On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces
Abstract
:1. Introduction
2. Definitions and Auxiliary Statements
3. Main Results
3.1. The Mixed Dirichlet–Steklov-Type Biharmonic Problem
3.2. The Steklov-Type Biharmonic Problem
Acknowledgments
Conflicts of Interest
References
- Kondratiev, V.A.; Oleinik, O.A. Boundary value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities. Rus. Math. Surv. 1988, 43, 65–119. [Google Scholar] [CrossRef]
- Kondratiev, V.A.; Oleinik, O.A. Hardy’s and Korn’s Inequality and their Application. Rend. Mat. Appl. 1990, 10, 641–666. [Google Scholar]
- Konkov, A.A. On the dimension of the solution space of elliptic systems in unbounded domains. Rus. Acad. Sci. Sb. Math. 1995, 80, 411–434. [Google Scholar] [CrossRef]
- Kondratiev, V.A.; Kopacek, I.; Oleinik, O.A. On asymptotic properties of solutions of the biharmonic equation. Differ. Uravn. 1981, 17, 1886–1899. [Google Scholar]
- Kondratiev, V.A.; Oleinik, O.A. Estimates for solutions of the Dirichlet problem for biharmonic equation in a neighbourhood of an irregular boundary point and in a neighbourhood of infinity Saint-Venant’s principle. Proc. R. Soc. Edinb. 1983, 93, 327–343. [Google Scholar] [CrossRef]
- Stekloff, W. Sur les problemes fondamentaux de la physique mathematique. Ann. Sci. de l’E.N.S. 1902, 19, 191–259. [Google Scholar] [CrossRef]
- Brock, F. An isoperimetric inequality for eigenvalues of the Stekloff problem. Z. Angew. Math. Mech. 2001, 81, 69–71. [Google Scholar] [CrossRef]
- Kuttler, J.R.; Sigillito, V.G. Inequalities for membrane and Stekloff eigenvalues. J. Math. Anal. Appl. 1968, 23, 148–160. [Google Scholar] [CrossRef]
- Payne, L.E. Some isoperimetric inequalities for harmonic functions. SIAM J. Math. Anal. 1970, 1, 354–359. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.-C.; Sweers, G. Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains; Springer-Verlag: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gazzola, F.; Sweers, G. On positivity for the biharmonic operator under Steklov boundary conditions. Arch. Rational Mech. Anal. 2008, 188, 399–427. [Google Scholar] [CrossRef]
- Farwig, R. A note on the reflection principle for the biharmonic equation and the Stokes system. Acta Appl. Math. 1994, 34, 41–51. [Google Scholar] [CrossRef]
- Begehr, H. Dirichlet problems for the biharmonic equation. Gen. Math. 2005, 13, 65–72. [Google Scholar]
- Begehr, H.; Vu, T.N.H.; Zhang, Z.-X. Polyharmonic Dirchlet problems. Proc. Steklov Math. Inst. 2006, 255, 13–34. [Google Scholar] [CrossRef]
- Begehr, H.; Vagenas, C.J. Iterated Neumann problem for the higher order Poisson equation. Math. Nachr. 2006, 279, 38–57. [Google Scholar] [CrossRef]
- Matevosyan, O.A. On solutions of boundary value problems for a system in the theory of elasticity and for the biharmonic equation in a half–space. Differ. Uravn. 1998, 34, 803–808. [Google Scholar]
- Matevosyan, O.A. The exterior Dirichlet problem for the biharmonic equation: Solutions with bounded Dirichlet integral. Math. Notes 2001, 70, 363–377. [Google Scholar] [CrossRef]
- Matevossian, O.A. Solutions of exterior boundary value problems for the elasticity system in weighted spaces. Sb. Math. 2001, 192, 1763–1798. [Google Scholar] [CrossRef]
- Matevossian, H.A. On solutions of mixed boundary-value problems for the elasticity system in unbounded domains. Izvestiya Math. 2003, 67, 895–929. [Google Scholar] [CrossRef]
- Matevosyan, O.A. On solutions of a boundary value problem for a polyharmonic equation in unbounded domains. Rus. J. Math. Phys. 2014, 21, 130–132. [Google Scholar] [CrossRef]
- Matevossian, H.A. On solutions of the Dirichlet problem for the polyharmonic equation in unbounded domains. P-Adic Numbers Ultrametr. Anal. Appl. 2015, 7, 74–78. [Google Scholar] [CrossRef]
- Matevosyan, O.A. Solution of a mixed boundary value problem for the biharmonic equation with finite weighted Dirichlet integral. Differ. Equ. 2015, 51, 487–501. [Google Scholar] [CrossRef]
- Matevossian, O.A. On solutions of the Neumann problem for the biharmonic equation in unbounded domains. Math. Notes 2015, 98, 990–994. [Google Scholar] [CrossRef]
- Matevosyan, O.A. On solutions of the mixed Dirichlet–Navier problem for the polyharmonic equation in exterior domains. Rus. J. Math. Phys. 2016, 23, 135–138. [Google Scholar] [CrossRef]
- Matevosyan, O.A. On solutions of one boundary value problem for the biharmonic equation. Differ. Equ. 2016, 52, 1379–1383. [Google Scholar] [CrossRef]
- Matevossian, H.A. On the biharmonic Steklov problem in weighted spaces. Rus. J. Math. Phys. 2017, 24, 134–138. [Google Scholar] [CrossRef]
- Matevossian, H.A. On solutions of the mixed Dirichlet–Steklov problem for the biharmonic equation in exterior domains. P-Adic Numbers Ultrametr. Anal. Appl. 2017, 9, 151–157. [Google Scholar] [CrossRef]
- Matevossian, H.A. On the Steklov-type biharmonic problem in unbounded domains. Rus. J. Math. Phys. 2018, 25, 271–276. [Google Scholar] [CrossRef]
- Matevossian, H.A. On the polyharmonic Neumann problem in weighted spaces. Complex Var. Elliptic Equ. 2019, 64, 1–7. [Google Scholar] [CrossRef]
- Egorov, Y.V.; Kondratiev, V.A. On Spectral Theory of Elliptic Operators; Birkhauser: Basel, Switzerland, 1996. [Google Scholar]
- Sobolev, S.L. Some Applications of Functional Analysis in Mathematical Physics; American Mathematical Society: Providence, RI, USA, 1991. [Google Scholar]
- Kondratiev, V.A.; Oleinik, O.A. On the behavior at infinity of solutions of elliptic systems with a finite energy integral. Arch. Ration. Mech. Anal. 1987, 99, 75–99. [Google Scholar] [CrossRef]
- Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order; Springer-Verlag: Berlin, Germany, 1977. [Google Scholar]
- Mikhlin, S.G. Linear Partial Differential Equations; Vyssaya Shkola: Moscow, Russia, 1977. (In Russian) [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matevossian, H. On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces. Math. Comput. Appl. 2019, 24, 25. https://doi.org/10.3390/mca24010025
Matevossian H. On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces. Mathematical and Computational Applications. 2019; 24(1):25. https://doi.org/10.3390/mca24010025
Chicago/Turabian StyleMatevossian, Hovik. 2019. "On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces" Mathematical and Computational Applications 24, no. 1: 25. https://doi.org/10.3390/mca24010025
APA StyleMatevossian, H. (2019). On the Mixed Dirichlet–Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces. Mathematical and Computational Applications, 24(1), 25. https://doi.org/10.3390/mca24010025