Laurus azorica: Valorization through Its Phytochemical Study and Biological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extract Preparation and Liquid/Liquid Partition
2.4. Isolation of Secondary Metabolites
2.5. Identification of Isolated Compounds by Spectroscopic Techniques
2.6. GC–MS Analysis
2.7. Biological Activities
2.7.1. DPPH Radical Scavenging Activity
2.7.2. ABTS Radical Scavenging Activity
2.7.3. Inhibition of β-Carotene Bleaching Assay
2.7.4. Tyrosinase Inhibition Assay
2.7.5. Statistical Analysis
3. Results and Discussion
3.1. Structural Characterization of Isolated Compounds
3.2. GC–MS Analysis of Fraction A
3.3. Biological Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seca, A.M.L.; Moujir, L. Natural Compounds: A Dynamic Field of Applications. Appl. Sci. 2020, 10, 4025. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G. How Are Medicinal Plants Useful When Added to Foods? Medicines 2020, 7, 58. [Google Scholar] [CrossRef]
- Ding, A.; Zheng, S.; Huang, X.; Xing, T.; Wu, G.; Sun, H.; Qi, S.; Luo, H. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. Nat. Prod. Bioprospect. 2017, 7, 335–404. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Pinto, D.C.G.A. Biological Potential and Medical Use of Secondary Metabolites. Medicines 2019, 6, 66. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 779. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [PubMed]
- Elias, R.B.; Gil, A.; Silva, L.; Fernández-Palacios, J.M.; Azevedo, E.B.; Reis, F. Natural Zonal Vegetation of the Azores Islands: Characterization and Potential Distribution. Phytocoenologia 2016, 46, 107–123. [Google Scholar] [CrossRef]
- WFO (2021): World Flora Online. Published on the Internet. Available online: http://www.worldfloraonline.org (accessed on 2 May 2022).
- Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and Biological Activities of Laurel Tree (Laurus nobilis). Nat. Prod. Commun. 2017, 12, 743–757. [Google Scholar] [CrossRef]
- Rodilla, J.M.; Tinoco, M.T.; Morais, J.C.; Gimenez, C.; Cabrera, R.; Martín-Benito, D.; Castillo, L.; Gonzalez-Coloma, A. Laurus novocanariensis essential oil: Seasonal variation and valorization. Biochem. Syst. Ecol. 2008, 36, 167–176. [Google Scholar] [CrossRef]
- Mansour, O.; Darwish, M.; Ismail, G.; Douba, Z.A.; Ismaeel, A.; Eldair, K.S. Review Study on the Physiological Properties and Chemical Composition of the Laurus nobilis. Pharma. Chem. J. 2018, 5, 225–231. [Google Scholar]
- Braga, T. Plantas Usadas Na Medicina Popular, 2nd ed.; Amigos dos Açores: Ponta Delgada, Portugal, 2006; p. 47. [Google Scholar]
- Pontes, G.; Braga, T. Plantas Nativas Dos Açores; Amigos dos Açores: Ponta Delgada, Portugal, 2004; p. 32. [Google Scholar]
- Pedro, L.G.; Santos, P.A.G.; Silva, J.A.; Figueiredo, A.C.; Barroso, J.G.; Deans, S.G.; Looman, A.; Scheffer, J.J.C. Essential oils from Azorean Laurus azorica. Phytochemistry 2001, 57, 245–250. [Google Scholar] [CrossRef]
- Candeias, F.; Tinoco, M.T.; Morais, J.C. Actividade Hepatoprotectora Do Óleo Essencial De Laurus Azorica (Seub.) J. Franco. Livro de Resumos I Congresso Das Plantas Aromáticas E Medicinais Dos Paı́ses De Lı́ngua Oficial Portuguesa. Available online: https://cat.biblioteca.ipbeja.pt/cgi-bin/koha/opac-detail.pl?biblionumber=25923 (accessed on 15 May 2022).
- Rosa, J.S.; Mascarenhas, C.; Oliveira, L.; Teixeira, T.; Barreto, M.C.; Medeiros, J. Biological activity of essential oils from seven Azorean plants against Pseudaletia unipuncta (Lepidoptera: Noctuidae). J. Appl. Entomol. 2010, 134, 346–354. [Google Scholar] [CrossRef]
- Furtado, R.; Baptista, J.; Lima, E.; Paiva, L.; Barroso, J.G.; Rosa, J.S.; Oliveira, L. Chemical composition and biological activities of Laurus essential oils from different Macaronesian Islands. Biochem. Syst. Ecol. 2014, 55, 333–341. [Google Scholar] [CrossRef]
- Teixeira, T.; Rosa, J.S.; Rainha, N.; Baptista, J.; Rodrigues, A. Assessment of molluscicidal activity of essential oils from five Azorean plants against Radix peregra (Müller, 1774). Chemosphere 2012, 87, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, J.M.R.; Macedo, M.; Contancia, J.P.; Nguyen, C.; Cunningham, G.; Miles, D.H. Antithrombin activity of medicinal plants of the Azores. J. Ethnopharmacol. 2000, 72, 157–165. [Google Scholar] [CrossRef]
- Vinha, A.F.; Guido, L.F.; Costa, A.M.L.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Monomeric and oligomeric flavan-3-ols and antioxidant activity of leaves from different Laurus sp. Food Funct. 2015, 6, 1944–1949. [Google Scholar] [CrossRef]
- Ahmad Dar, A.; Sangwan, P.L.; Kumar, A. Chromatography: An important tool for drug discovery. J. Sep. Sci. 2020, 43, 105–119. [Google Scholar] [CrossRef]
- Abdelmohsen, U.R.; Sayed, A.M.; Elmaidomy, A.H. Natural Products’ Extraction and Isolation-Between Conventional and Modern Techniques. Front. Nat. Produc. 2022, 1, 873808. [Google Scholar] [CrossRef]
- Halket, J.M.; Zaikin, V.G. Derivatization in mass spectrometry-1. Silylation. Eur. J. Mass Spectro. 2003, 9. [Google Scholar] [CrossRef]
- Pinto, D.C.G.A.; Lesenfants, M.L.; Rosa, G.P.; Barreto, M.C.; Silva, A.M.S.; Seca, A.M.L. GC- and UHPLC-MS Profiles as a Tool to Valorize the Red Alga Asparagopsis armata. Appl. Sci. 2022, 12, 892. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Zárate, R.; Portillo, E.; Teixidó, S.; Carvalho, M.A.A.P.; Nunes, N.; Ferraz, S.; Seca, A.M.L.; Rosa, G.P.; Barreto, M.C. Pharmacological and Cosmeceutical Potential of Seaweed Beach-Casts of Macaronesia. Appl. Sci. 2020, 10, 5831. [Google Scholar] [CrossRef]
- Barreira, J.C.; Ferreira, I.C.; Oliveira, M.B.P.; Pereira, J.A. Antioxidant activities of the extracts from Chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Lu, Y.; Khoo, T.J.; Wiart, C. Antioxidant activity determination of citronellal and crude extracts of Cymbopogon citratus by 3 different methods. Pharmacol. Pharm. 2014, 5, 395. [Google Scholar] [CrossRef]
- Shimizu, K.; Kondo, R.; Sakai, K.; Lee, S.H.; Sato, H. The inhibitory components from Artocarpus incisus on melanin biosynthesis. Planta Med. 1998, 64, 408–412. [Google Scholar] [CrossRef]
- Manosroi, A.; Jantrawut, P.; Akihisa, T.; Manosroi, W.; Manosroi, J. In Vitro anti-aging activities of Terminalia chebula gall extract. Pharm. Biol. 2010, 48, 469–481. [Google Scholar] [CrossRef]
- El-Feraly, F.S.; Benigni, D.A. Sesquiterpene Lactones of Laurus nobilis Leaves. J. Nat. Prod. 1980, 43, 527–531. [Google Scholar] [CrossRef]
- Hibasami, H.; Yamada, Y.; Moteki, H.; Katsuzaki, H.; Imai, K.; Yoshioka, K.; Komiya, T. Sesquiterpenes (Costunolide and Zaluzanin D) Isolated from Laurel (Laurus nobilis L.) Induce Cell Death and Morphological Change Indicative of Apoptotic Chromatin Condensation in Leukemia HL-60 Cells. Int. J. Mol. Med. 2003, 12, 147–151. [Google Scholar] [CrossRef]
- Fang, F.; Sang, S.; Chen, K.Y.; Gosslau, A.; Ho, C.; Rosen, R.T. Isolation and Identification of Cytotoxic Compounds from Bay Leaf (Laurus nobilis). Food Chem. 2005, 93, 497–501. [Google Scholar] [CrossRef]
- Ferrari, B.; Castilho, P.; Tomi, F.; Rodrigues, A.I.; Costa, M.C.; Casanova, J. Direct Identification and Quantitative Determination of Costunolide and Dehydrocostuslactone in the Fixed Oil of Laurus novocanariensis by 13C-NMR Spectroscopy. Phytochem. Anal. 2005, 16, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Moujir, L.; Callies, O.; Sousa, P.M.C.; Sharopov, F.; Seca, A.M.L. Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. Appl. Sci. 2020, 10, 3001. [Google Scholar] [CrossRef]
- Kim, D.Y.; Choi, B.Y. Costunolide–A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential. Int. J. Mol. Sci. 2019, 20, 2926. [Google Scholar] [CrossRef]
- Fraga, B.M.; Terrero, D.; Cabrera, I.; Reina, M. Studies on the Sesquiterpene Lactones from Laurus novocanariensis Lead to the Clarification of the Structures of 1-epi-Tatridin B and its Epimer Tatridin, B. Phytochemistry 2018, 153, 48–52. [Google Scholar] [CrossRef]
- Matsuda, H.; Kagerura, T.; Toguchida, I.; Ueda, H.; Morikawa, T.; Yoshikawa, M. Inhibitory Effects of Sesquiterpenes from Bay Leaf on Nitric Oxide Production in Lipopolysaccharide-Activated Macrophages: Structure Requirement and Role of Heat Shock Protein Induction. Life Sci. 2000, 66, 2151–2157. [Google Scholar] [CrossRef]
- Barla, A.; Topçu, G.; Öksüz, S.; Tümen, G.; Kingston, D.G.I. Identification of Cytotoxic Sesquiterpenes from Laurus nobilis L. Food Chem. 2007, 104, 1478–1484. [Google Scholar] [CrossRef]
- Turk, A.; Ahn, J.H.; Jo, Y.H.; Song, J.Y.; Khalife, H.K.; Gali-Muhtasib, H.; Kim, Y.; Hwang, B.Y.; Lee, M.K. NF-κB Inhibitory Sesquiterpene Lactones from Lebanese Laurus nobilis. Phytochem. Lett. 2019, 30, 120–123. [Google Scholar] [CrossRef]
- Arantes, F.F.P.; Barbosa, L.C.A.; Alvarenga, E.S.; Demuner, A.J.; Bezerra, D.P.; Ferreira, J.R.O.; Costa-Lotufo, L.V.; Pessoa, C.; Moraes, M.O. Synthesis and Cytotoxic Activity of α-Santonin Derivatives. Eur. J. Med. Chem. 2009, 44, 3739–3745. [Google Scholar] [CrossRef]
- Komiya, T.; Yamada, Y.; Moteki, H.; Katsuzaki, H.; Imai, K.; Hibasami, H. Hot Water Soluble Sesquiterpenes [Anhydroperoxy-Costunolide and 3-Oxoeudesma-l,4 (15),11 (13)triene-12,6α-olide] Iso-lated from Laurel (Laurus nobilis L.) Induce Cell Death and Morphological Change Indicative of Apoptotic Chromatin Con-densation in Leucemia Cells. Oncol. Rep. 2003, 11, 85–88. [Google Scholar]
- Rosselli, S.; Bruno, M.; Raimondo, F.M.; Spadaro, V.; Varol, M.; Koparal, A.T.; Mggio, A. Cytotoxic Effect of Eudesmanolides Isolated from Flowers of Tanacetum vulgare ssp. Siculum. Molecules 2012, 17, 8186–8195. [Google Scholar] [CrossRef] [PubMed]
- Julianti, E.; Jang, K.H.; Lee, S.; Lee, D.; Mar, W.; Oh, K.; Shin, J. Sesquiterpenes from the leaves of Laurus nobilis L. Phytochemistry 2012, 80, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Coronado-Aceves, E.W.; Velázquez, C.; Robles-Zepeda, R.E.; Jiménez-Estrada, M.; Hernández-Martínez, J.; Gálvez-Ruiz, J.C.; Garibay-Escobar, A. Reynosin and Santamarine: Two Sesquiterpene Lactones from Ambrosia confertiflora with Bactericidal Activity Against Clinical Strains of Mycobacterium tuberculosis. Pharm. Biol. 2016, 54, 2623–2628. [Google Scholar] [CrossRef]
- Yoshioka, H.; Renold, W.; Fischer, N.H.; Higo, A.; Mabry, T.J. Sesquiterpene lactones from Ambrosia confertiflora (Compositae). Phytochemistry 1970, 9, 823–832. [Google Scholar] [CrossRef]
- Marino, S.; Borbone, N.; Zollo, F.; Ianaro, A.; Meglio, P.D.; Iorizzi, M. New Sesquiterpene Lactones from Laurus nobilis Leaves as Inhibitors of Nitric Oxide Production. Planta Med. 2005, 71, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Dueñas, M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional and Antioxidant Contributions of Laurus nobilis L. Leaves: Would Be More Suitable a Wild or a Cultivated Sample? Food Chem. 2014, 156, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Suzumura, A.; Terao, R.; Kaneko, H. Protective Effects and Molecular Signalling of n-3 Fatty Acids on Oxidative Stress and Inflammation in Retinal Diseases. Antioxidants 2020, 9, 920. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The Review of Alfa-Linolenic Acid: Sources, Metabolism, and Pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Agostoni, C.; Moreno, L.; Shamir, R. Palmitic Acid and Health: Introduction. Crit. Rev. Food Sci. Nutr. 2016, 56, 1941–1942. [Google Scholar] [CrossRef]
- Matos, M.S.; Anastácio, J.D.; Santos, C.N. Sesquiterpene Lactones: Promising Natural Compounds to Fight Inflammation. Pharmaceutics 2021, 13, 991. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Kinoshita, Y.; Satoh, I.; Shinbori, C.; Kono, T.; Hanada, T.; Uemasu, J.; Suzuki, H.; Yamada, M.; Satoh, K. n-Hexacosanol Ameliorates Streptozotocin-Induced Diabetic Rat Nephropathy. Eur. J. Pharmacol. 2006, 544, 132–137. [Google Scholar] [CrossRef]
- Tavares, W.R.; Seca, A.M.L. Inula, L. Secondary Metabolites against Oxidative Stress-Related Human Diseases. Antioxidants 2019, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Murado, M.A.; Rodríguez-Amado, I.; Vázquez, J.A. β-Carotene Assay Revisited. Application to Characterize and Quantify Antioxidant and Prooxidant Activities in a Microplate. J. Agric. Food Chem. 2012, 60, 8983–8993. [Google Scholar] [CrossRef] [PubMed]
- Cheong, C.-U.; Yeh, C.-S.; Hsieh, Y.-W.; Lee, Y.-R.; Lin, M.-Y.; Chen, C.-Y.; Lee, C.-H. Protective Effects of Costunolide Against Hydrogen Peroxide-Induced Injury in PC12 cells. Molecules 2016, 21, 898. [Google Scholar] [CrossRef]
- Seo, M.S.; Choi, E.M. The effects of dehydrocostus lactone on osteoblastic MC3T3-E1 cells in redox changes and PI3K/Akt/CREB. Immunopharmacol. Immunotoxicol. 2012, 34, 810–814. [Google Scholar] [CrossRef]
- Ohguchi, K.; Ito, M.; Yokoyama, K.; Iinuma, M.; Itoh, T.; Nozawa, Y.; Akao, Y. Effects of Sesquiterpene Lactones on Melanogenesis in Mouse B16 Melanoma Cells. Biol. Pharm. Bull. 2009, 32, 308–310. [Google Scholar] [CrossRef]
Carbon | 1H | 13C (DEPT *) | COSY | HMBC | H2BC |
---|---|---|---|---|---|
1 | 4.85 dd, J = 4.7; 11.1 Hz | 127.1 (CH) | H-2, H-14 | - | C-2 |
2 | 2.18–2.32 m | 26.2 (CH2) | H-1 | C-1, C-3, C-4 | C-1, C-3 |
2.31 s | |||||
3 | 2.02–2.07 m | 39.5 (CH2) | H-3 (2.29–2.36) | C-1, C-2, C-4, C-15 | C-2 |
2.29–2.36 m | H-3 (2.02–2.07) | ||||
4 | - | 141.5 | - | - | - |
5 | 4.74 d, J = 9.9 Hz | 127.3 (CH) | H-6, H-15 | C-3, C-7, C-15 | C-6 |
6 | 4.57 t, J = 9.3 Hz | 81.9 (CH) | H-5, H-7 | C-4, C-5, C-8 | C-5, C-7 |
7 | 2.53–2.62 m | 50.4 (CH) | H-6, H-8, H-13 | - | C-6 |
8 | 1.62–1.75 m | 28.0 (CH2) | H-8 (2.07–2.14) | C-6, C-7, C-10 | C-7, C-9 |
2.07–2.14 m | H-8 (1.62–1.75) | ||||
9 | 2.09–2.18 m | 40.9 (CH2) | H-8, H-9 (2.45), | C-1, C-7, C-8, C-10 | - |
2.45 dd, J = 6.1; 13.4 Hz | H-9 (2.09–2.18), | ||||
H-14 | |||||
10 | - | 136.9 | - | - | - |
11 | - | 140.1 | - | - | - |
12 | - | 170.5 | - | - | - |
13 | 5.53 d, J = 3.4 Hz | 119.7 (CH2) | H-7 | C-7, C-11, C-12 | - |
6.23 d, J = 3.4 Hz | |||||
14 | 1.42 s | 16.1 (CH3) | H-1, H-9 | C-1, C-9, C-10 | - |
15 | 1.70 d, J = 1.4 Hz | 17.4 (CH3) | H-5 | C-3, C-4, C-5 | - |
Carbon | 1H | 13C (DEPT *) | COSY | HMBC | H2BC |
---|---|---|---|---|---|
1 | 6.70 d, J = 9.9 Hz | 154.7 (CH) | H-2 | C-3, C-5, C-9, C-10, C-14 | C-2 |
2 | 6.27 d, J = 9.8 Hz | 126.0 (CH) | H-1 | C-4, C-10 | C-1 |
3 | - | 186.3 | - | - | - |
4 | - | 129.1 | - | - | - |
5 | - | 150.7 | - | - | - |
6 | 4.77 dd, J = 1.3; 11.6 Hz | 81.4 (CH) | H-7, H-15 | C-4, C-5, C-7, C-8 | C-7 |
7 | 2.68–2.74 m | 50.3 (CH) | H-6, H-8, H-13 | - | C-6, C-8 |
8 | 1.74–1.83 m 2.19–2.23 m | 21.7 (CH2) | H-7, H-8 (2.19–2.23) H-8 (1.74–1.83), H-9 | C-7, C-9 | C-7, C-9 |
9 | 1.59–1.60 m 1.92–1.95 m | 37.7 (CH2) | H-8, H-9 (1.92–1.95) H-9 (1.59–1.60) | C-7, C-8, C-10, C-14 | C-8 |
10 | - | 41.3 | - | - | - |
11 | - | 137.5 | - | - | - |
12 | - | 169.2 | - | - | - |
13 | 5.56 d, J = 3.2 Hz 6.25 d, J = 3.2 Hz | 119.7 (CH2) | H-7, H-13 (6.25) H-13 (5.56) | C-7, C-11, C-12 | - |
14 | 1.32 s | 25.2 (CH3) | - | C-1, C-5, C-9, C-10 | - |
15 | 2.17 d, J = 1.3 Hz | 10.9 (CH3) | H-6 | C-3, C-4, C-5 | - |
Carbon | 1H | 13C (DEPT *) | COSY | HMBC | H2BC |
---|---|---|---|---|---|
1 | 3.53 dd, J = 4.5; 11.5 Hz | 78.2 (CH) | H-13 | C-9, C-14 | C-2 |
2 | 1.53–1.61 m 1.83–1.87 m | 31.3 (CH2) | H-1, H-3 | C-1, C-3, C-4, C-10 | C-1, C-3 |
3 | 2.13–2.14 m 2.32–2.36 m | 33.5 (CH2) | H-2, H-3 (2.32–2.36) | C-1, C-2, C-4, C-5, C-15 | C-2 |
4 | - | 142.4 | - | - | - |
5 | 2.17–2.20 m | 52.9 (CH) | H-6, H-15 | C-1, C-4, C-6, C-7, C-10, C-14, C-15 | C-6 |
6 | 4.04 t, J = 10.9 Hz | 79.6 (CH) | H-5, H-7 | C-8, C-11 | C-5, C-7 |
7 | 2.54 dt, J = 3.1; 11.4 Hz | 49.6 (CH) | H-2, H-6, H-13 | C-6, C-11 | C-6, C-8 |
8 | 1.58–1.63 m 2.07–2.10 m | 21.5 (CH2) | H-7, H-9 | C-6, C-7, C-10 | C-7, C-9 |
9 | 1.33–1.39 m 2.07–2.11 m | 35.7 (CH2) | H-8, H-9 (2.07–2.11), H-9 (1.33–1.39) | C-1, C-5, C-7, C-8, C-10, C-14 | C-8 |
10 | - | 42.9 | - | - | - |
11 | - | 139.2 | - | - | - |
12 | - | 170.7 | - | - | - |
13 | 5.42 d, J = 3.1 Hz 6.09 d, J = 3.1 Hz | 117.1 (CH2) | H-7 | C-7, C-11, C-12 | - |
14 | 0.82 s | 11.6 (CH3) | - | C-1, C-5, C-9, C-10 | - |
15 | 4.87 s 4.99 s | 110.7 (CH2) | H-5, H-15 (4.99), H-3, H-15 (4.87) | C-3, C-4, C-5 | - |
Rt (min) | Identified Compounds | Mean (SD) | ||
---|---|---|---|---|
mg/100 g Extract | mg/100 g Dried Plant | mg/100 g Fresh Plant | ||
Fatty Acids Family | ||||
18.3 | Myristic acid (C14:0) | 59.9 (5.68) | 15.8 (1.50) | 9.37 (0.866) |
24.0 | Palmitic acid (C16:0) | 414 (30.2) | 106 (10.4) | 66.3 (6.51) |
28.6 | Linoleic acid (C18:2. Ω-6) | 175 (4.44) | 46.2 (1.17) | 28.5 (0.501) |
28.8 | α-Linolenic acid (C18:3. Ω-3) | 300 (8.93) | 79.1 (2.35) | 49.3 (1.47) |
34.9 | Eicosanoic acid (C20:0) | 57.1 (4.64) | 15.0 (1.22) | 9.37 (0.761) |
38.6 | 13-Docosenoic acid (Z) (C22:1. Ω-9) | 44.9 (2.71) | 11.8 (0.713) | 7.37 (0.444) |
38.7 | Docosanoic acid (C22:0) | 48.2 (6.68) | 12.7 (1.07) | 7.90 (0.665) |
40.3 | Tricosanoic acid (C23:0) | 44.0 (2.22) | 11.8 (0.868) | 7.38 (0.541) |
42.0 | Tetracosanoic acid (C24:0) | 227 (35.6) | 59.7 (3.72) | 37.2 (2.32) |
45.7 | Hexacosanoic acid (C26:0) | 130 (5.68) | 34.2 (1.50) | 21.3 (0.933) |
49.7 | Octacosanoic acid (C28:0) | 63.6 (4.09) | 16.7 (1.08) | 9.88 (0.939) |
53.9 | Triacontanoic acid (30:0) | 71.2 (6.12) | 18.8 (1.61) | 11.4 (0.833) |
Total | 1635 | 428 | 265 | |
Terpenoid Family | ||||
6.5 | L-Linalool (Isomer) | 9.62 (0.713) | 2.03 (0.188) | 1.58 (0.117) |
9.2 | Linalool | 14.4 (1.24) | 4.00 (0.237) | 2.49 (0.148) |
11.7 | Caryophyllene oxide | 45.7 (3.84) | 12.0 (1.01) | 7.67 (0.706) |
17.3 | 10-epi-Gazaniolide | 22.5 (0.310) | 5.73 (0.467) | 3.57 (0.291) |
17.7 | Dehydrosaussurea lactone | 27.2 (1.52) | 7.16 (0.400) | 4.46 (0.249) |
18.0 | Neophytadiene | 49.0 (3.81) | 12.9 (1.00) | 7.89 (0.500) |
21.6 | Spirafolide | 59.2 (4.85) | 15.6 (1.28) | 9.71 (0.796) |
22.3 | Dehydrocostus lactone | 359 (27.8) | 91.5 (5.30) | 58.9 (4.56) |
22.6 | Costunolide | 13.2 (0.606) | 3.49 (0.160) | 2.17 (0.0994) |
27.6 | Phytol | 394 (21.3) | 106 (3.06) | 65.8 (1.91) |
28.2 | Reynosin | 802 (52.7) | 215 (16.2) | 134 (10.1) |
29.0 | Deacetyllaurenobiolide | 834 (65.2) | 220 (17.2) | 137 (10.7) |
Total | 2629 | 694 | 435 | |
Fatty Alcohols Family | ||||
40.4 | 1-Tetracosanol | 137 (4.63) | 36.6 (2.24) | 22.4 (0.761) |
44.0 | 1-Hexacosanol | 402 (29.2) | 111 (7.79) | 69.0 (4.85) |
47.8 | 1-Octacosanol | 165 (11.7) | 45.3 (3.18) | 25.9 (1.79) |
51.9 | 1-Triacontanol | 131 (10.9) | 34.5 (2.87) | 21.5 (1.79) |
56.1 | 1-Dotriacontanol | 65.7 (4.62) | 17.3 (1.22) | 10.8 (0.758) |
Total | 900 | 245 | 150 | |
Glycerol Derivatives | ||||
6.1 | Glycerol | 41.8 (2.14) | 11.0 (0.564) | 6.86 (0.351) |
37.9 | 1-Monopalmitin | 53.9 (3.81) | 14.2 (1.00) | 8.85 (0.625) |
Total | 95.7 | 25.2 | 15.7 | |
Sterol Family | ||||
49.5 | Campesterol | 6.55 (0.228) | 1.73 (0.0600) | 1.08 (0.0374) |
50.1 | Stigmasterol | 35.9 (2.77) | 9.47 (0.729) | 5.90 (0.454) |
51.3 | 3β-Hydroxy-stigmast-5-ene | 278 (12.5) | 73.2 (3.30) | 45.6 (2.05) |
Total | 320 | 84.4 | 52.6 | |
Other Compounds | ||||
8.9 | Acetic acid cinnamyl ester | 18.6 (1.75) | 4.70 (0.439) | 2.93 (0.273) |
22.5 | Ethyl hexadecanoate * | 79.8 (6.13) | 21.0 (1.62) | 12.9 (0.890) |
50.8 | 16-Hentriacontanone | 55.6 (4.60) | 15.7 (1.51) | 9.12 (0.755) |
Total | 154 | 41.4 | 24.9 | |
Unidentified compound | ||||
12.6 | Hydroxylated sesquiterpene lactone Mr = 220 (m/z 73, 105, 131, 277, 292) | 47.8 (2.01) | 12.6 (0.530) | 7.84 (0.330) |
13.5 | Hydroxylated sesquiterpene lactone Mr = 220 (m/z 73, 143, 159, 187, 277, 292) | 44.2 (3.73) | 11.6 (0.981) | 7.25 (0.611) |
13.7 | Hydroxylated sesquiterpene lactone Mr = 220 (m/z 73, 208, 277, 292) | 92.0 (5.54) | 24.2 (1.46) | 15.1 (0.910) |
13.9 | Isomer of compound at Rt = 13.7 (m/z 73, 208, 277, 292) | 27.7 (2.47) | 7.30 (0.651) | 4.55 (0.406) |
14.3 | Hydroxylated sesquiterpene lactone Mr = 222 (m/z 73, 143, 204, 279, 294) | 21.7 (1.98) | 5.71 (0.522) | 3.46 (0.232) |
16.1 | Hydroxylated sesquiterpene lactone Mr = 220 (m/z 73, 105, 159, 202, 277, 292) | 26.0 (2.42) | 6.85 (0.638) | 4.40 (0.260) |
16.3 | Isomer of compound at Rt = 16.1 (m/z 73, 105, 159, 202, 277, 292) | 26.1 (1.15) | 6.88 (0.302) | 4.29 (0.188) |
17.1 | Unidentified hydroxylated compound | 24.5 (2.16) | 6.04 (0.583) | 3.45 (0.326) |
20.6 | Non-hydroxylated compound Mr = 230 (m/z 91, 128, 215, 230) | 24.0 (2.11) | 6.00 (0.458) | 3.74 (0.285) |
32.6 | Unidentified compound (m/z 73, 147, 177, 267, 305, 395) | 70.6 (4.76) | 18.6 (1.25) | 11.6 (0.781) |
34.3 | Unidentified compound (m/z 73, 93, 129, 147, 183, 369) | 52.2 (3.60) | 13.8 (0.949) | 8.57 (0.591) |
Total | 457 | 120 | 74 |
Sample | DPPH | ABTS | β-Carotene |
---|---|---|---|
EtOH extract | 59.19 ± 1.52 a | 6.78 ± 0.35 a | 10.41 ± 1.11 a |
Fraction A | >250 b | 170.63 ± 4.56 b | 14.74 ± 1.13 b |
Compound 1 | >250 b | >250 c | 4.08 ± 0.76 c |
Trolox * | 18.79 ± 2.52 c | 2.03 ± 0.42 a | - |
Gallic Acid * | - | - | 14.56 ± 0.23 b |
Samples | Anti-Tyrosinase |
---|---|
EtOH extract | 12.04 ± 0.23 a |
Fraction A | >250 b |
Compound 1 | >250 b |
Kojic acid * | 1.82 ± 0.13 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viveiros, M.M.; Barreto, M.C.; Seca, A.M.L. Laurus azorica: Valorization through Its Phytochemical Study and Biological Activities. Separations 2022, 9, 211. https://doi.org/10.3390/separations9080211
Viveiros MM, Barreto MC, Seca AML. Laurus azorica: Valorization through Its Phytochemical Study and Biological Activities. Separations. 2022; 9(8):211. https://doi.org/10.3390/separations9080211
Chicago/Turabian StyleViveiros, Mariana M., Maria Carmo Barreto, and Ana M. L. Seca. 2022. "Laurus azorica: Valorization through Its Phytochemical Study and Biological Activities" Separations 9, no. 8: 211. https://doi.org/10.3390/separations9080211
APA StyleViveiros, M. M., Barreto, M. C., & Seca, A. M. L. (2022). Laurus azorica: Valorization through Its Phytochemical Study and Biological Activities. Separations, 9(8), 211. https://doi.org/10.3390/separations9080211