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Abstract- This paper investigates an analytical analysis for the flow and heat transfer in 

a viscous fluid over a nonlinear stretching sheet. The governing partial differential 

equations are transformed into coupled nonlinear differential equations by introducing a 

similarity transformation. The asymptotic analytical solutions are obtained by using 

differential transform method-basic functions (DTM-BF). Four types of nanofluids, 

namely Cu-water, Ag-water, 32OAl -water and 2TiO -water were studied. The influence 

of the nanoparticle volume fraction  , the nonlinear stretching parameter n , Prandtl 

number Pr, Eckert number Ec and different nanoparticles on the velocity and 

temperature are discussed and shown graphically. The comparison with the numerical 

results is presented and it is found to be in excellent agreement. 

 

Key Words- heat and mass transfer, asymptotic expansion, volume fraction influence, 

nanoparticle reaction 

 

1. INTRODUCTION 

                         

In the past few years the flow over stretching surface has received considerable 

attention because of its many engineering applications. Crane [1] considered the steady 

two-dimensional flow of a Newtonian fluid driven by a sheet moving in its own plane 

with a velocity varying linearly with the distance from a fixed point. Ho et al. [2] 

identified the effects due to uncertainties in effective dynamic viscosity and thermal 

conductivity of nanofluid on laminar natural convection heat transfer in a square 

enclosure. Khan and Pop [3] investigated numerically the problem of laminar fluid flow 

resulting from the stretching of a flat surface in a nanofluid. Mahdy and Sameh [4] 

reported numerical analysis for laminar free convection over a vertical wavy surface 

embedded in a porous medium saturated with a nanofluid.   

 

Due to many applications of nanofluids in technical process, the heat and mass 

transfer of nanofluids with a chemical reaction also caused more attention. The term 

‘nanofluid’ was first proposed by Choi [5] to indicate a liquid suspension containing 

ultra-fine particles. Eastman [6] obtained an excellent assessment of nanofluid physics 

and developments. Kuznetsov and Nield [7] studied the influence of nanoparticles on 

natural convection boundary layer flow past a vertical plate by taking Brownian motion 
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and thermophoresis into account. Besides, Mokmeli [8] and Xuan [9] explained that 

nanofluids clearly exhibit enhanced thermal conductivity, which gone up with 

increasing volumetric fraction of nanoparticles.  

 

Motivated by the above works, in this paper we present similarity solutions for 

the nonlinear problem of flow and heat transfer of nanofluid past a nonlinearly 

stretching sheet, which are then solved analytically using DTM-BF. This method was 

first proposed by Xiaohong Su et al.[10]. In this paper, we can find that the approximate 

solution agrees very well with the numerical solution, which shows the reliability and 

validity of the present work. The effects of the governing parameters and different 

nanoparticles on the velocity and temperature are discussed by graph in detail.  

  

2. MATHEMATICAL FORMULATION 

  

Consider the two-dimensional steady laminar flow of viscous and 

incompressible nanofluid past a flat sheet. The fluid is a water based nanofluid 

containing different types of nanoparticles such as copper Cu, silver Ag, alumina 32OAl  

and titanate 2TiO . It is assumed that the base fluid and the nanoparticles are in thermal 

equilibrium and no slip occurs between them. The thermophysical properties of the 

nanofluid are listed in Table 1. We choose the slit, from which the sheet is drawn, as the 

origin of the system. In this coordinate frame the x -axis is taken along the direction of 

the continuous stretching surface and the y -axis is measured normal to the surface of 

the sheet. 

 

Under above assumptions, the steady, two-dimensional boundary layer equations 

for this fluid can be written as follow [11]: 
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Subject to the following boundary conditions 

 
n

w axUu  , 0v , 
wTT  , at 0y ,                                                                            (4) 

0u ,  TT ,  as y ,                                                                                           (5) 

                                                                                                                                   

where vu,  are the velocity components in the x  and y directions, respectively. T  is the 

temperature of the nanofluid, 
T  is the temperature of the fluid far from the sheet. a  

and n  are parameters related to the surface stretching speed. The effective dynamic 
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viscosity of the nanofluid nf , the effective density nf  and the heat capacitance of the 

nanofluid  are given by [12] 
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The thermal conductivity of nanofluids restricted to spherical nanoparticles is 

approximated [13]: 

]
)(2

)(22
[

sffs

sffs

fnf
kkkk

kkkk
kk









,                                                     (7) 

where   is the solid volume fraction of nanoparticles, the subscripts fnf ,  and s denote 

the thermophysical properties of the nanofluid, base fluid and nano-solid particles, 

respectively. 

            Introducing the following similarity variables: 
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The transformed momentum and energy equations together with the boundary 

conditions given by Eqs. (2)-(5) can be written as 
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Table 1. Thermophysical properties of water and nanoparticles. 

 

 

 Pure water Ag Cu Al2O3 TiO2 

]/[ KgKJpC  4179 235 385 765 686.2 

]/[ 3mkg  997.1 10500 8933 3970 4250 
]/[ mKWk   0.613 429 400 40 8.9538 
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3. DTM-BF METHOD FOR THE SIMILARITY SOLUTION 

 

Differential transformation of the function )(f   is defined as follows 
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In equation (14), )(f  is the original function and )(kF  is the transformed function 

which is called the T-function. The differential inverse transformation of )(kF  is 

defined as 
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Combining equations (14) and (15), we obtain 
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Theorems proposed by Rashidi, Mohimanian and Laraqito[14] in the 

transformation procedure are given below 
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Taking differential transform of equation (10), the following equation can be obtained 
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where )(kF  is the differential transforms of f . 

The transform of the boundary conditions are 

 )2(,1)1(,0)0( FFF .                                                                                          (18) 

where    is a constant. 

Using equation (18) and the iterative formula (17), )(kF  can be calculated. 

Then the following series solutions of the initial value problem is 
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Using equation (10) and the boundary condition (12) and selecting the basic 

functions { )(0,0 f , ),3,2,(, )( jijif  } where  iaj

ji ef )(, , then one can regarded the 

expression of )(f  as a linear combination of the basic functions 
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100000 )1(  satisfies the boundary conditions (12) and 

 iaj

ji ef )(,   satisfy the following boundary conditions 

0)(,0)0(,0)0(  fff    .                                                                                   (21) 

where 0a  is an attenuation parameter which to be determined. 

In practical applications, we will get a good precision when iN  less than 5.  

            For the case 3.0,2.6Pr,1,0  Ecn , let 4,2 21  NN , then expending 

equation (20) in the following power series 
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The following equations can be obtained from the equations (19)(20)  and (22) by 

comparing the coefficient of the same order of k  

.82),(
)!2(

)(

)!2()!1(
)1(

!

4

2

)2(

2,

)2(

1

)1(

0
0 








 





jjF
j

ai
b

j

a
a

j

a
aa

j

aa

i

j

i

jjj

          (23) 

It is easy to solve these equations successively, and then the series solution of the 

equation can be obtained 
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where 11.00160470a . 

Similarly, we can get the corresponding analytical solution for )(g  
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where 23.97207381b . 
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4. DISCUSSION OF THE SOLUTIONS 

  

The boundary layer flow and heat transfer due to stretching vertical sheet have 

been investigated analytically. All the results obtained by the DTM-BF method are 

compared with the numerical results obtained by bvp4c with Matlab. Fig.1 shows a 

comparison between analytical and numerical solutions for ff , and g . Moreover, the 

results are also illustrated in Table 2. It is obvious that excellent agreement exists for all 

values considered. 

The effects of the nonlinear stretching parameter n , Prandtl number Pr and 

Eckert number Ec on the velocity ff , and g are plotted in Fig. 2. It is observed that as 

the nonlinear stretching parameter increases, f and f  decreases. Besides, Ec tends to 

increase the temperature profiles while Pr  tends to decrease it. In addition, both of 

Eckert number and Prandtl number doesn't affect the velocity profile. 

             

 
Figure 1. Comparison of numerical and analytical solutions for ff ,  and g  as 

3.0,3Pr,1,0  Ecn . 

 

Table 2.  Comparison of )(f   as 3.0,2.6Pr,1,0  Ecn . 
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Figure 2.   Effects of the parameters n , Pr  and Ec  for ff ,  and g  as 0 . 

 

Variations of ff , and g  against the volume fraction are plotted for different 

nanofluids in Figs. 3 and 4.  Fig. 3 displays the effects of solid volume fraction on f  

and f   as 3.0,2.6Pr,1  Ecn . It is found that as the solid volume fraction of 

nanoparticles increases, f and f   decreases. This refers that a high velocity can be 

obtained for lower solid volume concentration of nanoparticles. Fig. 4 depicts the effect 

of solid volume fraction on temperature related with Cu-water, Ag-water, 32OAl -water 

and 2TiO -water nanofluid, respectively. It is observed that increasing the volume 

fraction results in an increase in temperature. Besides, adding nanoparticle to the pure 

water decreases velocity profile while increases temperature profiles.  

 

            Fig.5 exhibits the velocity and temperature distributions for different 

nanoparticles respectively when 3.0,2.6Pr,1  Ecn . It can be observed that the 

velocity and temperature distributions decrease gradually far away from the surface of 

the stretching sheet. Moreover, Al2O3-water nanofluid and TiO2-water nanofluid 

exhibits higher velocity and lower temperature than that of the other nanofluid 

concerned while Ag-water nanofluid exhibits lower velocity and higer temperature 

instead. Besides, Al2O3-water nanofluid and TiO2-water nanofluid have the similar 

profiles. Therefor, in the cooling intensification process, it is more suitable for selecting 

metal oxides such as aluminum oxide and titanium oxide than copper and silver. 
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Figure 3. Effects of the solid volume fraction   on f and f   for Cu and Ag 

as 3.0,2.6Pr,1  Ecn . 

 

 

 
Figure 4. Effects of the solid volume fraction   on temperature g  for 32,, OAlAgCu  and 

2TiO  as 3.0,2.6Pr,1  Ecn . 
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Figure 5.  Comparison of different elements on velocity f  and temperature g for 

15.0 , 2.0  as 3.0,2.6Pr,1  Ecn . 

  

5. CONCLUSION 

 

            In the present paper, we have investigated the problem of flow and heat transfer 

in a viscous nanofluid over a nonlinear stretching sheet. The momentum and energy 

boundary layer transfer characteristics for different parameters are discussed. Some 

important conclusion can be drawn. 

 

            (i) Variations of the dimensionless velocity and temperature are affected with 

the solid volume fraction of nanoparticles, the nonlinear stretching parameter, Eckert 

number and Prandtl number. f and f  decreases with an increase in the nonlinear 

stretching parameter, Ec tends to increase the temperature profiles while Pr  tends to 

decrease it.  

 

            (ii) A high velocity can be obtained for lower solid volume concentration of 

nanoparticles since f  decrease with the increasing parameter  . Besides, the increasing 

volume fraction results in an increase in temperature. In addition, adding nanoparticle to 

the pure water decreases velocity profile while increases temperature profiles.  

 

            (iii) In the cooling intensification process, It is more suitable for selecting metal 

oxides nanofluids than the metal nanofluids since 32OAl -water nanofluid and 2TiO -

water nanofluid exhibits higher velocity and lower temperature while Ag-water 

nanofluid exhibits lower velocity and higer temperature instead. 
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