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Abstract- A recently developed perturbation algorithm namely the multiple scales 

Lindstedt-Poincare method (MSLP) is employed to solve the mathematical models. 

Three different models with quadratic nonlinearities are considered. Approximate 

solutions are obtained with classical multiple scales method (MS) and the MSLP 

method and they are compared with the numerical solutions. It is shown that MSLP 

solutions are better than the MS solutions for the strongly nonlinear case of the 

considered models.  

Keywords- perturbation methods; numerical solutions; systems with quadratic 

nonlinearities 

1. INTRODUCTION 

Perturbation theories have been widely used to obtain approximate analytical 

solutions of linear and nonlinear physical problems. Although the methods provide 

acceptable solutions for weakly nonlinear problems, the solutions do not represent the 

physics for the strongly nonlinear cases. Recently, for solution of the strongly nonlinear 

problems, a new perturbation method was developed by Pakdemirli et al. [1]. This 

method named multiple scales Lindstedt-Poincare method (MSLP) combines the 

classical multiple scales method and the Lindstedt-Poincare method. Pakdemirli and 

Karahan [2] and Pakdemirli et al. [3] applied the method to many strongly nonlinear 

problems and obtained good results compatible with the numerical solutions.  

This new method has not been tested for problems with strong quadratic 

nonlinearities. In this study, three different quadratic nonlinear problems are solved by 

MSLP and MS method. The approximate solutions are contrasted with the numerical 

solutions. For weak nonlinearities, all three methods yield similar solutions. As the 

nonlinearity is increased, the solutions deviate from each other, with MSLP yielding 

better approximate solutions in contrast to the numerical solutions.  

2. QUADRATIC NONLINEAR MODEL I 

Consider the below problem with a quadratic nonlinearity 
2

0 0u u uu     (1) 

with initial conditions 

0(0) (0) 0u a u   (2) 
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2. 1. Multiple Scales Method (MS) 

First, the problem is solved with the classical method. Solutions are assumed to be of 

the form; 
2

0 0 1 2 1 0 1 2 2 0 1 2( , , ) ( , , ) ( , , )u u T T T u T T T u T T T     (3) 

where T0=t is the usual fast time scale, T1=εt and T2=ε2t are the slow time scales. Time 

derivatives are defined as 
2

2 2 2 2

0 1 2 0 0 1 1 0 22
, 2 ( 2 )

d d
D D D D D D D D D

dt dt
             (4) 

where /n nD T   . 

If (3) and (4) are substituted into the original equation, the following equations are 

obtained at each order of ε; 
2 2

0 0 0 0 0 0 0 0(1) 0 (0) (0) 0O D u u u a D u          (5) 

  2 2

0 1 0 1 0 1 0 0 0 0 1 0 1 1 0O 2 (0) 0 ( )(0) 0D u u D D u u D u u D u D u               (6) 

 2 2 2 2

0 2 0 2 0 1 1 1 0 2 0 0 0 1 1 0 1 0 0O 2 ( 2 ) ( )D u u D D u D D D u u D u D u u D u          (7) 

At order 1, the solution may be expressed as 
0 0

0

i T
u Ae cc


 

 

(8) 

where cc stands for the complex conjugates of the preceding terms and 
1

2

iA ae 
 

(9) 

The first order solution is obtained in terms of real amplitude and phase 

0 1 2 0 1 2( , )cos( ( , ))u a T T t T T    (10) 

Applying the initial conditions yields 

0(0) 0 (0)a a    (11) 

Equation (8) is substituted into (6) and secular terms are eliminated 

1 20 ( )D A A A T    (12) 

The solution at order ε is 

0 0 0 022

1

03

i T i Ti
u Be A e cc

 


    (13) 

This solution may be represented in terms of real amplitude and phase 
2

1 0 0 0 0

0

sin( ) sin(2 2 )
6

a
u b T T   


      (14) 

where  
1

2

iB ibe 
 

(15) 

Applying the initial conditions yields 
2

0

0

(0) 0 (0)
3

a
b


    (16) 

Equation (8) and (13) are inserted into (7) and secular terms are eliminated, 

2

0 1 0 2

1
2 2 0

3
i D B i D A A A      (17) 

If (5), (15), (16) are inserted into (17), one finally has 

 
2 2

0 0
0 2

0 0

, , 0,
3 24

a a
a a b T 

 
        

(18) 

The final solution is 
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2 2 2 2 2

0 0 0
0 0 0 0

0 0 0

cos(( ) ) (2sin( ) sin(2( ) ))
24 6 24

a a a
u a t t t

  
  

  
      (19) 

For valid solutions, the correction term should be much smaller than the leading 

term. For the problem, this criterion yields  

0

0

1
6

a


  (20) 

  

2.2. Multiple Scales Lindstedt-Poincare Method (MSLP) 

Details of the method was presented in the previous literature [1-3]. The time 

transformation t    is applied to the model 
2 2

0 0u u u u        (21) 

where prime denotes derivative with respect to the new variable  . The time scales in 

this method are slightly different from classical multiple scales 
2

0 1 2, ,T T T     
 

(22) 

Expressing the time derivatives 

2

0 1 2

d
D D D

dt
   

        

2
2 2 2

0 0 1 1 0 22
2 ( 2 )

d
D D D D D D

dt
    

 

(23) 

with Dn= / nT   and substituting the expansions  
2

0 0 1 2 1 0 1 2 2 0 1 2( , , ) ( , , ) ( , , )u u T T T u T T T u T T T     (24) 
2 2 2

0 1 2        
(25) 

into the original equation, the following equations are obtained at each order of 

approximation; 
2 2 2

0 0 0 0 0 0 0(1) 0, (0) (0) 0O D u u u a D u           (26) 

  2 2 2 2

0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0O 2 (0) 0 ( )(0) 0D u u D D u u u D u u D u D u                    (27) 

 2 2 2 2 2 2 2

0 2 2 0 1 1 1 0 2 0 1 1 2 0

0 0 1 1 0 1 0 0

O 2 ( 2 )

( ( ) )

D u u D D u D D D u u u

u D u D u u D u

      



      

  

 (28) 

The first order solution is 
0

0 0cos( )
iT

u Ae cc a T      
(29) 

Applying the initial conditions yields 

0(0) 0, (0)a a    (30) 

Equation (29) is substituted into (27) and secular terms are eliminated 
2

1 12 0i D A A     
(31) 

If D1A=0 is selected, a=a(T2), β= β (T2) and ω1=0. Since ω1 is not complex, this choice 

is admissible. The solution at order ε is  

0 022

1

1

3 2

iT iT ii
u Be A e cc B ibe 


          (32) 

In terms of real amplitude and phase, the solution is 
2

1 0 0sin( ) sin(2 2 )
6

a
u b T T 


      (33) 

Applying the initial conditions yields 
2

0(0) 0 (0)
3

a
b


    (34) 

Equations (29) and (32) are inserted into (28) and secular terms are eliminated 
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2 2 2

1 2 2

1
2 2 0

3
i D B i D A A A A        (35) 

D1B=0 can be assumed. If D2A=0 is selected, ω2 comes out to be real and this is again 

an admissible choice. After algebraic calculations, Equation (35) yields 
2

20
0 2

1
, , 0,

3 12

a
a a b a  


        (36) 

The frequency is  
2 2

2 0
0

12

a
    

(37) 

The final solution in terms of this frequency is 
2

20
0 cos( ) (2sin( ) sin(2 )) ( )

6

a
u a t t t O


   


     (38) 

For valid solutions, the perturbation criteria is 
 0

2
2

0 02

0

1

6 1
12

a

a












 
 

 

(39) 

 

 

 

2.3. Comparisons with the Numerical Solutions 

 

 
 

Figure 1. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 02, 1,a      
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Figure 2. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 03, 1,a      

 
 

Figure 3. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 04, 1,a      

 

In this section, the approximate solutions are contrasted with the numerical solutions 

for the quadratic nonlinear model considered. In Figure 1, results are compared for ε=2. 

The agreement between MSLP and numerical solutions is better than MS solution and 

the amplitude values of the MS solution yield higher errors. The positive amplitudes 

agree with numerical and MSLP cases whereas the positive amplitudes introduce errors 

in case of MS solutions. For negative amplitude values, the error is less for MSLP. ε=3 

is selected in Figure 2 and MSLP and numerical solutions agree well for positive values 

of amplitudes whereas, the error is smaller for negative amplitudes for MSLP solutions. 

For ε=4, in Figure 3, the same trend is observed with more amplification.  
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3. QUADRATIC NONLINEAR MODEL II 

 

Consider the below problem with a quadratic nonlinearity 
2 2

0 0u u u     (40) 

with initial conditions 

0(0) (0) 0u a u   (41) 

  

3.1. Multiple Scales Method (MS) 

First, the problem is solved with the classical method. Solutions are assumed to 

be of the form; 
2

0 0 1 2 1 0 1 2 2 0 1 2( , , ) ( , , ) ( , , )u u T T T u T T T u T T T     (42) 

where T0=t is the usual fast time scale, T1=εt and T2=ε2t are the slow time scales. Time 

derivatives are defined as 

2

0 1 2

d
D D D

dt
   

,    

2
2 2 2

0 0 1 1 0 22
2 ( 2 )

d
D D D D D D

dt
    

 

(43) 

where /n nD T   . 

If (42) and (43) are substituted into the original equation, the following equations are 

obtained at each order of ε; 
2 2

0 0 0 0 0 0 0 0(1) 0 (0) (0) 0O D u u u a D u          (44) 

  2 2 2

0 1 0 1 0 1 0 0 1 0 1 1 0O 2 (0) 0 ( )(0) 0D u u D D u u u D u D u                (45) 

 2 2 2 2

0 2 0 2 0 1 1 1 0 2 0 0 1O 2 ( 2 ) 2D u u D D u D D D u u u         (46) 

At order 1, the solution may be expressed as 
0 0

0

i T
u Ae cc


 

 

(47) 

where cc stands for the complex conjugates of the preceding terms and 
1

2

iA ae 
 

(48) 

The first order solution is obtained in terms of real amplitude and phase 

0 1 2 0 0 1 2( , )cos( ( , ))u a T T T T T    (49) 

Applying the initial conditions yields 

0(0) 0 (0)a a    (50) 

Equation (47) is substituted into (45) and secular terms are eliminated 

1 20 ( )D A A A T    (51) 

The solution at order ε is 

0 0 0 022

1 2 2

0 0

( ) 2
3

i T i T
u Be cc A e cc AA

  

 
      (52) 

This solution may be represented in terms of real amplitude and phase 

2 2

1 0 0 0 02 2

0 0

cos( ) cos(2 2 )
6 2

u b T a T a
 

   
 

      (53) 

where  
1

2

iB ibe 
 

(54) 

Applying the initial conditions yields 

2

02

0

(0) 0 (0)
3

b a





   (55) 
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Equation (47) and (52) are inserted into (46) and secular terms are eliminated, 
2

2

0 1 0 2 2

0

10
2 2 0

3
i D B i D A A A


 


     (56) 

If (45), (54), (55) are inserted into (56), one finally has 

 
2

2 2

0 0 0 22 3

0 0

5
, , 0,

3 12
a a b a a T

 
 

 
      

(57) 

The final solution is 
2

2 2 2

0 0 0 0 03 2

0 0

2
2 2 2 2

0 0 02 3

0 0

5
cos(( ) ) ( cos( )

12 3

5
(cos(2( ) ) 3) ( )

6 12

u a a t a t

a a t O

 
   

 

 
  

 

  

   

 

(58) 

3.2. Multiple Scales Lindstedt-Poincare Method (MSLP) 

The time transformation t    is applied to the model 
2 2 2

0 0u u u       (59) 

where prime denotes derivative with respect to the new variable  . The time scales in 

this method are slightly different from classical multiple scales 
2

0 1 2, ,T T T     
 

(60) 

Expressing the time derivatives 

2

0 1 2

d
D D D

dt
   

        

2
2 2 2

0 0 1 1 0 22
2 ( 2 )

d
D D D D D D

dt
    

 

(61) 

with Dn= / nT   and substituting the expansions  
2

0 0 1 2 1 0 1 2 2 0 1 2( , , ) ( , , ) ( , , )u u T T T u T T T u T T T     (62) 
2 2 2

0 1 2        (63) 

into the original equation, the following equations are obtained at each order of 

approximation; 
2 2 2

0 0 0 0 0 0 0(1) 0, (0) (0) 0O D u u u a D u           (64) 

  2 2 2 2 2

0 1 1 0 1 0 1 0 0 1 0 1 1 0O 2 (0) 0 ( )(0) 0D u u D D u u u u D u D u                    (65) 

 2 2 2 2 2 2 2

0 2 2 0 1 1 1 0 2 0 1 1 2 0 0 1O 2 ( 2 ) 2D u u D D u D D D u u u u u                (66) 

The first order solution is 
0

0 0cos( )
iT

u Ae cc a T      
(67) 

Applying the initial conditions yields 

0(0) 0, (0)a a    (68) 

Equation (67) is substituted into (65) and secular terms are eliminated 
2

1 12 0i D A A     
(69) 

If D1A=0 is selected, a=a(T2), β= β (T2) and ω1=0. Since ω1 is not complex, this choice 

is admissible. The solution at order ε is  

0 022

1 2 2

1
( ) 2

3 2

iT iT iu Be cc A e cc AA B ibe  

 
            (70) 

In terms of real amplitude and phase, the solution is 

2 2

1 0 02 2
cos( ) cos(2 2 )

6 2
u b T a T a

 
 

 
      (71) 

Applying the initial conditions yields 
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2

02
(0) 0 (0)

3
b a





   (72) 

Equations (67) and (70) are inserted into (66) and secular terms are eliminated 
2

2 2 2

1 2 2 2

2
2 2 (4 ) 0

3
i D B i D A A A A


  


       (73) 

D1B=0 can be assumed. If D2A=0 is selected, ω2 comes out to be real and this is again 

an admissible choice. After algebraic calculations, Equation (73) yields 
2

2 2

0 0 22 2

5
, , 0,

3 6
a a b a a

 
  

 
       (74) 

The frequency is  

2 4 2 2 2

0 0 0

1 1 10

2 2 3
a        

(75) 

The final solution in terms of this frequency is 
2

2 20
0 02 2
cos( ) ( cos( ) (cos(2 ) 3)) ( )

3 6

a
u a t a t t O


    

 
      (76) 

For valid solutions, the perturbation criteria is 

 0

2
1

3

a


  

 

 

(77) 

 

3.3. Comparisons with the Numerical Solutions 

 
Figure 4. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 02, 1,a      
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Figure 5. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 03, 1,a      

 
Figure 6. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 04, 1,a      

 

In this section, the approximate solutions are contrasted with the numerical solutions 

for the quadratic nonlinear model considered. In Figure 4, results are compared for ε=2. 

The agreement between MSLP and numerical solutions is better than MS solution and 

the amplitude values of the MS solution yield higher errors. ε=3 is selected in Figure 5 

and ε=4 is selected in Figure 6. In Figures 5 and 6, the same trend is observed with more 

amplification.  
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4. QUADRATIC NONLINERITY WITH DAMPING  

 

A damping term is added to the previous model  
2 2

0 2 0u u u u       (78) 

with initial conditions 

0(0) (0) 0u a u   (79) 

  

4.1. Multiple Scales Method (MS) 

First, the problem is solved with the classical method. Solutions are assumed to 

be of the form; 
2

0 0 1 2 1 0 1 2 2 0 1 2( , , ) ( , , ) ( , , )u u T T T u T T T u T T T     (80) 

where T0=t is the usual fast time scale, T1=εt and T2=ε2t are the slow time scales. Time 

derivatives are defined as 

2

0 1 2

d
D D D

dt
   

,    

2
2 2 2

0 0 1 1 0 22
2 ( 2 )

d
D D D D D D

dt
    

 

(81) 

where /n nD T   . 

If (80) and (81) are substituted into the original equation, the following equations are 

obtained at each order of ε; 
2 2

0 0 0 0 0 0 0 0(1) 0 (0) (0) 0O D u u u a D u          (82) 

  2 2 2

0 1 0 1 0 1 0 0 0 0 1 0 1 1 0O 2 2 (0) 0 ( )(0) 0D u u D D u D u u u D u D u                  (83) 

 2 2 2 2

0 2 0 2 0 1 1 1 0 2 0 0 1 1 0 0 1O 2 ( 2 ) 2 ( ) 2D u u D D u D D D u D u D u u u            (84) 

At order 1, the solution may be expressed as 
0 0

0

i T
u Ae cc


 

                       (85) 

where cc stands for the complex conjugates of the preceding terms and 
1

2

iA ae 
 

(86) 

The first order solution is obtained in terms of real amplitude and phase 

0 1 2 0 0 1 2( , )cos( ( , ))u a T T T T T    (87) 

Applying the initial conditions yields 

0(0) 0 (0)a a    (88) 

Equation (85) is substituted into (83) and secular terms are eliminated 
1

1 2 2( ) , ( )
T

D A A a a T e T
  

      (89) 

The solution at order ε is 

0 0 0 022

1 2 2

0 0

( ) 2
3

i T i T
u Be cc A e cc AA

  

 
      (90) 

This solution may be represented in terms of real amplitude and phase 

2 2

1 0 0 0 02 2

0 0

cos( ) cos(2 2 )
6 2

u b T a T a
 

   
 

      (91) 

where  
1

2

iB ibe 
 

(92) 

Applying the initial conditions yields 
2 2

20 0 0

2

0 0 0

3
(0) tan( ), (0)

9

a a
Arc b

a

 
 

  
     (93) 
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Equation (85) and (90) are inserted into (84) and secular terms are eliminated, 
2

2 2

0 1 1 0 2 0 1 2

0

2
2 2 2 2 (4 ) 0

3
i D B D A i D A i B D A A A


    


         (94) 

If (82), (92), (93) are inserted into (94), one finally has 

 1 1

2 2
2

0 0 0 23

0 0

5
, , , ( )

2 12

T T
a a e b b e a T

   
  

 

 
       

(95) 

The final solution is 
2 2

2 2 2

0 0 03

0 0

2 2
20 0 0

02

0 0 0

2 2
2 2 2 2 2 2

0 0 02 3

0 0 0

5
cos(( ( )) )

2 12

3
( cos( tan( ))

9

5
(cos(2( ( )) ) 3) ( )

6 2 12

t t

t

t t

u a e a e t

a a
e t Arc

a

a e a e t O

 



 

 
 

 

 
  
  

  
  

  

 



 

  


  

    

 

(96) 

  

4.2. Multiple Scales Lindstedt-Poincare Method (MSLP) 

The time transformation t    is applied to the model 
2 2 2

0 2 0u u u u         (97) 

where prime denotes derivative with respect to the new variable  . The time scales in 

this method are slightly different from classical multiple scales 
2

0 1 2, ,T T T     
 

(98) 

Expressing the time derivatives 

2

0 1 2

d
D D D

dt
   

        

2
2 2 2

0 0 1 1 0 22
2 ( 2 )

d
D D D D D D

dt
    

 

(99) 

with Dn= / nT   and substituting the expansions  
2

0 0 1 2 1 0 1 2 2 0 1 2( , , ) ( , , ) ( , , )u u T T T u T T T u T T T     (100) 
2 2 2

0 1 2        (101) 

into the original equation, the following equations are obtained at each order of 

approximation; 
2 2 2

0 0 0 0 0 0 0(1) 0, (0) (0) 0O D u u u a D u           (102) 

  2 2 2 2 2

0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0O 2 2 (0) 0 ( )(0) 0D u u D D u u u D u u D u D u                      (103) 

 2 2 2 2 2 2 2

0 2 2 0 1 1 1 0 2 0 1 1 2 0 0 1 0 1 1 0O 2 ( 2 ) 2 2 ( )D u u D D u D D D u u u u u D u D u                   (104) 

The first order solution is 
0

0 0cos( )
iT

u Ae cc a T      
(105) 

Applying the initial conditions yields 

0(0) 0, (0)a a    (106) 

Equation (105) is substituted into (103) and secular terms are eliminated 
2

1 12 2 0i D A A iA       (107) 

If 
1D A A




   is selected, 

1

2( )
T

a a T e





 , β= β (T2) and ω1=0. Since ω1 is not complex, 

this choice is admissible. The solution at order ε is  

0 022

1 2 2

1
( ) 2

3 2

iT iT iu Be cc A e cc AA B ibe  

 
            (108) 
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In terms of real amplitude and phase, the solution is 

2 2

1 0 02 2
cos( ) cos(2 2 )

6 2
u b T a T a

 
 

 
      (109) 

Applying the initial conditions yields 
2

2 2 0
02

0

3
(0) tan( ), (0)

9

a
Arc b a

a

 
 

  
     

(110) 

Equations (105) and (108) are inserted into (104) and secular terms are eliminated 
2

2 2 2

1 2 2 2

10
2 2 ( ) 0

3
i D B i D A A A A


  


      (111) 

1D B B



   can be assumed. If D2A=0 is selected, ω2 comes out to be real and this is 

again an admissible choice. After algebraic calculations, Equation (111) yields 

1
2 2

2 2 2 20
0 0 0 0 22 2

0

3 5
, , Arctan( ), 0,

9 6

T
t a

a a e b a e a
a


 

  
      

   


             

(112) 

The frequency is  

2 2 2 2 2 2 2 2 2 2

0 0

1 1 10
( ) ( )

2 2 3
a              

 

(113) 

The final solution in terms of this frequency is 
2

2 2 10
0 02

0

2
2 20

2

3
cos( ) ( cos( tan ( ))

9

(cos(2 ) 3)) ( )
6

t t

t

a
u a e t a e t

a

a
e t O

 



 
   

  


 



  



    

  

 

 

(114) 

For valid solutions, the perturbation criteria is 

 
2

1
6

a


  

 

 

(115) 

 

4.3. Comparisons with the Numerical Solutions 

 

 
Figure 7. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 02, 1, , 0.01a        
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Figure 8. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 03, 1, , 0.01a        

 

 
Figure 9. Comparison of numerical solutions and approximate analytical solutions  

(MS and MSLP) for 
0 04, 1, , 0.01a        

 

The approximate solutions are contrasted with the numerical solutions for the 

quadratic nonlinear model with damping. In Figure 7, results are compared for ε=2. The 

agreement between MSLP and numerical solutions is better than MS solution and the 

amplitude values of the MS solution yield higher errors. ε=3 is selected in Figure 8 and 

ε=4 is selected in Figure 9. In summary, the MSLP solutions are better compared to the 

MS solutions.  
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5. CONCLUDING REMARKS 

 

A recently developed perturbation technique namely the multiple scales 

Lindstedt Poincare method (MSLP) combining the multiple scales and Lindstedt 

Poincare methods is applied to three different mathematical models with quadratic 

nonlinearities.   

In conclusion, the MSLP method yields closer solutions to the numerical ones 

compared to those of MS for strong quadratic nonlinearities.  
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