The Quality Control of Midecamycin and the Predictive Demarcation between Its Impurities and Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentation
2.3. Liquid Chromatography
2.4. Mass Spectrometry
2.5. Molecular Docking
2.6. Sample Preparation
3. Results
3.1. Method Development for HPLC
3.2. Identification of Structures by LC–MS
3.3. Quantitative Analysis of Impurities and Components Present in Commercial Midecamycin Samples
3.3.1. Solution Stability
3.3.2. Linearity and Range
3.3.3. LOD and LOQ
3.3.4. Accuracy
3.3.5. Robustness
3.3.6. Repeatability
3.3.7. Analysis of Midecamycin Tablets
3.4. Prediction of the Impurities and Components in Midecamycin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arsic, B.; Barber, J.; Cikoš, A.; Mladenovic, M.; Stankovic, N.; Novak, P. 16-membered macrolide antibiotics: A review. Int. J. Antimicrob. Agents 2018, 51, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Piepersberg, W. Cloning and characterization of genes encoded in dTDP-D-mycaminose biosynthetic pathway from a midecamycin- producing strain, Streptomyces mycarofaciens. Acta Biochim. Biophys. Sin. 2007, 39, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Ma, S. Recent advances in the field of 16-membered macrolide antibiotics. Mini-Rev. Med. Chem. 2011, 11, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, L.; Merad, B.; Rostane, H.; Broc, V.; Bouvet, A. In vitro activity of midecamycin diacetate, a 16-membered macrolide, against Streptococcus pyogenes isolated in France, 1995–1999. Clin. Microbiol. Infect. 2001, 7, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhou, Y.; Zhang, H.; Liu, Y. In Vitro activities of acetylmidecamycin and other antimicrobials against human macrolide resistant Mycoplasma pneumoniae isolates. J. Antimicrob. Chemother. 2020, 75, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xu, J.; Duan, X.; Lu, L.; Zhang, K.; Gao, Y.; Dong, L.; Sun, H. Facile fabrication of three-dimensional graphene microspheres using-cyclodextrin aggregates as substrates and their application for midecamycin sensing. RSC Adv. 2015, 5, 77469–77477. [Google Scholar] [CrossRef]
- Q3A. Impurities. 2020. Available online: https://www.ich.org/page/quality-guidelines (accessed on 18 February 2020).
- The Ministry of Health, Labour and Welfare. The Japanese Pharmacopoeia, 17th ed.; JP18; The Ministry of Health, Labour and Welfare: Chiyoda-ku, Japan, 2021.
- Commissioner of the Korea Food and Drug Administration. Korea Pharmacopoeia, 10th ed.; Ministry of Food and Drug Safety: Cheongju-si, Korea, 2012.
- Wang, J.; Liu, G.; Zhu, B.; Tang, L. Universal quantification method of degradation impurities in 16-membered macrolides using HPLC-CAD and study on source of the impurities. J. Pharm. Biomed. Anal. 2020, 184, 113170–113179. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Golkar, T.; Zieliński, M.; Berghuis, A.M. Look and outlook on enzyme-mediated macrolide resistance. Front. Microbiol. 2018, 9, 1942. [Google Scholar] [CrossRef]
- Hansen, J.L.; Ippolito, J.A.; Ban, N.; Nissen, P.; Moore, P.B.; Steitz, T.A. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 2002, 10, 117–128. [Google Scholar] [CrossRef]
- Artsimovitch, I.; Seddon, J.; Sears, P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin. Infect Dis. 2012, 55 (Suppl. 2), S127–S131. [Google Scholar] [CrossRef] [PubMed]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, B.; Ren, X.; Wang, J. Universal response method for the quantitative analysis of multi-components in josamycin and midecamycin using liquid chromatography coupled with charged aerosol detector. J. Pharm. Biomed. Anal. 2021, 192, 113679. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, B.; Ren, X.; Wang, J. Characterization of 28 unknown impurities in 16-membered macrolides by liquid chromatography coupled with ion trap/time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2020, 186, 113324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Wang, C.; Song, D.; Hu, C. Identification of impurities in macrolides by liquid chromatography-mass spectrometric detection and prediction of retention times of impurities by constructing quantitative structure-retention relationship (QSRR). J. Pharm. Biomed. Anal. 2017, 145, 262–272. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Proposed Structure | [M + H]+ | F1 | F2 | F3 | F4 | F5 | Comments |
---|---|---|---|---|---|---|---|---|
1 | 758.4316 | 614.3528 | 596.3428 | 423.2372 | - | 318.1907 | Meleumycin D | |
2 | 832.4659 | 632.3613 | 614.3521 | / | 423.2375 | 374.2167 | Open loop midecamycin A | |
3 | Isomer of midecamycin A1 | 814.4572 | 614.3527 | 596.3378 | / | 405.2330 | 374.2169 | Isomer of midecamycin A1 |
4 | 800.4425 | 614.3529 | 596.3428 | / | 405.2272 | 360.2013 | Meleumycin B2 | |
5 | 816.4733 | 616.3685 | 598.3565 | 425.2509 | 407.2430 | 374.2170 | 6-hydroxyethyl-midecamycin A | |
6 | 800.4423 | 600.3376 | 582.3284 | 409.2207 | 391.2106 | 374.2167 | Leucomycin A6 | |
7 | 814.4572 | 614.3527 | 596.3378 | - | 405.2330 | 374.2169 | Midecamycin A1 | |
8 | 828.4476 | 628.3477 | / | 437.2321 | / | 374.2171 | X | |
9 | 828.4280 | 614.3534 | 596.8380 | / | / | 388.9946 | Midecamycin A2 | |
10 | 812.4572 | 612.3419 | / | 421.2377 | / | 374.2169 | Midecamycin A3 |
Compound | Range (μg mL−1) | Linearity Equation a | r b | LOD (μg mL−1) |
---|---|---|---|---|
Midecamycin A1 | 400~4000 | y = 2 × 107x + 748,269 | 0.9995 | 0.396 |
Midecamycin A3 | 0.8~80 | y = 25.854x + 0.1083 | 0.9997 | 0.253 |
Amount Spiked * | Recovery% (n = 3) | |
---|---|---|
Midecamycin A1 | Midecamycin A3 | |
80% | 99.9 | 99.8 |
100% | 99.9 | 99.8 |
120% | 99.9 | 100.1 |
Impurities | Resolutions * | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flow Rate (mL min−1) | Column Temperature (°C) | Formic Acid Amine (mol/L) | pH | C18 Column | |||||||||||
0.8 | 1.0 | 1.2 | 33 | 35 | 37 | 0.09 | 0.1 | 1.11 | 7.1 | 7.3 | 7.5 | Agilent Extend | BDS Hypersil | Kromasil 100-5 | |
Meleumycin D and open-loop midecamycin A | 4.3 | 4.2 | 4.0 | 4.3 | 4.2 | 4.0 | 3.9 | 4.2 | 4.3 | 4.3 | 4.2 | 4.0 | 4.2 | 4.0 | 3.9 |
Open-loop midecamycin A and isomer of midecamycin A1 | 2.7 | 2.5 | 2.4 | 2.7 | 2.5 | 2.8 | 2.7 | 2.5 | 2.7 | 2.7 | 2.5 | 2.7 | 2.5 | 2.7 | 2.7 |
Isomer of midecamycin A1 and meleumycin B2 | 9.8 | 9.6 | 8.7 | 9.8 | 9.6 | 9.5 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.8 | 9.6 | 8.7 | 9.2 |
Meleumycin B2 and 6-hydroxyethyl-midecamycin A | 1.5 | 1.6 | 1.5 | 1.5 | 1.6 | 1.52 | 1.52 | 1.6 | 1.52 | 1.52 | 1.6 | 1.52 | 1.6 | 1.1 | 1.2 |
6-Hydroxyethyl-midecamycin A and leucomycin A6 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.2 | 1.1 |
Leucomycin A6 and midecamycin A1 | 9.4 | 9.5 | 9.6 | 9.2 | 9.5 | 9.3 | 9.3 | 9.5 | 9.6 | 9.2 | 9.5 | 9.7 | 9.5 | 8.6 | 8.8 |
Midecamycin A1 and X | 10.1 | 10.3 | 10.5 | 10.4 | 10.3 | 10.1 | 10.2 | 10.3 | 11.4 | 9.5 | 10.3 | 10.0 | 10.3 | 8.9 | 9.5 |
X and midecamycin A2 | 3.4 | 3.3 | 3.1 | 3.1 | 3.3 | 3.6 | 3.1 | 3.3 | 2.9 | 3.1 | 3.3 | 3.6 | 3.3 | 3.4 | 3.8 |
Company No. | A1 (%) | A3 (%) | A6 (%) | A2 (%) | The Sum of Others(%) |
---|---|---|---|---|---|
1 | 93.4 | 0.7 | 2.2 | 2.0 | 3.4 |
2 | 94.4 | 0.9 | 2.4 | 2.3 | 3.9 |
3 | 92.0 | 1.0 | 2.1 | 2.1 | 4.0 |
4 | 100.0 | 1.0 | 2 | 2.0 | 3.8 |
5 | 102.5 | 0.8 | 2.2 | 1.8 | 2.9 |
6 | 87.2 | 2.5 | 3.6 | 2.2 | 3.9 |
7 | 90.3 | 2.8 | 4.4 | 2.6 | 5.1 |
8 | 88.9 | 2.5 | 4.1 | 3.3 | 4.3 |
9 | 87.6 | 3.6 | 3.9 | 2.9 | 7.1 |
10 | 102.3 | 1.5 | 2.6 | 2.3 | 3.9 |
11 | 99.9 | 1.3 | 2.4 | 2.2 | 3.6 |
12 | 100.2 | 1.5 | 2.6 | 2.3 | 3.8 |
13 | 105.6 | 1.3 | 2.6 | 2.3 | 4.1 |
14 | 101.5 | 0.8 | 2.5 | 2.2 | 3.8 |
15 | 97.5 | 0.9 | 2.7 | 3.4 | 4.8 |
16 | 97.2 | 1.1 | 2.2 | 2.4 | 4.3 |
17 | 97.9 | 1.0 | 2.6 | 2.2 | 3.6 |
18 | 96.2 | 1.5 | 2.5 | 2.1 | 3.5 |
Compound | Affinity (kcal/mol) |
---|---|
Midecamycin A1 | −7.8 |
Leucomycin A6 | −7.4 |
Midecamycin B2 | −7.2 |
Midecamycin A2 | −7.2 |
X | −6.9 |
Midecamycin A3 | −6.9 |
6-Hydroxyeyhyl-midecamycin A1 | −6.6 |
Open-loop midecamycin | −6.4 |
Meleumycin D | −5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Wang, W.; Liu, W.; Yang, H.; Sun, T.; Zhao, H.; Chen, D. The Quality Control of Midecamycin and the Predictive Demarcation between Its Impurities and Components. Separations 2022, 9, 225. https://doi.org/10.3390/separations9080225
Yu M, Wang W, Liu W, Yang H, Sun T, Zhao H, Chen D. The Quality Control of Midecamycin and the Predictive Demarcation between Its Impurities and Components. Separations. 2022; 9(8):225. https://doi.org/10.3390/separations9080225
Chicago/Turabian StyleYu, Mingyan, Weijian Wang, Wenkun Liu, Huiru Yang, Tong Sun, Haiyun Zhao, and Dejun Chen. 2022. "The Quality Control of Midecamycin and the Predictive Demarcation between Its Impurities and Components" Separations 9, no. 8: 225. https://doi.org/10.3390/separations9080225
APA StyleYu, M., Wang, W., Liu, W., Yang, H., Sun, T., Zhao, H., & Chen, D. (2022). The Quality Control of Midecamycin and the Predictive Demarcation between Its Impurities and Components. Separations, 9(8), 225. https://doi.org/10.3390/separations9080225