Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material
2.3. SPME Sampling
2.4. GC-MS Analysis
2.5. UPLC-MS-MS Analysis
2.6. Proteomic Analysis
2.7. Statistical Analysis
3. Results
3.1. GC-FID Chemical Composition
3.2. UPLC Chemical Composition
3.3. Proteomic Content
3.4. Multivariate Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Plant List. Available online: http://www.theplantlist.org/1.1/browse/A/Cannabaceae/Humulus/ (accessed on 11 July 2022).
- Pignatti, S. Flora d’Italia, 1st ed.; Edagricole: Bologna, Italy, 1982; Volume 1, p. 124. [Google Scholar]
- Tutin, T.G. Psilotaceae to Platanaceae. In Flora Europaea, 2nd ed.; Tutin, T.G., Burges, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1993; Volume 3, p. 78. [Google Scholar]
- Haunold, A.; Likens, S.T.; Homer, C.B.; Brooks, S.N.; Zimmermann, C.E. One-half century of hop research by the U.S. Department of Agriculture. J. Am. Soc. Brew. Chem. 1985, 43, 123–126. [Google Scholar] [CrossRef]
- Takoi, K. “Flavor hops” varieties and various flavor compounds contributing to their “varietal aromas”: A review. Tech. Quart. Master Brew. Assoc. Am. 2019, 56, 113–123. [Google Scholar]
- McFarland, B. World’s Best Beers: One Thousand Craft Brews from Cask to Glass; Sterling Publishing Company: New York, NY, USA, 2009. [Google Scholar]
- Cicaloni, V.; Salvini, L.; Vitalini, S.; Garzoli, S. Chemical profiling and characterization of different cultivars of Cannabis sativa L. inflorescences by SPME-GC/MS and UPLC/MS. Separations 2022, 9, 90. [Google Scholar] [CrossRef]
- Iannone, M.; Ovidi, E.; Vitalini, S.; Laghezza Masci, V.; Marianelli, A.; Iriti, M.; Tiezzi, A.; Garzoli, S. From hops to craft beers: Production process, vocs profile characterization, total polyphenol and flavonoid content determination and antioxidant ac-tivity evaluation. Processes 2022, 10, 517. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- Champagne, A.; Boutry, M. A comprehensive proteome map of glandular trichomes of hop (Humulus lupulus L.) female cones: Identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics 2017, 17, 1600411. [Google Scholar] [CrossRef] [PubMed]
- Powell, W.; Morgante, M.; Andre, C.; Hanafey, M.; Vogel, J.; Tingey, S.; Rafalski, A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for 715 germplasm analysis. Mol. Breed. 1996, 2, 225–238. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Rój, E.; Tadić, V.M.; Mišić, D.; Žižović, I.; Arsić, I.; Dobrzyńska-Inger, A.; Kostrzewa, D. Supercritical carbon dioxide hops extracts with antimicrobial properties. Open Chem. 2015, 13, 1157–1171. [Google Scholar] [CrossRef]
- McCallum, J.L.; Nabuurs, M.H.; Gallant, S.T.; Kirby, C.W.; Mills, A.A.S. Phytochemical Characterization of Wild Hops (Humulus lupulus ssp. lupuloides) Germplasm Resources from the Maritimes Region of Canada. Front. Plant Sci. 2019, 11, 1438. [Google Scholar]
- Vázquez-Araújo, L.; Rodríguez-Solana, R.; Cortés-Diéguez, S.M.; Domínguez, J.M. Use of hydrodistillation and headspace solid-phase microextraction to characterize the volatile composition of different hop cultivars. J. Sci. Food Agric. 2013, 93, 2568–2574. [Google Scholar] [CrossRef]
- Bernotiene, G.; Nivinskiene, O.; Butkiene, R.; Mockute, D. Chemical composition of essential oils of hops (Humulus lupulus L.) growing wild in Aukstaitija. CHEMIJA 2004, 15, 31–36. [Google Scholar]
- Nance, R.M.; Setzer, N.W. Volatile components of aroma hops (Humulus lupulus L.) commonly used in beer brewing. J. Brew. Distill. 2011, 2, 16–22. [Google Scholar]
- Gonçalves, J.; Figueira, J.; Rodrigues, F.; Câmara, J.S. Headspace solid-phase microextraction combined with mass spectrometry as a powerful analytical tool for profiling the terpenoid metabolomic pattern of hop-essential oil derived from Saaz variety. J. Sep. Sci. 2012, 35, 2282–2296. [Google Scholar] [CrossRef] [PubMed]
- Rodolfi, M.; Chiancone, B.; Liberatore, C.M.; Fabbri, A.; Cirlini, M.; Ganino, T. Changes in chemical profile of Cascade hop cones according to the growing area. J. Sci. Food Agric. 2019, 99, 6011–6019. [Google Scholar] [CrossRef] [PubMed]
- Sharp, D.C.; Townsend, M.S.; Qian, Y.; Shellhammer, T.H. Effect of harvest maturity on the chemical composition of Cascade and Willamette hops. J. Am. Soc. Brew. Chem. 2014, 72, 231–238. [Google Scholar] [CrossRef]
- Da Rosa, A.; de Oliveira Brisola Maciel, M.V.; Gandholpo, B.C.G.; Machado, M.H.; Teixeira, G.L.; Bertoldi, F.C.; Noronha, C.M.; Vitali, L.; Block, J.M.; Barreto, P.L.M. Brazilian Grown Cascade Hop (Humulus lupulus L.): LC-ESI-MS-MS and GC-MS Analysis of Chemical Composition and Antioxidant Activity of Extracts and Essential Oils. J. Am. Soc. Brew. Chem. 2021, 79, 2. [Google Scholar] [CrossRef]
- Forteschi, M.; Porcu, M.C.; Fanari, M.; Zinellu, M.; Secchi, N.; Buiatti, S.; Passaghe, P.; Bertoli, S.; Pretty, L. Quality assessment of Cascade Hop (Humulus lupulus L.) grown in Sardinia. Eur. Food Res. Techn. 2019, 245, 863–871. [Google Scholar] [CrossRef]
- Bocquet, L.; Sahpaz, S.; Rivière, C. An overview of the antimicrobial properties of hop. Nat. Antimicrob. Agents 2018, 19, 31–54. [Google Scholar]
- Akazawa, H.; Kohno, H.; Tokuda, H.; Suzuki, N.; Yasukawa, K.; Kimura, Y.; Manosroi, A.; Manosroi, J.; Akihisa, T. Anti-inflammatory and anti-tumor-promoting effects of 5-deprenyllupulonol C and other compounds from hop (Humulus lupulus L.). Chem. Biodivers. 2012, 9, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.C.; Faria, M.A.; Melo, A.; Ferreira, I.M.P.L.V.O. Antiproliferative effect of beer and hop compounds against human colorectal adenocarcinome Caco-2 cells. J. Funct. Foods 2017, 36, 255–261. [Google Scholar] [CrossRef]
- Goese, M.; Kammhuber, K.; Bacher, A.; Zenk, M.H.; Eisenreich, W. Biosynthesis of bitter acids in hops A 13C-NMR and 2H-NMR study on the building blocks of humulone. Eur. J. Biochem. 1999, 263, 447–454. [Google Scholar] [CrossRef]
- Tronina, T.; Poplonski, J.; Bartmanska, A. Flavonoids as Phytoestrogenic Components of Hops and Beer. Molecules 2020, 25, 4201. [Google Scholar] [CrossRef]
- Henderson, M.C.; Miranda, C.L.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 2000, 30, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Delmulle, L.; Vanden Berghe, T.; Keukeleire, D.D.; Vandenabeele, P. Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother. Res. 2008, 22, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Hudcová, T.; Bryndová, J.; Fialová, K.; Fiala, J.; Karabín, M.; Jelínek, L.; Dostálek, P. Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J. Inst. Brew. 2014, 120, 225–230. [Google Scholar] [CrossRef]
- Vollmer, G.; Amri, H.; Arnold, J. Assessment of polyphenols on PSA expression in a human co-culture model of reactive prostate stroma cells and LAPC4 prostate adenocarcinoma cells. BMC Complement. Altern. Med. 2012, 12, 27. [Google Scholar] [CrossRef]
- Buckwold, V.E.; Wilson, R.J.; Nalca, A.; Beer, B.B.; Voss, T.G.; Turpin, J.A.; Buckheit, R.; Wei, J.; Wenzelmathers, M.; Walton, E. Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antivir. Res. 2004, 61, 57–62. [Google Scholar] [CrossRef]
- Logan, I.E.; Miranda, C.L.; Lowry, M.B.; Maier, C.S.; Stevens, J.F.; Gombart, A.F. Antiproliferative and Cytotoxic Activity of Xanthohumol and Its Non-Estrogenic Derivatives in Colon and Hepatocellular Carcinoma Cell Lines. J. Mol. Sci. 2019, 9, 1203. [Google Scholar] [CrossRef]
- Colebrook, E.H.; Thomas, S.G.; Phillips, A.L.; Hedden, P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014, 217, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Villacorta, N.F.; Fernandez, H.; Prinsen, E.; Bernad, P.L.; Revilla, M.A. Endogenous Hormonal Profiles in Hop Development. J. Plant Growth Regul. 2008, 27, 93–98. [Google Scholar] [CrossRef]
- Calvi, L.; Pentimalli, D.; Panseri, S.; Giupponi, L.; Gelmini, F.; Beretta, G.; Vitali, D.; Bruno, M.; Zilio, E.; Pavlovic, R.; et al. Comprehensive quality evaluation of medical Cannabis sativa L. inflorescence and macerated oils based on HS-SPME coupled to GC–MS and LC-HRMS (q-exactive orbitrap®) approach. J. Pharm. Biomed. 2018, 150, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Bendif, H.; Miara, M.D.; Peron, G.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F. NMR, HS-SPME-GC/MS, and HPLC/MSn Analyses of Phytoconstituents and Aroma Profile of Rosmarinus eriocalyx. Chem. Biodivers. 2017, 14, e1700248. [Google Scholar] [CrossRef] [PubMed]
- Bendif, H.; Peron, G.; Miara, M.D.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F. Total phytochemical analysis of Thymus munbyanus subsp. Coloratus from Algeria by HS-SPME-GC-MS, NMR and HPLC-MSn studies. J. Pharm. Biomed. 2020, 186, 113330. [Google Scholar] [CrossRef]
- Wang, N.; An, J.; Zhang, Z.; Liu, Y.; Fang, J.; Yang, Z. The Antimicrobial Activity and Characterization of Bioactive Compounds in Peganum harmala L. Based on HPLC and HS-SPME-GC-MS. Front. Microbiol. 2022, 13, 916371. [Google Scholar] [CrossRef]
N° | COMPONENT 1 | LRI 2 | LRI 3 | LRI 4 | Chinook | Cascade |
---|---|---|---|---|---|---|
1 | 3-penten-2-ol | 768 | 774 | 1170 | - | 3.4 ± 0.03 |
2 | α-thujene | 819 | 823 | 1025 | - | 0.5 ± 0.03 |
3 | butanoic acid, 3-methyl- | 830 | 834 | 1639 | - | 0.7 ± 0.04 |
4 | α-pinene | 941 | 942 | 1018 | 4.6 ± 0.03 | - |
5 | 1-butanol, 2-methyl-, propanoate | 970 | 968.4 | 1186 | 0.7 ± 0.03 | - |
6 | β-myrcene | 988 | 987 | 1171 | 19.4 ± 0.04 | 27.1 ± 0.05 |
7 | propanoic acid, 2-methyl-, 2-methylbutyl ester | 990 | 989 | 1190 | 0.7 ± 0.02 | 0.7 ± 0.03 |
8 | heptanoic acid, methyl ester | 1024 | 1026 | 1288 | 0.2 ± 0.02 | 0.5 ± 0.02 |
9 | limonene | 1031 | 1030 | 1201 | 2.3 ± 0.02 | 1.8 ± 0.02 |
10 | β-terpinene | 1033 | 1036 | 1190 | 0.3 ± 0.02 | 1.8 ± 0.03 |
11 | α-ocimene | 1045 | 1042 | 1210 | 0.7 ± 0.02 | - |
12 | methyl, 6-methyl heptanoate | 1072 | 1068 | 1310 | 0.3 ± 0.02 | - |
13 | terpinolene | 1083 | 1080 | 1270 | 3.0 ± 0.06 | - |
14 | p-cymenene | 1089 | 1091 | 1431 | 0.4 ± 0.03 | - |
15 | perillen | 1106 | 1102.1 | 1437 | - | 0.7 ± 0.03 |
16 | octanoic acid, methyl ester | 1125 | 1122 | 1381 | 0.1 ± 0.01 | - |
17 | p-cymen-8-ol | 1193 | 1189 | 1855 | 1.4 ± 0.02 | - |
18 | nonanoic acid, methyl ester | 1227 | 1224 | 1492 | 0.2 ± 0.02 | - |
19 | 2-undecanone | 1295 | 1298 | 1596 | 0.4 ± 0.02 | - |
20 | decanoic acid, methyl ester | 1311 | 1309 | 1611 | 0.1 ± 0.02 | - |
21 | 4-decenoic acid, methyl ester, Z- | 1315 | * | 1632 | 1.2 ± 0.02 | - |
22 | methyl geranate | 1328 | 1323 | 1673 | 0.6 ± 0.03 | 1.6 ± 0.02 |
23 | α-cubebene | 1352 | 1350 | 1462 | 2.2 ± 0.03 | 1.5 ± 0.02 |
24 | ylangene | 1381 | 1376 | 1493 | 0.5 ± 0.02 | - |
25 | β-caryophyllene | 1440 | 1440 | 1610 | 13.0 ± 0.05 | 12.9 ± 0.02 |
26 | humulene | 1477 | 1473 | 1665 | 29.0 ± 0.04 | 30.0 ± 0.05 |
27 | β-eudesmene | 1483 | 1481 | 1722 | 3.4 ± 0.03 | 3.1 ± 0.02 |
28 | γ-muurolene | 1490 | 1486 | 1681 | 4.0 ± 0.03 | 3.4 ± 0.03 |
29 | α-selinene | 1493 | 1489 | 1720 | 1.7 ± 0.02 | - |
30 | γ-cadinene | 1511 | 1509 | 1778 | 2.2 ± 0.02 | - |
31 | δ-cadinene | 1522 | * | 1750 | 4.4 ± 0.02 | 4.3 ± 0.02 |
32 | α-muurolene | 1525 | * | 1693 | 0.6 ± 0.02 | 5.3 ± 0.03 |
33 | selina-3,7(11)-diene | 1533 | 1530 | 1762 | 1.1 ± 0.02 | - |
34 | caryophyllene oxide | 1587 | 1585 | 1935 | 0.4 ± 0.02 | - |
35 | humulene epoxide II | 1610 | 1606 | 1988 | 0.9 ± 0.02 | 0.6 ± 0.03 |
SUM | 100.0 | 99.9 | ||||
Monoterpenoids | 32.7 | 37.6 | ||||
Sesquiterpenoids | 63.4 | 61.1 | ||||
Others | 3.9 | 1.2 |
N° | COMPONENT 1 | Chinook | Cascade |
---|---|---|---|
1 | hulupinic acid | 0.1 ± 0.01 | 0.1 ± 0.01 |
2 | isohumulone A | 0.2 ± 0.03 | 0.1 ± 0.02 |
3 | gibberellin A19 | 0.2 ± 0.04 | 0.1 ± 0.02 |
4 | bis(3-methyl-2-butenyl)phlorisovalerophenone | 6.0 ± 0.42 | 6.2 ± 0.40 |
5 | postlupulone | 3.2 ± 0.45 | 3.6 ± 0.85 |
6 | adhumulone | 0.1 ± 0.00 | 0.1 ± 0.01 |
7 | morin | 0.1 ± 0.01 | - |
8 | manghaslin | 0.1 ± 0.01 | - |
9 | lupulone C | 0.1 ± 0.01 | - |
10 | quercetin 4-O-glucoside | 0.2 ± 0.03 | - |
11 | lupulone E | 0.7 ± 0.05 | 1.1 ± 0.27 |
12 | quercetin | 3.5 ± 0.49 | 0.4 ± 0.03 |
13 | colupox A | 25.0 ± 0.42 | 32.3 ± 2.28 |
14 | 6,8-diprenylnaringenin | 0.6 ± 4.42 | 1.3 ± 0.13 |
15 | protocatechuic acid | 1.0 ± 0.04 | 0.2 ± 0.05 |
16 | β-selinene epoxide | 0.1 ± 0.14 | - |
17 | epicatechin | 0.5 ± 0.01 | 0.1 ± 0.02 |
18 | lupulone D | 0.3 ± 0.07 | 0.3 ± 0.03 |
19 | dl-phenylalanine | 0.1 ± 0.05 | 0.1 ± 0.01 |
20 | pterostilbene | 0.2 ± 0.00 | 0.3 ± 0.03 |
21 | gibberellin A12 | 10.1 ± 0.33 | 8.8 ± 0.62 |
22 | gibberellin A17 | 0.1 ± 0.71 | - |
23 | gibberellin A24 | 0.6 ± 0.01 | 1.0 ± 0.23 |
24 | gibberellin A34 methyl ester | 0.1 ± 0.11 | 0.1 ± 0.01 |
25 | prelupulone | 1.0 ± 0.00 | 0.6 ± 0.14 |
26 | isoquercetin | 3.2 ± 0.14 | 0.9 ± 0.07 |
27 | colupulone | - | 0.1 ± 0.01 |
28 | lupulone B | 0.1 ± 0.01 | 0.1 ± 0.01 |
29 | kaempferol 3-neohesperidoside | 1.5 ± 0.10 | 0.4 ± 0.03 |
30 | oxyresveratrol | 0.5 ± 0.07 | 0.1 ± 0.02 |
31 | lupulone F | 6.4 ± 0.45 | 6.5 ± 1.54 |
32 | adlupulone | 21.6 ± 3.05 | 19.7 ± 1.99 |
33 | quercitrin | 3.9 ± 0.68 | 1.6 ± 0.37 |
34 | rutin | 3.7 ± 0.26 | 0.5 ± 0.04 |
35 | xanthohumol D | 0.2 ± 0.03 | 0.1 ± 0.00 |
36 | tretinoin glucuronide | 0.2 ± 0.02 | 0.2 ± 0.01 |
37 | chlorogenic acid | - | 0.1 ± 0.01 |
38 | gibberellin A53 | - | - |
39 | kaempferol | 0.1 ± 0.00 | 0.1 ± 0.03 |
40 | diprenylgenistein | - | 0.1 ± 0.01 |
41 | dihydroxanthohumol | - | 0.1 ± 0.00 |
42 | tricyclodehydroisohumulone | 0.8 ± 0.11 | 2.8 ± 0.28 |
43 | 8-prenylnaringenin | 0.7 ± 0.13 | 8.8 ± 0.69 |
44 | secoisolariciresinol | - | 0.1 ± 0.01 |
45 | trimethoxycinnamic acid | 0.1 ± 0.01 | 0.3 ± 0.03 |
46 | 4,4-dihydroxy-dimethoxychalcone | 0.8 ± 0.06 | - |
47 | luteolin | 1.2 ± 0.17 | 0.1 ± 0.03 |
48 | trans-caffeic acid | 0.1 ± 0.01 | - |
49 | quercetin 3-7-diglucoside | 0.2 ± 0.01 | - |
50 | lupulone A | tr | tr |
51 | desmethylxanthohumol | - | tr |
52 | isoxanthohumol | - | - |
53 | pre-humulone | - | tr |
54 | post-humulone | tr | tr |
55 | xanthohumol | tr | tr |
56 | xanthohumol E | - | tr |
SUM | 99.5 | 99.5 |
Description | Protein Class | Peptides | AAs | Chinook | Cascade |
---|---|---|---|---|---|
ATP synthase CF1 β-subunit | ATP synthase | 27 | 498 | Y | Y |
ribulose 1,5-bisphosphate carboxylase/oxygenase | other | 23 | 475 | Y | Y |
ATP synthase CF1 α-subunit | ATP synthase | 15 | 507 | Y | Y |
ATPase subunit 1 | ATP synthase | 17 | 509 | Y | Y |
photosystem II CP47 chlorophyll apoprotein | photosystem | 14 | 508 | Y | Y |
Chalcone isomerase-like protein 2 | flavonoid pathway | 8 | 209 | Y | Y |
photosystem II CP43 chlorophyll apoprotein | photosystem | 9 | 473 | Y | Y |
humulone synthase 1 | bitter acid pathway | 13 | 454 | Y | Y |
photosystem II protein D1 | photosystem | 7 | 353 | Y | Y |
photosystem I P700 apoprotein A2 | photosystem | 8 | 734 | Y | Y |
photosystem II protein D2 | photosystem | 5 | 353 | Y | Y |
chalcone isomerase-like protein 1 | flavonoid pathway | 11 | 214 | Y | Y |
humulone synthase 2 | bitter acid pathway | 8 | 454 | Y | N |
CCL2 | flavonoid pathway | 11 | 573 | Y | Y |
Phloroisovalerophenone synthase | bitter acid pathway | 9 | 394 | Y | Y |
cytochrome f | photosystem | 9 | 320 | Y | Y |
sucrose synthase, partial | sugar | 7 | 309 | Y | Y |
A Chain A, Hop1 | other | 4 | 101 | Y | Y |
CCL13 | flavonoid pathway | 10 | 573 | Y | N |
peroxidase 52 | oxidoreductase | 7 | 327 | Y | Y |
Myrcene synthase, chloroplastic | terpenoid pathway | 6 | 613 | Y | Y |
isopentenyl-diphosphate isomerase | terpenoid pathway | 8 | 321 | Y | Y |
polyubiquitin, partial | ubiquitination | 4 | 76 | Y | Y |
cytochrome b6 | photosystem | 3 | 232 | Y | Y |
ATP synthase CF1 epsilon subunit | ATP synthase | 4 | 133 | Y | Y |
germin 3 | oxidoreductase | 3 | 214 | Y | Y |
farnesyl pyrophophate synthase | terpenoid pathway | 5 | 342 | Y | Y |
ATP synthase CF0 subunit I | ATP synthase | 5 | 191 | Y | Y |
chalcone synthase | flavonoid pathway | 5 | 394 | Y | Y |
allene oxide cyclase C4 | oxidoreductase | 3 | 254 | Y | Y |
ATPase subunit 4 | ATP synthase | 3 | 198 | Y | Y |
ribosomal protein S7 | ribosomal | 4 | 155 | Y | Y |
photosystem II cytochrome b559 α-subunit | photosystem | 3 | 83 | Y | Y |
NADH dehydrogenase subunit 9 | ATP synthase | 2 | 190 | Y | Y |
peroxiredoxin-2F | oxidoreductase | 4 | 199 | Y | Y |
photosystem I subunit VII | photosystem | 2 | 81 | Y | Y |
SKP1 component-like 1 | ubiquitination | 3 | 157 | Y | Y |
plastid allene oxide cyclase | oxidoreductase | 2 | 255 | Y | Y |
ribosomal protein L14 | ribosomal | 2 | 122 | Y | Y |
protein phosphatase 2A 65 kDa subunit | other | 3 | 334 | Y | Y |
2-C-methyl-D-erythritol 2 | terpenoid pathway | 2 | 245 | Y | N |
TMV resistance protein N-like protein | other | 2 | 130 | Y | Y |
ATPase subunit 8 | ATP synthase | 2 | 159 | Y | Y |
Aromatic prenyltransferase PT1L | bitter acid pathway | 3 | 414 | Y | Y |
mitochodrial branched-chain aminotransferase 1 | bitter acid pathway | 3 | 393 | Y | N |
naringenin-chalcone synthase | flavonoid pathway | 2 | 389 | Y | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations 2022, 9, 204. https://doi.org/10.3390/separations9080204
Nezi P, Cicaloni V, Tinti L, Salvini L, Iannone M, Vitalini S, Garzoli S. Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations. 2022; 9(8):204. https://doi.org/10.3390/separations9080204
Chicago/Turabian StyleNezi, Paola, Vittoria Cicaloni, Laura Tinti, Laura Salvini, Matteo Iannone, Sara Vitalini, and Stefania Garzoli. 2022. "Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS" Separations 9, no. 8: 204. https://doi.org/10.3390/separations9080204
APA StyleNezi, P., Cicaloni, V., Tinti, L., Salvini, L., Iannone, M., Vitalini, S., & Garzoli, S. (2022). Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations, 9(8), 204. https://doi.org/10.3390/separations9080204