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Abstract:



Road traffic injuries are a serious concern in emerging economies. Their death toll and economic impact are shocking, with 9 out of 10 deaths occurring in low or middle-income countries; and road traffic crashes representing 3% of their gross domestic product. One way to mitigate these issues is to develop technology to effectively assist the driver, perhaps making him more aware about how her (his) decisions influence safety. Following this idea, in this paper we evaluate computational models that can score the behavior of a driver based on a risky-safety scale. Potential applications of these models include car rental agencies, insurance companies or transportation service providers. In a previous work, we showed that Genetic Programming (GP) was a successful methodology to evolve mathematical functions with the ability to learn how people subjectively score a road trip. The input to this model was a vector of frequencies of risky maneuvers, which were supposed to be detected in a sensor layer. Moreover, GP was shown, even with statistical significance, to be better than six other Machine Learning strategies, including Neural Networks, Support Vector Regression and a Fuzzy Inference system, among others. A pending task, since then, was to evaluate if a more detailed comparison of different strategies based on GP could improve upon the best GP model. In this work, we evaluate, side by side, scoring functions evolved by three different variants of GP. In the end, the results suggest that two of these strategies are very competitive in terms of accuracy and simplicity, both generating models that could be implemented in current technology that seeks to assist the driver in real-world scenarios.
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1. Introduction


It is a well known problem that reckless driving affects society in a variety of ways, with noteworthy impacts on health, economic and social issues. Government offices in charge of planning and deploying urban programs could largely benefit by technological tools which can provide decision-support information to develop appropriate public policies. On their part, taxicab companies or on-line transportation services could also benefit from such tools to optimize resources or reduce economic risks related to insurance or maintenance. At the same time, insurance companies could work on coverage plans designed according to a driver’s profile which could, at least partially, be based on automatic tools that exploit useful information obtained from regular driving trips [1,2].



For these reasons, there has been a growing amount of interest in the development of approaches that can extract information from sensors embedded in almost every modern mobile device, such as GPS, gyroscope, magnetometer and accelerometer. This opens the possibility for a broad spectrum of new applications that exploit different ways of collecting and analyzing sensor data. In particular several works have proposed to transform sensor readings to deliver a driving safety score, with a small but varied set of techniques, such as simple penalty functions [3], fuzzy classifiers [4] or Bayesian models [5]. Moreover, other authors have suggested to expand the amount of sensors used to score driving behaviors, such as using real time data about weather, road conditions and traffic density, among others [6].



The problem of calculating a driving score based on the performance of the driver could be seen as a computational learning task, where given a feature vector that contains the frequency of risky maneuvers the goal is to assign a score to represent the driver’s performance in a risk-safety scale (this problem could also be seen as a machine learning problem for human-rating). Recently, in [7] the authors presented the evaluation of seven different Machine Learning (ML) approaches to learn how individuals assigned a driving score. From this comparison a clear winner emerged, this being the Genetic Programming (GP) approach. Since then, a question that remained open was to evaluate if other variants of GP could attain better results. In this manuscript we approach this question by evaluating three different GP variants that have proved to be successful for a variety of problems, namely GPTIPS [8], neatGP [9] and neat-GP-LS [10]. The first method generates models linear in parameters, the second builds non-linear models using a bloat control mechanism, and the last one extends neat-GP by including a local search operator. Results suggest that GPTIPS as well as neatGP-LS are very competitive at evolving mathematical scoring functions, and given their accuracy and simplicity could be integrated in current car technology to assist the driver.



The rest of the paper is organized as follows. In Section 2 we overview related work on the problem domain. Next, in Section 3 we describe our proposed approach, including building the dataset, posing the learning problem and applying GP to solve it. In Section 4 we detail the results obtained, and finally in Section 5 we present the main conclusions.




2. Related Work


The exponential growth of the world population has increased traffic flow in all cities worldwide. Therefore, new and improved urban policies must be implemented, and the use of current technology is becoming a mandatory requirement to alleviate the social impact of road accidents [11]. Recent works deal with detecting and classifying sensor data from mobile devices, as well as sensors embedded in automobiles [3]. Due to the increase availability of such devices, there is a surge of possible applications for the data gathered by them. Opportunely determining the mental and physical state of a driver through an analysis of their behavior might help mitigate the number of car accidents. For instance the work in [6] details the social impact of traffic accidents in the UK, and approaches the problem via a context-aware architecture that links data from sensors, driver behavior and road infrastructure to jointly help decrease the possibility of road accidents. While most works attempt to distinguish between aggressive from calm driving, drunk and careless driving might also be identified. For example, Dai et al. [12] tried to detect drunk driving through an inexpensive platform using mobile phone sensors, sending notifications to the proper authorities and to the driver.



However, modeling the behavior of a driver is a very complex task, it involves a large number of variables and subjective data. Self perception of driving skills is very biased, some drivers might believe that their driving style is safe, whilst a driving companion may have an entirely different opinion. Detecting aggressive behavior while driving is a problem that has been addressed through several ML techniques, that exploit specific types of sensor data. In a large study presented in [1], a mobile application was designed using a crowd-sourcing approach. Data from sensors embedded in mobile devices was recorded by the application and used in conjunction with automobile characteristics and road conditions. This distributed telematics platform allowed the authors to successfully gather data regarding unsafe behaviors whilst driving. Their approach used a multivariate Gaussian model to determine the likelihood of normal versus abnormal driving maneuvers. The work detailed in [13,14] also deals with classification of unsafe driving practices, from sensor data within mobile phones. The use of such sensors is extremely prevalent due to the deep penetration of the aforementioned devices among current drivers. Most of the works that attempt to detect aggressive or reckless behaviors while driving, focus on accurately detecting specific driving events, like sudden stops, intrusive lane changes or speeding. This is usually done by posing a classification problem. ML approaches that have been used to solve this problem include Fuzzy Logic Systems and Time Series analysis [4,13,15,16,17], to mention two prominent techniques. However, we argue that classifying these events is only the first step towards properly determining unsafe driving behaviors. To properly score a driving trip, one should account for the total frequency of the events with regards to the total length of the trip. The nature of these events are vastly studied under the concept of Insurance Telematics [2], where they are called Figure of Merits (FoMs). Once these FoMs or risky maneuvers are detected, a new regression problem appears, which is related to calculating a driving score. For instance, in the work of [5] the authors attempt to score driving trips using a Bayesian classifier to differentiate between risky and safe maneuvers. In [7], the authors compared a Fuzzy Inference System [1], a Safety Index [13], a Bayesian regressor [5], a Multi-layer perceptron, a Random Forrest, a Support Vector regressor and a GP approach to learn how individuals score 200 virtual road trips, where each trip was represented by a feature vector containing the frequency of risky maneuvers. Results showed that the GP strategy was superior than competitors, even in some cases with statistical significance. We depart from this point, where a main comparison of approaches was already done, positioning GP as the best performer. On top of these results this manuscript compares the performance of three flavors of GP, with the aim to know if a better performance can be found.




3. Methodology


In this section we briefly describe the datasets that will be used. We also present the different flavors of GP that are compared. Finally, we present the performance metric and the statistical test that is used to validate the analysis.



3.1. The Dataset


Given that our aim is to compared GP-strategies on the first place, but also to contextualize our results given prior results, we will use the same dataset employed in [7]. This dataset is composed of 200 virtual trips, where each trip is characterized by a vector of frequencies, with each position of the vector associated to a particular risky maneuver. Each trip (vector) is also associated to a Driving score (target value) that was computed as the mean value of all scores given to it by a group of drivers. The risky maneuvers considered in the vector are analogous to those found in [18], which suggests those types of incidents are closely related to safety on the road. As an example, Table 1 shows how a single road trip was characterized by a human observer based on the frequency of each risky maneuver. To establish the ground truth for the driving score, the descriptive vector of each trip was shown to several human observers (a total of 40) who were then asked to provide a subjective score for the trip on a scale of 1 (very unsafe) to 10 (very safe). This means that each observer imposed subjective criteria when deriving their score, based on what events they considered to be the most correlated with driving safety.


Table 1. A sample of the survey used to evaluate each driving event as safe or unsafe, based on the frequency of each DE.










	Driving Event (id Number in the Feature Vector)
	Value (Frequency)
	Score for the Travel





	Distance ([image: ])
	7
	



	Avg. Velocity ([image: ])
	6
	



	# of acceleration events ([image: ])
	5
	



	# of sudden starts ([image: ])
	3
	8



	# of abrupt lane changes ([image: ])
	2
	



	# of intense brakes ([image: ])
	7
	



	# of sudden stops ([image: ])
	0
	



	# of abrupt steerings ([image: ])
	1
	









To compare approaches, two experiments were envisioned. In the first experiment, now called 1–10 scale, the dataset was used the way it is, since the target values for all the feature vectors contains a score in the range [1, 10]. For the second experiment, the targets were fitted to a 1–4 scale following the criteria proposed in [3]. Both experiments were planned to analyzed the performance of the approaches in a fine and coarse version of the dataset. Note that, for both scales, the minimum value corresponds to a totally reckless trip, and the highest value to a totally safe trip.




3.2. Genetic Programming and Tested Flavors


GP uses an evolutionary search to derive small programs, operators or models. In most cases, GP is used to solve different kinds of ML tasks, with the most common being symbolic regression, producing Symbolic Regression Models (SRMs). These models represent the relation between the input variables and the dependent output variable. Therefore, in this work the problem is posed as a symbolic regression one, where GP is used to evolve the scoring functions, taking as input each of the frequency features described above. In standard GP, and all the variants used here, the SRMs are represented using a tree structure, where internal nodes contain elements from a set of basic mathematical operations called the function set. Tree leaves contain input values, in this case each of the [image: ] features and random constants. The fitness function used in all cases is the Root Mean Squared Error (RMSE) ([image: ], where [image: ] is the score in the survey for the [image: ] road trip, [image: ] is the predicted score given by a particular scoring function.) between the estimated score given by an individual SRM and the ground truth score on all of the samples in a training set. As for any other evolutionary algorithm, in GP, special genetic operators are used to build new SRMs (offspring) from previous ones (parents) that were chosen stochastically, with a bias that is based on the fitness of the solution. In order to be a self-contained manuscript, the general pseudocode of a GP search is summarized in Algorithm 1. The specific strategies of GP evaluated in this manuscript are described next.





	Algorithm 1 Genetic Programming pseudocode.



	  1:  for [image: ] to [image: ] (or until an acceptable solution is found) do



	  2:    if 1st generation then



	  3:      generate initial population with primitives (variables, constants and elements from the function set)



	  4:    end if



	  5:    Calculate fitness (minimize RMSE) of population members



	  6:    Select n parents from population (based on fitness)



	  7:    Stochastically apply Genetic operators to generate n offspring



	  8:  end for



	  9:  Return best individual (based on fitness) found during search






3.2.1. GPTIPS V2


GPTIPS implements a multi-gene strategy to represent individuals in the population. Basically, the representation of a single individual includes a collection of trees, and the final SRM is constructed as a linear combination of all the trees. This is a linear in parameter model, with the model weights fitted with linear regression. GPTIPS also uses a multi-objective selection pressure, where model complexity (size) is also included as a selection criterion. A good aspect of the GPTIPS tool is that it offers a variety of post execution reports, such as summary information about the latest generation, the best solutions on the Pareto front, considering both the training and testing partitions, the complexity of the proposed solutions in terms of number of nodes, RMSE and R[image: ] of the best programs, among other useful stats [8] (http://gptips.sourceforge.net/).




3.2.2. neatGP


The neatGP method [9] combines GP with the NeuroEvolution of Augmenting Topologies algorithm (NEAT) [19]. It was proposed as a bloat-free GP search based on the results obtained by Flat Operator Equalization (Flat-OE) [20]. In general, neatGP preserves a diverse population of individuals of different shapes and sizes, by using speciation techniques and standard fitness sharing. Results on both regression and classification tasks have show that neatGP can produce very accurate models that are orders of magnitude smaller than the ones produced by standard GP [9]. The implementation used in this paper was developed on top of the DEAP Library [21].




3.2.3. neatGP-LS


One way to enhance a global search algorithm or metaheuristic is by embedding additional search operators that can improve the overall exploitation ability of the search process. In particular, GP utilizes search operators that operate at the level of syntax, i.e., they modify the syntactic representation of the programs or SRMs. This can make the search more inefficient when what is required are small steps in the solution space. That is one of the reasons that GPTIPS, for instance, uses linear regression to fit the linear parameters of the evolved models. Similarly, neatGP-LS integrates a local search (LS) mechanism within neatGP, by first parameterizing each solution by adding a real-valued weight [image: ] to each node and fitting those weights using a trust region optimizer [10]. In standard GP these weights are usually ignored and considered to be [image: ], in neat-GP this represents their initial value but the numerical optimizer can tune the weights as required. One effect of embedding a LS method within GP is that smaller solutions in the population have a better chance of surviving after the LS is applied, since they are more susceptible to suboptimal parameter values.





3.3. Statistical Analysis: Friedman Test and Critical Difference Diagram


To validate the differences in the output generated by each GP strategy, we will conduct the Friedman test [22], which is a non-parametric test that helps identify if there are statistical differences in the variances of multiple treatments. For all the experiments, we will use a significance level of [image: ]. To present this analysis, we will make use of a Critical Difference Diagram (CDD), proposed by [23]. CDD shows in an intuitively manner how different approaches are ranked, being favored those that are located rightmost in the horizontal bar. It also shows when no statistical difference was found between a group of treatments, joining them with a thick bar.





4. Results


In this section we present the results of the execution of each GP strategy applied to the problem of finding suitable scoring functions for driving trips. A 10-fold cross validation scheme was applied in all the experiments, where the same data partitions were used by all algorithms. All of the common parameters were set to the same values, summarized in Table 2. All other parameters were set to their default values as reported in the original references.


Table 2. Parameters for GPTIPS, neatGP and neatGP-LS.










	Parameter
	Value
	Units





	Population size
	100
	items



	Max. # of generations
	100
	items



	Input variables
	8
	items



	Range of Constants
	[−10, 10]
	items



	Training instances
	180
	road trips



	Testing instances
	20
	road trips



	Crossover probability
	85
	percentage (%)



	Mutation probability
	15
	percentage (%)



	Function set
	[image: ]
	functions



	
	[image: ]
	



	
	[image: ]
	



	
	[image: ]
	









Experiment 1: Targets in the 1–10 scale. The performance of each GP strategy is given in Table 3, Table 4 and Table 5, for GPTIPS, neatGP and neatGP-LS, respectively. The format for all comparison tables present the performance on each fold, showing the best training RMSE, the RMSE of the best solution found, the size of the best individual given in number of nodes, and the average size of the population. Summary statistics are also given, showing the minimum, maximum, mean, standard deviation, median and linear correlation coefficient of the best solutions, between the ground truth and the model output.


Table 3. Root Mean Squared Error (RMSE) for the 10-fold cross validation performance of GPTIPS on the 1–10 scale dataset.





	
GPTIPS




	
Fold

	
Best Train

	
Best Test

	
Size Best Ind

	
Avg. Pop. Size






	
1

	
1.1219

	
1.2211

	
22

	
21.1200




	
2

	
1.1168

	
1.2188

	
25

	
22.6067




	
3

	
1.1329

	
1.0482

	
22

	
20.0633




	
4

	
1.0978

	
1.4509

	
26

	
23.6000




	
5

	
1.1479

	
1.0034

	
25

	
22.7067




	
6

	
1.1296

	
1.1546

	
24

	
24.3533




	
7

	
1.1367

	
1.1857

	
24

	
23.2800




	
8

	
1.0650

	
1.7854

	
25

	
23.0167




	
9

	
1.1356

	
1.3130

	
23

	
22.2233




	
10

	
1.0595

	
1.5560

	
22

	
21.1667




	
Minimum

	
1.0595

	
1.0034

	
22

	
20.0633




	
Maximum

	
1.1479

	
1.7854

	
26

	
24.3533




	
mean

	
1.1144

	
1.2937

	
23.8000

	
22.4137




	
SD

	
0.0306

	
0.2408

	
1.4757

	
1.2994




	
median

	
1.1257

	
1.2199

	
24.0000

	
22.6567




	
Correlation Coefficient

	
0.8030

	
0.2868

	

	









Table 4. RMSE for the 10-fold cross validation performance of neatGP on the 1–10 scale dataset.





	
neatGP




	
Fold

	
Best Train

	
Best Test

	
Size Best Ind

	
Avg. Pop. Size






	
1

	
1.2093

	
1.5795

	
46

	
39.1850




	
2

	
1.2584

	
1.1488

	
64

	
45.9650




	
3

	
1.8291

	
1.9927

	
183

	
124.3400




	
4

	
1.3928

	
1.3015

	
132

	
100.0250




	
5

	
1.3064

	
1.5171

	
44

	
27.9500




	
6

	
1.2969

	
1.9753

	
61

	
44.3100




	
7

	
0.8505

	
1.5701

	
625

	
211.0900




	
8

	
1.2261

	
1.6290

	
69

	
54.6200




	
9

	
1.2496

	
1.9254

	
66

	
47.0100




	
10

	
1.2546

	
1.4381

	
44

	
29.5650




	
Minimum

	
0.8505

	
1.1488

	
44

	
27.9500




	
Maximum

	
1.8291

	
1.9927

	
625

	
211.0900




	
mean

	
1.2874

	
1.6077

	
133.4000

	
72.4060




	
SD

	
0.2378

	
0.2845

	
178.4204

	
57.7911




	
median

	
1.2565

	
1.5748

	
65.0000

	
46.4875




	
Correlation Coefficient

	
0.6432

	
0.6337

	

	









Table 5. RMSE for the 10-fold cross validation performance of neatGP-LS on the 1–10 scale dataset.





	
neatGP-LS




	
Fold

	
Best Train

	
Best Test

	
Size Best Ind

	
Avg. Pop. Size






	
1

	
1.1690

	
1.6912

	
30

	
11.5900




	
2

	
1.2195

	
1.1623

	
40

	
11.9700




	
3

	
1.1622

	
1.2626

	
22

	
16.0000




	
4

	
1.2188

	
1.0513

	
31

	
18.8400




	
5

	
1.1756

	
1.5657

	
29

	
16.1750




	
6

	
1.1813

	
1.0310

	
36

	
20.1050




	
7

	
1.3758

	
1.3739

	
1

	
3.4200




	
8

	
1.1822

	
1.1456

	
18

	
18.5950




	
9

	
1.1326

	
1.4899

	
31

	
13.2200




	
10

	
1.1917

	
1.2202

	
35

	
16.5700




	
Minimum

	
1.1326

	
1.0310

	
1

	
3.4200




	
Maximum

	
1.3758

	
1.6912

	
40

	
20.1050




	
mean

	
1.2009

	
1.2994

	
27.3000

	
14.6485




	
SD

	
0.0666

	
0.2236

	
11.2551

	
4.8923




	
median

	
1.1818

	
1.2414

	
30.5000

	
16.0875




	
Correlation Coefficient

	
0.7735

	
0.5012

	

	










Figure 1 presents a scatter plot analysis of the best model found, plotting the ground truth score and the model output for each training and testing sample of that particular fold, respectively for GPTIPS (a) and neatGP-LS (b), neatGP was omitted in this comparison since it achieved the poorest results. The corresponding linear correlation coefficient, for the training and testing data, are given in the previous tables.


Figure 1. Scatter plot of the ground truth scores and the model outputs for the training and testing partitions of the best solution found computed for the dataset with a 1–10 scale.



[image: Mca 23 00019 g001a][image: Mca 23 00019 g001b]






As a concluding remark for this subsection let us examine the distribution of the RMSE scores for all three approaches. Figure 2 shows through boxplots how GP-Tips and neatGP-LS generate models with less error than neatGP.


Figure 2. Box plot comparison of all methods based on testing fitness on the dataset with a 1–10 scale.



[image: Mca 23 00019 g002]






Experiment 2: Targets in scale 1–4. Table 6, Table 7 and Table 8 summarize the performance of GPTIPS, neatGP and neatGP-LS, respectively.


Table 6. RMSE for the 10-fold cross validation performance of GPTIPS on the 1–4 scale dataset.





	
GPTIPS




	
Fold

	
Best Train

	
Best Test

	
Size Best Ind

	
Avg. Pop. Size






	
1

	
0.6445

	
0.7347

	
22

	
22.0300




	
2

	
0.6567

	
0.6591

	
18

	
17.7833




	
3

	
0.6474

	
0.7408

	
21

	
21.8767




	
4

	
0.6215

	
0.9530

	
23

	
23.9733




	
5

	
0.6604

	
0.6833

	
29

	
24.4567




	
6

	
0.6491

	
0.7931

	
20

	
18.0233




	
7

	
0.6630

	
0.5913

	
22

	
20.8233




	
8

	
0.6524

	
0.6400

	
29

	
22.3667




	
9

	
0.6402

	
0.7241

	
21

	
19.9933




	
10

	
0.6176

	
0.9286

	
23

	
21.7733




	
Minimum

	
0.6176

	
0.5913

	
18

	
17.7833




	
Maximum

	
0.6630

	
0.9530

	
29

	
24.4567




	
mean

	
0.6453

	
0.7448

	
22.8000

	
21.3100




	
SD

	
0.0153

	
0.1182

	
3.5839

	
2.2205




	
median

	
0.6482

	
0.7294

	
22.0000

	
21.8250




	
Correlation Coefficient

	
0.7505

	
0.6219

	

	









Table 7. RMSE for the 10-fold cross validation performance of neatGP on the 1–4 scale dataset.





	
neatGP




	
Fold

	
Best Train

	
Best Test

	
Size Best Ind

	
Avg. Pop. Size






	
1

	
0.6070

	
2.6656

	
234

	
174.0650




	
2

	
0.5770

	
0.9034

	
276

	
169.5550




	
3

	
0.8056

	
0.8421

	
464

	
266.4800




	
4

	
0.6513

	
1.1010

	
176

	
118.1200




	
5

	
0.4705

	
0.5493

	
236

	
151.3600




	
6

	
0.5038

	
1.1317

	
245

	
160.8900




	
7

	
0.6748

	
0.7746

	
159

	
110.3400




	
8

	
0.7093

	
0.7463

	
55

	
42.1850




	
9

	
0.5284

	
0.9176

	
205

	
146.1850




	
10

	
0.5491

	
1.4260

	
139

	
65.5550




	
Minimum

	
0.4705

	
0.5493

	
55

	
42.1850




	
Maximum

	
0.8056

	
2.6656

	
464

	
266.4800




	
mean

	
0.6077

	
1.1058

	
218.9000

	
140.4735




	
SD

	
0.1034

	
0.5991

	
107.1888

	
62.4507




	
median

	
0.5920

	
0.9105

	
219.5000

	
148.7725




	
Correlation Coefficient

	
0.8805

	
0.5857

	

	









Table 8. RMSE for the 10-fold cross validation performance of neatGP-LS on the 1–4 scale dataset.





	
neatGP-LS




	
Fold

	
Best Train

	
Best Test

	
Size Best Ind

	
Avg. Pop. Size






	
1

	
0.6387

	
0.9852

	
30

	
18.9650




	
2

	
0.7240

	
0.7477

	
29

	
16.7000




	
3

	
0.6675

	
0.7854

	
28

	
14.3150




	
4

	
0.6291

	
0.9384

	
37

	
20.5550




	
5

	
0.6321

	
0.7810

	
21

	
16.1550




	
6

	
0.6611

	
0.7851

	
41

	
24.1900




	
7

	
0.7217

	
0.4519

	
29

	
19.7950




	
8

	
0.6337

	
0.6387

	
34

	
19.5900




	
9

	
0.6622

	
0.9408

	
29

	
15.8750




	
10

	
0.6323

	
1.0198

	
17

	
14.0850




	
Minimum

	
0.6291

	
0.4519

	
17

	
14.0850




	
Maximum

	
0.7240

	
1.0198

	
41

	
24.1900




	
mean

	
0.6603

	
0.8074

	
29.5000

	
18.0225




	
SD

	
0.0359

	
0.1738

	
6.9960

	
3.1629




	
median

	
0.6499

	
0.7852

	
29.0000

	
17.8325




	
Correlation Coefficient

	
0.7598

	
0.3352

	

	










The performance over all cross-validation folds is shown in Figure 3, which is a box plot for the testing RMSE. Notice that in the scale 1–4 GPTIPS does not only presents the best performance, but also it shows the less variance.


Figure 3. Box plot comparison of all methods based on testing fitness on the dataset with a 1–4 scale.



[image: Mca 23 00019 g003]






To ilustrate a resulting evolved model of GP, Table 9 presents one of the best models found by GPTIPS from the perspective of accuracy and complexity.


Table 9. ith Best model in the Pareto front, from the stand point of accuracy and complexity (1–4 scale) (GPTIPS).










	RMSE Testing
	Complexity (# of Nodes)
	Model





	0.919
	37
	

[image: ]

















Statistical analysis. To formally compare the results from each algorithm in terms of test performance (RMSE), we applied a Friedman test [22] and present this results using a Critical Difference Diagram [23], as previously stated.



Figure 4 shows a summary of the results for the 1–10 scale, showing the average rank of each method, indicating that there is no statistically significant difference between the test performance results of all GP variants.


Figure 4. Critical Difference Diagram (CDD) of the Friedman test for the 1–10 scale problem.



[image: Mca 23 00019 g004]






Figure 5 presents the same analysis for the 1–4 scale. For the 1–10 scale, neatGP-LS is the top performer, although with no statistical difference. In the 1–4 scale, GPTIPS seems to have advantage, with no statistical difference with neatGP-LS but with statistical difference with neatGP.


Figure 5. CDD of the Friedman test for the 1–4 scale problem.



[image: Mca 23 00019 g005]






Analysis of Features Frequency. To gain some insight about how each method is deriving the predictions of the driving score, Figure 6 plots the frequency with which each input feature appears in all of the best solutions found (a total of 10, one for each fold). Such an analysis can be useful, particularly since the models are quite compact. In the case of neatGP, where the models are larger, the frequency is notably heftier. However, probably the most useful way in which to read this plot is to consider the relative importance of each feature for each method. To associate each feature with its corresponding index variable see Figure 1. In the case of neatGP, feature [image: ] is the most used by the models, followed by [image: ], and then [image: ] and [image: ]. On the other hand, neatGP-LS prefers [image: ], [image: ] and [image: ]. Additionally GPTIPS uses a smaller number of features, focusing on [image: ] and [image: ]. Notice that some features are practically ignored by neat-GP or GPTIPS, namely [image: ] by both and [image: ], [image: ] and [image: ] by GPTIPS. This suggest that these features are not required and may be omitted by a real-time system that must first detect these features before scoring a driving trip.


Figure 6. Frequency of appearance of each DE (feature variables [image: ] to [image: ]) in the best solutions found by each method on the dataset.
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5. Conclusions


As cities and urban areas continue to grow, the need for smart technologies that can improve safety is always of great importance. One source of great health and economic impact are traffic accidents, that can range from minor fender benders to life threatening situations. One way to help mitigate these type of accidents is to be able to automatically detect when a person is driving in an unsafe manner, to help bring about the proper corrective measures. This problem can be solved in a two-step process. First, to detect specific types of driving events that are highly correlated with safety. Second, to use the frequency of detected events to derive a safety score for a given driving trip. This paper deals with the latter, building upon previous results were the former has been solved using sensors from mobile devices [24].



This work presents an experimental evaluation of three GP algorithms to solve a difficult real-world problem. GP search is used to evolve scoring functions that take as input the frequency with which a set of driving events are detected during a trip. The goal is to have models that can accurately predict how a human observer would grade a particular trip, based on features such as average speed, distance of a trip, number of lane changes, abrupt steering, sudden stops, among others. A dataset was built, comprised by a total of 200 road trips, each one assembled as a collection of DE, and several human observers graded the trips, with the final score being an average of all scores received.



Using GP, we generated models, expressed as mathematical equations that are able to predict the scores given by humans. Three variants were tested, namely neatGP, neatGP-LS and GPTIPS. In terms of predictive accuracy no statistically significant difference was detected among the methods. However, neatGP did show the largest variance and larger number of outliers from a 10-fold cross validation evaluation. On the other hand, in terms of model size (or complexity) a clear trend was apparent, neatGP produced the largest models, while neatGP-LS and GPTIPS produced similarly concise and compact models. All three methods use a form of bloat control, neatGP and neatGP-LS use speciation and fitness sharing, while GPTIPS uses a multi-objective selection pressure. However, neatGP does not include a numerical local search optimizer, while the other two methods include one, GPTIPS uses linear regression and neatGP-LS a trust region optimizer. This indicates that in real-world problems, traditional bloat control is not sufficient. Local search methods help the evolutionary process tune smaller solutions and improve their chances of survival, curtailing bloat in favor of simpler solutions with properly tuned parameter values. A further analysis about what events are important to construct the scoring functions offers interesting insights. For GPTIPS, the distance ([image: ]) and average velocity of the trip ([image: ]) are important features. On its part, neatGP-LS considers the same features, but also the number of abrupt steerings ([image: ]) and frequency of intense brakes ([image: ]). In summary, it is clear that GP is a viable approach to solve this problem, and the evolved models are candidates for real-world testing given their accuracy and compact (efficient) form.
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The following abbreviations are used in this manuscript:





	GP
	Genetic Programming



	ML
	Machine Learning



	SRM
	Symbolic Regression Model



	ANN
	Artificial Neural Networks



	SVM
	Support Vector Machines



	RF
	Random Forest



	BN
	Bayesian Networks



	FIS
	Fuzzy Inference Systems



	BRR
	Bayesian Ridge Regression



	SVR
	Support Vector Regression



	LS
	Local Search



	NEAT
	NeuroEvolution of Augmenting Topologies algorithm



	Flat-OE
	Flat Operator Equalization



	DE
	Driving Event



	RMSE
	Root Mean Squared Error
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