) Effect of DMSO on the retention time of acetic acid gas chromatography and
mechanism; (b) effect of NMP on the retention time of acetic acid gas chromatography and mechanism;
(c) effect of DMSO on the retention time of formic acid gas chromatography and mechanism.

The retention time of the acetic acid in the DMSO–water solution was longer than in
the NMP–water solution. This is consistent with the quantum chemical results: the strength
of the hydrogen bond between DMSO and acetic acid is greater than that between NMP
and acetic acid (Figure 7a,b). Additionally, the DMF molecules flow out faster than acetic
acid in the chromatographic column. The hydrogen bond formed between the DMF and
acetic acid flowing out of the capillary column first did not resist the outflow of acetic acid,
meaning the retention time of the acetic acid in the DMF–water solution did not change.

The retention times of butyric acid and valeric acid, which also have large dipole
moments, do not change in a mixed 2.2 solution. The solvent DMSO flows faster from
the column than butyric acid and valeric acid, and the hydrogen bond between DMSO
and butyric acid and valeric acid does not block the efflux of butyric acid and valeric
acid. Therefore, the retention time of the butyric acid and valeric acid in the DMSO–water
solution does not change. The retention time of the toluene did not change because toluene
cannot easily generate hydrogen bonds.

4. Conclusions

We used gas chromatography, gas chromatography–mass spectrometry analysis, quan-
tum chemical calculations, and comparative experiments to fill a research gap and examine
hydrogen bonding, retention time, and polar solvents in SCFAs. We examined the interac-
tions between molecules in the system and the interactions between solutes, solvents, and
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stationary solutions. SCFAs are medically important organic acids composed of carbonyl
and hydroxyl groups that can generate hydrogen bonds, which can make analysis difficult.
They are polar, soluble in water, and have unique aggregation characteristics at the molecu-
lar level. Their hydrogen bonds are strong, but the hydrogen bonds between the dimers
will quickly break down when they are miscible with water. Their properties significantly
change as the carbon chain length and molar mass both increase. In gas chromatography,
the retention time is an important indicator for the qualitative determination of substances.
Therefore, to accurately, effectively, and rapidly determine SCFAs using gas chromatogra-
phy, the molecular force between SCFAs and the solvent, the force between the solvent and
the stationary phase, the physical and chemical commonalities, and SCFA characteristics
must all be considered. Our results provide important insights for the determination of
SCFAs using gas chromatography.
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