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Abstract: Two-phase flow is very important in many areas of science, engineering, and industry.
Two-phase flow comprising gas and liquid phases is a common occurrence in oil and gas related
industries. This study considers three flow regimes, including homogeneous, annular, and stratified
regimes ranging from 5–90% of void fractions simulated via the Mont Carlo N-Particle (MCNP) Code.
In the proposed model, two NaI detectors were used for recording the emitted photons of a cesium
137 source that pass through the pipe. Following that, fast Fourier transform (FFT), which aims to
transfer recorded signals to frequency domain, was adopted. By analyzing signals in the frequency
domain, it is possible to extract some hidden features that are not visible in the time domain analysis.
Four distinctive features of registered signals, including average value, the amplitude of dominant
frequency, standard deviation (STD), and skewness were extracted. These features were compared
to each other to determine the best feature that can offer the best separation. Furthermore, artificial
neural network (ANN) was utilized to increase the efficiency of two-phase flowmeters. Additionally,
two multi-layer perceptron (MLP) neural networks were adopted for classifying the considered
regimes and estimating the volumetric percentages. Applying the proposed model, the outlined flow
regimes were accurately classified, resulting in volumetric percentages with a low root mean square
error (RMSE) of 1.1%.

Keywords: artificial intelligence; two-phase flows; feature extraction; flow regimes; neural network;
petroleum industry

1. Introduction

Nowadays, analyzing the flow regimes and volumetric percentages of multiphase
flows is a significant and notable topic in many industries [1–3]. Liquids and gases are the
most important elements in oil and gas storage. For better comprehension as to whether
the drilling process is sensible or not, it is essential to measure each parameter [4]. Also, the
separation procedure will be better developed, with adequate information about regime
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types and volumes of each phase. In this regard, different methods have been studied
for determining the mentioned parameters. According to former studies, gamma-ray
attenuation technique was the most accurate method [1]. Abro and his colleagues investi-
gated the efficiency of single- and multi-beam gamma-ray densitometry to estimate the
volumetric percentages in two-phase flows consisting of gases and liquids [5]. According
to their acquired results, the multi-beam gamma ray method was more accurate than the
single-beam technique. Jing and co-workers investigated dual modality densitometry to
classify the flow regimes in a vertical pipe [6]. In 2014, three flow regimes (see in Figure 1)
(homogeneous, annular, and stratified) were simulated via MCNP code [4]. One 137Cs
source, one transmitted, and scattered detector were utilized as the proposed structure.
For classifying the flow regimes and predicting volumetric percentages, three attributes
of signals were extracted and used as the ANN inputs. Faghihi et al. studied stratified,
homogeneous, and annular regimes in a pipe with vertical position for 3 different flow
regimes [7]. Nazemi et al. investigated the gamma-ray attenuation technique in annular,
bubbly, and stratified flow regimes in a two-phase flow structure. In this article, volume
fraction was determined independent of regime type [8]. Two transmitted detectors were
applied for registering the transmitted photons. In this situation, void fraction percentages
were calculated using the MLP neural network. Nazemi et al. improved the accuracy
of estimation by applying two features of registered signals in a Radial Basis Function
(RBF) neural network for determining void fraction. By using the proposed method, the
percentages of volume fraction were determined to be autonomous of density alterations in
the liquid phase of the stratified regime [9]. Utilizing fewer detectors in structure is a matter
of key importance in industries; not only does it lessen expenditures, but it also makes it
easier to work with these systems. Roshani and co-workers analyzed a simple setup with
single NaI detector, as well as a Co60 source, but they found that it was impossible to classify
all the flow regimes using one detector in the structure, and only two of the regimes were
identified [2]. Different features in the frequency domain were presented by Hanus and
co-workers in order to identify the flow regimes in a dynamic condition [10]. In this work,
three various structures of two-phase flows (air-water), including plug flow, bubble flow,
and transitional plug-bubble flow were studied. Salgado et al. have several works which
aimed to distinguish flow regimes and determine void fraction using ANNs [11–14]. Sattari
et al. carried out research work by taking advantage of time-domain feature extraction for
regime classification and void fraction prediction. By adopting time-domain techniques,
volumetric percentages were estimated with an RMSE of 5.32 [15].
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Figure 1. The flow regimes considered in the study.

In recent years, many researchers have put a great deal of effort into oil and gas fields
for flow regime identification and void fraction measurement by utilizing different methods
such as GMDH and wavelet feature extraction [16–18].

2. Simulation Procedure

The data collection process in this work includes two separated stages. Firstly, three
principal regimes, including homogeneous, annular, and stratified were simulated using
MCNP code. Simulations were accomplished for 5–90% void fraction. Gasoil and air
were considered as the liquid and gas phases, respectively. A 137Cs source and two NaI
detectors were utilized in order to register photons that passed through the pipe with an
inner diameter of 95 mm and a thickness of 2.5 mm.
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Secondly, for evaluating the accuracy of the simulated structure (see in Figure 2) in
MCNP code, simulated geometry was assessed for validity with multiple experiments
in previous work [1]. The comparison between experimental and simulated data in the
annular regime for first and second transmission detectors is shown in Figure 3. The
maximum Relative Difference (RD) between experimental data and simulation data is 2.9%,
which shows the good agreement between experimental and simulation results. Different
stages of this work can be found in Figure 4.
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Figure 3. A comparison of experimental and simulation data in an annular regime for responses of 
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Figure 3. A comparison of experimental and simulation data in an annular regime for responses of
(a) first transmission detector; (b) second transmission detector.
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Figure 4. An outline of the proposed model.

3. Feature Extraction

Registered photon energy spectra for the 3 flow regimes (void fraction = 5%) are
shown in Figure 5.
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Figure 5. The registered photon energy spectra in the first and second detectors (void fraction = 5%):
(a) annular, (b) homogenous, and (c) stratified.
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In this study, after transforming recorded signals into frequency domain via fast
Fourier transform, several features were extracted. Adopted features are as follows: aver-
age, the amplitude of dominant frequency, standard deviation (STD), and skewness. These
are the foremost features in the feature extraction field, which have been used in dozens of
studies [19].

The average value, standard deviation, and skewness are shown in Equations (1)–(3),
respectively:

m =
1
N

N

∑
n=1

x[n] (1)

σ =

√√√√ 1
N − 1

N

∑
n=1

(x[n]− m)

2

(2)

S =
m3

σ3 , m3 =
1
N

N

∑
n=1

(x[n]− m)3 (3)

The signal output of the first detector in the frequency domain for annular regime
(void = 5%) is shown in Figure 6.
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As observed in Figure 7, in all the three flow regimes there is a definite link between
the air percentages in the pipe and the amplitude of dominant frequency.

The diagram of extracted features in the first detector versus the second detector are
shown in Figure 8, which shows the ability of separation for every feature.

As shown in Figure 8, the classification procedure of flow regimes is possible only
with one feature (standard deviation), and the three other extracted features are not capable
of classifying the mentioned flow regimes due to overlap in their diagrams. According
to the obtained results, it can be concluded that the standard deviation is the best feature.
Also, the indicated points in each graph show the different void fraction percentages.
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4. Artificial Neural Network

In recent years, different mathematical approaches have been used for analyzing data
in many engineering fields [20–39], but it has been proven that the Artificial Neural network
(ANN) is the most well-known and powerful tool for prediction and classification. ANNs
can be expressed as a mathematical system which consists of several neurons performing
in a parallel way, produced in either one or several layers [40,41]. These networks were
inspired by biological neural networks [42,43]. Multilayer perceptron (MLP) is a common
type of neural network [44,45]. ANN is a suitable technique which is applied for handling
the models and classification, as well as prediction [46–59].

In this research, two exclusive networks were adopted for classifying the considered
flow regimes and predicting volumetric percentages. Standard deviation of both detectors’
frequency spectra was utilized as the implemented ANN inputs, and the output was
selected as the flow regime. Numerous ANNs with multiple numbers of neurons and
hidden layers were tested and, ultimately, the optimal network was obtained. Figure 9
shows the flowchart of the proposed network to achieve an optimum network with the
minimum error ratio.
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The parameters and architecture of the obtained network for regime classification are
indicated in Table 1 and Figure 10, respectively.

Table 1. The parameters of the adopted neural network in the case of regime classification.

Input Layer 2 Neurons
First hidden layer 4 neurons

Output layer 1 neuron
Epoch numbers 250

Activation function Tansig

The performance of the employed network for the training and testing processes for
regime classification are illustrated in Figure 11.
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As indicated in Figure 11, in terms of the presented technique, the three flow regimes
were classified accurately. The dataset was divided into 70% (39 data samples) and 30%
(15 data samples) for model training and testing, respectively.
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The optimum network characteristics and architecture which were employed for void
fraction measurement are demonstrated in Table 2 and Figure 12.

Table 2. The neural network parameters utilized for void fraction measurement.

Input Layer 2 Neurons
First hidden layer 3 neurons

Second hidden layer 3 neurons
Output layer 1 neuron

Epoch numbers 250
Activation function Tansig
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The network performances for void fraction measurement for training and testing
data samples are indicated in Figures 13 and 14, respectively.
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To evaluate the Adopted ANN, the root mean square error percentage (RMSE %)
and coefficient of determination (R-squared) were computed by Equations (4) and (5),
respectively. The errors achieved are indicated in Table 3.

RMSE =

√√√√ 1
N

N

∑
j=1

[(
Xj(Sim)− Xj(Pred)

)]2
(4)

R2 = 1 −
∑N

j=1
(
Xj(Sim)− Xj(Pred)

)2

∑N
j=1
(
Xj(Sim)− Xj(Sim)

)2 , Xj(Sim) =
1
N

N

∑
j=1

Xj(Sim) (5)
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where N is the number of data, X (sim) and X (pred) stands for simulated and predicted
values by neural network, respectively.

Table 3. Computed errors for the training and testing processes.

Data RMSE % R2

Training 0.8697 0.9999
Testing 1.1527 0.9991

A comparison between this study and several research items in this field can be found
in Table 4.

Table 4. A comparison between error ratios.

Refs. Technique Predicted Volume Fractions
(RMSE)

[8] Nazemi et al. Total count 2.12
[15] Sattari et al. Time-domain 5.32

[17] Hosseini et al. Wavelet feature extraction 1.92
Current research Frequency-domain 1.1527

Comparisons of simulated and estimated volumetric percentages by ANN for training
and testing data sets are indicated in Tables 5 and 6, respectively.

Table 5. A comparison of the actual and predicted values of volumetric percentages (training process).

Data Number Flow Regime Volume Fraction Percentages (Actual Values) Void Fraction Percentages
(Predicted by ANN)

Absolute Error between Simulated
and Predicted Void Fractions

1 Annular 5 5.00 0.00
2 Annular 10 9.99 0.00
3 Annular 20 20.03 0.03
4 Annular 25 24.96 0.03
5 Annular 35 34.95 0.04
6 Annular 40 40.06 0.06
7 Annular 45 44.99 0.00
8 Annular 55 54.95 0.04
9 Annular 60 60.10 0.10
10 Annular 65 64.84 0.15
11 Annular 75 75.30 0.30
12 Annular 80 79.64 0.35
13 Annular 90 90.36 0.36
14 Stratified 5 4.98 0.01
15 Stratified 10 10.11 0.11
16 Stratified 15 14.73 0.26
17 Stratified 20 20.26 0.26
18 Stratified 25 25.02 0.02
19 Stratified 35 34.95 0.04
20 Stratified 40 39.90 0.09
21 Stratified 50 50.00 0.00
22 Stratified 55 54.88 0.11
23 Stratified 65 65.37 0.37
24 Stratified 70 69.65 0.34
25 Stratified 80 80.10 0.10
26 Stratified 85 84.98 0.01
27 Homogenous 5 4.99 0.00
28 Homogenous 10 10.00 0.00
29 Homogenous 20 19.96 0.03
30 Homogenous 25 25.07 0.07
31 Homogenous 30 29.92 0.07
32 Homogenous 40 40.08 0.08
33 Homogenous 45 44.80 0.19
34 Homogenous 55 55.13 0.13
35 Homogenous 60 59.98 0.01
36 Homogenous 70 70.02 0.02
37 Homogenous 75 75.01 0.01
38 Homogenous 80 80.11 0.11
39 Homogenous 90 89.57 0.42
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Table 6. The actual and predicted values of volumetric percentages (testing process).

Data Number Flow Regime Volume Fraction Percentages
(Actual Values)

Void Fraction Percentages
(Predicted by ANN)

Absolute Error between
Simulated and Predicted

Void Fractions

1 Annular 15 14.91 0.09
2 Annular 30 30.63 0.63
3 Annular 50 48.84 1.16
4 Annular 70 71.65 1.65
5 Annular 85 83.28 1.72
6 Stratified 30 27.47 2.53
7 Stratified 45 45.94 0.94
8 Stratified 60 56.04 3.96
9 Stratified 75 76.94 1.94

10 Stratified 90 86.41 3.59
11 Homogenous 15 13.60 1.40
12 Homogenous 35 35.07 0.07
13 Homogenous 50 52.65 2.65
14 Homogenous 65 64.09 0.91
15 Homogenous 85 83.46 1.54

5. Conclusions

This study proposed the use of fast Fourier transform (FFT) to transform and analyze
the frequency domain signals of three flow regimes simulated using MCNP code. The
same attributes were extracted in the frequency domain and the standard deviation was
recognized as the best feature for determining the flow regimes. Furthermore, two specific
neural networks were employed for regime classification and void fraction measurement.
Moreover, by using the feature extraction technique and applying neural networks, flow
regimes were accurately classified, leading to void fraction percentages with a low root
mean square error of 1.1%, which is indicative of the utility of the proposed model.
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