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Abstract

:

We studied the properties of generalized solutions in unbounded domains and the asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied the unique solvability of the mixed Dirichlet–Steklov-type and Steklov-type biharmonic problems in the exterior of a compact set under the assumption that generalized solutions of these problems has a bounded Dirichlet integral with weight |x|a. Depending on the value of the parameter a, we obtained uniqueness (non-uniqueness) theorems of these problems or present exact formulas for the dimension of the space of solutions.
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1. Introduction


Let Ω be an unbounded domain in Rn,n≥2, Ω=Rn\G¯ with the boundary ∂Ω∈C2, where G is a bounded simply connected domain (or a union of finitely many such domains) in Rn, 0∈G, Ω¯=Ω∪∂Ω is the closure of Ω, x=(x1,⋯,xn)∈Rn and |x|=x12+⋯+xn2.



In Ω, we consider the following problems for the biharmonic equation


Δ2u=0



(1)




with the mixed Dirichlet–Steklov-type boundary conditions


u|Γ1=∂u∂ν|Γ1=0,∂u∂νΓ2=∂Δu∂ν+τuΓ2=0,



(2)




and the Steklov-type boundary conditions


∂u∂ν∂Ω=∂Δu∂ν+τu∂Ω=0,



(3)




where Γ¯1∪Γ¯2=∂Ω, Γ1∩Γ2=∅, mesn-1Γ1≠0, ν=(ν1,⋯,νn) is the outer unit normal vector to ∂Ω, τ∈C(∂Ω), τ≥0, τ≢0, and τ>0 on a set of positive (n-1)-dimensional measure on ∂Ω.



As is well known that, if Ω is an unbounded domain, one should additionally characterize the behavior of the solution at infinity. As a rule, to this end, one usually poses either the condition that the Dirichlet (energy) integral is finite or a condition on the character of vanishing of the modulus of the solution as |x|→∞. Such conditions at infinity are natural and were studied by several authors (e.g., [1,2,3]).



The behavior of solutions of the Dirichlet problem for the biharmonic equation as |x|→∞ is considered in [4,5], where estimates for |u(x)| and |∇u(x)| as |x|→∞ are obtained under certain geometric conditions on the domain boundary.



Elliptic problems with parameters in the boundary conditions have been called Steklov or Steklov-type problems since their first appearance in [6]. For the biharmonic operator, these conditions were first considered the authors of [7,8,9], who studied the isoperimetric properties of the first eigenvalue.



Note that standard elliptic regularity results are available in [10]. The monograph covers higher order linear and nonlinear elliptic boundary value problems, mainly with the biharmonic or polyharmonic operator as leading principal part. The underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity. The required kernel estimates are also presented in detail.



In [10,11], the spectral and positivity preserving properties for the inverse of the biharmonic operator under Steklov and Navier boundary conditions are studied. These are connected with the first Steklov eigenvalue. It is shown that the positivity preserving property is quite sensitive to the parameter involved in the boundary condition. Moreover, positivity of the Steklov boundary value problem is linked with positivity under boundary conditions of Dirichlet and Navier type.



In [12], the boundary value problems for the biharmonic equation and the Stokes system are studied in a half space, and, using the Schwartz reflection principle in weighted Lq-space, the uniqueness of solutions of the Stokes system or the biharmonic equation is proved.



We also point out [13,14,15], in which using the methods of complex analysis the Dirichlet and Neumann problems for the polyharmonic equation are explicitly solved in the unit disc of the complex plane. The solution is obtained by modifying the related Cauchy–Pompeiu representation with the help of the polyharmonic Green function.



In the present note, this condition is the boundedness of the weighted Dirichlet integral:


Da(u,Ω)≡∫Ω|x|a∑|α|=2|∂αu(x)|2dx<∞,a∈R.











In various classes of unbounded domains with finite weighted Dirichlet (energy) integral, one of the authors [16,17,18,19,20,21,22,23,24,25,26,27,28,29] studied uniqueness (non-uniqueness) problem and found the dimensions of the spaces of solutions of boundary value problems for the elasticity system and the biharmonic (polyharmonic) equation.



By developing an approach based on the use of Hardy type inequalities [1,2,3,30], in the present note, we obtain a uniqueness (non-uniqueness) criterion for a solution of the mixed Dirichlet–Steklov-type and Steklov-type problems for the biharmonic equation.



Notation:C0∞(Ω) is the space of infinitely differentiable functions in Ω with compact support in Ω.



We denote by Hm(Ω,Γ), Γ⊂Ω¯, the Sobolev space of functions in Ω obtained by the completion of C∞(Ω¯) vanishing in a neighborhood of Γ with respect to the norm


||u;Hm(Ω,Γ)||=∫Ω∑|α|≤m|∂αu(x)|2dx1/2,m=1,2,








where ∂α≡∂|α|/∂x1α1⋯∂xnαn, α=(α1,…,αn) is a multi-index, αi≥0 are integers, and |α|=α1+⋯+αn; if Γ=∅, we denote Hm(Ω,Γ) by Hm(Ω).



H∘m(Ω) is the space obtained by the completion of C0∞(Ω) with respect to the norm ||u(x);Hm(Ω)||.



H∘locm(Ω) is the space obtained by the completion of C0∞(Ω) with respect to the family of semi-norms


∥u;Hm(Ω∩B0(R))∥=∫Ω∩B0(R)∑|α|≤m|∂αu(x)|2dx1/2








for all open balls B0(R):={x:|x|<R} in Rn for which Ω∩B0(R)≠∅.



Let nk be the (n,k) binomial coefficient, nk = 0 for k>n.




2. Definitions and Auxiliary Statements


Definition 1.

A solution of the homogenous biharmonic Equation (1) in Ω is a function u∈Hloc2(Ω) such that, for every function φ∈C0∞(Ω), the following integral identity holds:


∫ΩΔuΔφdx=0.













Lemma 1.

Let u be a solution of Equation (1) in Ω such that Da(u,Ω)<∞. Then,


u(x)=P(x)+∑β0<|α|≤β∂αΓ(x)Cα+uβ(x),x∈Ω,



(4)




where P(x) is a polynomial, ordP(x)<m0=max{2,2-n/2-a/2}, β0=2-n/2+a/2, Γ(x) is the fundamental solution of Equation (1), Cα=const,β≥0 is an integer, and the function uβ satisfies the estimate:


|∂γuβ(x)|≤Cγβ|x|3-n-β-|γ|,Cγβ=const,








for every multi-index γ.





Remark 1.

As is known [31], the fundamental solution Γ(x) of the biharmonic equation has the form


Γ(x)=C|x|4-n,if4-n<0ornisodd,C|x|4-nln|x|,if4-n≥0andniseven.













Proof. 

Consider the function v(x)=θN(x)u(x), where θN(x)=θ(|x|/N),θ∈C∞(Rn),0≤θ≤1,θ(s)=0 for s≤1,θ(s)=1 for s≥2, while N≫1 and G⊂{x:|x|<N}. We extend v to Rn by setting v=0 on G=Rn\Ω¯.



Then, the function v belongs to C∞(Rn) and satisfies the equation


Δ2v=f,








where f∈C0∞(Rn) and suppf⊂{x:|x|<2N}. It is easy to see that Da(v,Rn)<∞.



We can now use Theorem 1 of [32] since it is based on Lemma 2 of [32], which imposes no constraint on the sign of σ. Hence, the expansion


v(x)=P(x)+∑β0<|α|≤β∂αΓ(x)Cα+vβ(x),








holds for each a, where P(x) is a polynomial of order ordP(x)<m0=max{2,2-n/2-a/2}, β0=2-n/2+a/2, Cα=const and


|∂γvβ(x)|≤Cγβ|x|3-n-β-|γ|,Cγβ=const.











Therefore, by the definition of v, we obtain Equation (4). The proof of Lemma 1 is complete. ☐






3. Main Results


3.1. The Mixed Dirichlet–Steklov-Type Biharmonic Problem


Definition 2.

By a solution of the mixed Dirichlet–Steklov-type problem in Equations (1) and (2) we mean a function u∈H∘loc2(Ω,Γ1)∩H∘loc1(Ω), ∂u/∂ν=0 on Γ2, such that, for every function φ∈H∘loc2(Ω,Γ1)∩C0∞(Rn), ∂φ/∂ν=0 on Γ2, the following integral identity holds:


∫ΩΔuΔφdx-∫Γ2τuφds=0.



(5)









Theorem 1.

The mixed Dirichlet–Steklov-type problem in Equations (1) and (2) with the condition D(u,Ω)<∞ has n+1 linearly independent solutions.





Proof. 

For any nonzero vector A in Rn, we construct a generalized solution uA of the biharmonic Equation (1) with the boundary conditions


uA(x)|Γ1=(Ax)|Γ1,∂uA(x)∂ν|Γ1=∂(Ax)∂ν|Γ1,∂uA∂νΓ2=∂ΔuA∂ν+τuAΓ2=0,



(6)




and the condition


χ(uA,Ω)≡∫Ω|uA|2|x|4+|∇uA|2|x|2+|∇∇uA|2dx<∞forn>4,∫Ω|uA|2||x|2ln|x||2+|∇uA|2||x|ln|x||2+|∇∇uA|2dx<∞for2≤n≤4,



(7)




for A,x∈Rn, where Ax denotes the standard scalar product of A and x.



Such a solution of the problem in Equations (1) and (6) can be constructed by the variational method [31], minimizing the functional


Φ(v)=12∫Ω|Δv|2dx








in the class of admissible functions {v:v∈H2(Ω),v(x)|Γ1=(Ax)|Γ1,∂v(x)∂ν|Γ1=∂(Ax)∂ν|Γ1,∂v∂νΓ2=∂Δv∂ν+τvΓ2=0,v is compactly supported in Ω¯}.



The validity of the condition in Equation (7) as a consequence of the Hardy inequality follows from the results in [1,2,3].



Now, for any arbitrary number e≠0, we construct a generalized solution ue of Equation (1) with the boundary conditions


ue|Γ1=e,∂ue∂νΓ1=0,∂ue∂νΓ2=∂Δue∂ν+τueΓ2=0,



(8)




and the condition


χ(ue,Ω)≡∫Ω|ue|2|x|4+|∇ue|2|x|2+|∇∇ue|2dx<∞forn>4,∫Ω|ue|2||x|2ln|x||2+|∇ue|2||x|ln|x||2+|∇∇ue|2dx<∞for2≤n≤4.



(9)







The solution of the problem in Equations (1) and (8) is also constructed by the variational method with the minimization of the corresponding functional in the class of admissible functions {v:v∈H2(Ω),v|Γ1=e,∂v∂νΓ1=0,∂v∂νΓ2=∂Δv∂ν+τvΓ2=0, where v is compactly supported in Ω¯}.



The condition in Equation (9) as a consequence of the Hardy inequality follows from the results in [1,2,3].



Consider the function v=(uA-Ax)-(ue-e).



Obviously, v is a solution of the problem in Equations (1) and (2):


Δ2v=0,x∈Ω,v|Γ1=∂v∂νΓ1=0,∂v∂νΓ2=∂Δv∂ν+τvΓ2=0.











One can easily see that v≢0 and D(v,Ω)<∞.



To each nonzero vector A=(A0,A1,⋯,An) in Rn+1, there corresponds a nonzero solution vA=(vA0,vA1,⋯,vAn) of the problem in Equations (1) and (2) with the condition D(vA,Ω)<∞, and, moreover,


vA=uA-ue-Ax+e.











Let A0,A1,⋯,An be a basis in Rn+1. Let us prove that the corresponding solutions vA0,vA1,⋯,vAn are linearly independent. Let


∑i=0nCivAi≡0,Ci=const.











Set W≡∑i=1nCiAix-C0e. We have


W=∑i=1nCiuAi-C0ue,∫Ω|x|-2|∇W|2dx<∞,n>4,∫Ω||x|ln|x||-2|∇W|2dx<∞,2≤n≤4.











Let us show that


W≡∑i=1nCiAix-C0e≡0.











Let T=∑i=0nCiAi=(t0,⋯,tn), where A0=-e. Then,


∫Ω|x|-2|∇W|2dx=∫Ω|x|-2(t12+⋯+tn2)dx=∞,n>4,∫Ω||x|ln|x||-2|∇W|2dx=∫Ω||x|ln|x||-2(t12+⋯+tn2)dx=∞,2≤n≤4,








if T≠0.



Consequently, T=∑i=0nCiAi=0, and since the vectors A0,A1,⋯,An are linearly independent, we obtain Ci=0,i=0,1,⋯,n.



Thus, the Dirichlet–Steklov-type problem in Equations (1) and (2) with the condition D(u,Ω)<∞ has at least n+1 linearly independent solutions.



Let us prove that each solution u of the problem in Equations (1) and (2) with the condition D(u,Ω)<∞ can be represented as a linear combination of the functions vA0,vA1,⋯,vAn, i.e.,


u=∑i=0nCivAi,Ci=const.











Since A0,A1,⋯,An is a basis in Rn+1, it follows that there exists constants C0,C1,⋯,Cn such that


A=∑i=0nCiAi.











We set


u0≡u-∑i=0nCivAi.











Obviously, the function u0 is a solution of the problem in Equations (1) and (2), and D(u0,Ω)<∞, χ(u0,Ω)<∞.



Let us show that u0≡0,x∈Ω. To this end, we substitute the function φ(x)=u0(x)θN(x) into the integral identity in Equation (5) for the function u0, where θN(x)=θ(|x|/N), θ∈C∞(R), 0≤θ≤1, θ(s)=0 for s≥2 and θ(s)=1 for s≤1; then, we obtain


∫Ω(Δu0)2θN(x)dx+∫Γ2τ|u0|2θN(x)ds=-J1(u0)-J2(u0),



(10)




where


J1(u0)=2∫ΩΔu0∇u0∇θN(x)dx,J2(u0)=∫Ωu0Δu0ΔθN(x)dx.











By applying the Cauchy–Schwarz inequality and by taking into account the conditions D(u0,Ω)<∞ and χ(u0,Ω)<∞, one can easily show that J1(u0)→0 and J2(u0)→0 as N→∞. Consequently, by passing to the limit as N→∞ in Equation (10), we obtain


∫Ω(Δu0)2θN(x)dx+∫Γ2τ|u0|2θN(x)ds→0.











Using the integral identity


∫Ω(Δu0)2dx+∫Γ2τ|u0|2ds=0,








we find that if u0(x) is a solution of the homogeneous problem in Equations (1) and (2), then Δu0=0.



Therefore, we have


Δu0=0,x∈Ω,










u0|Γ1=∂u0∂νΓ1=0,∂u0∂νΓ2=∂Δu0∂ν+τu0Γ2=0.











Hence, it follows ([33] Ch.2) that u0=0 in Ω. The relation


∫∂Ωτ|u0|2ds=0








implies that u0≡0 on a set of a positive measure on ∂Ω. The proof of the theorem is complete. ☐





Theorem 2.

The mixed Dirichlet–Steklov-type problem in Equations (1) and (2) with the condition Da(u,Ω)<∞ has:



(i) the trivial solution for n-2≤a<∞,n>4;



(ii) n linearly independent solutions for n-4≤a<n-2,n>4;



(iii) n+1 linearly independent solutions for -n≤a<n-4,n>4; and



(iv) k(r,n) linearly independent solutions for -2r+2-n≤a<-2r+4-n, r>1, n>4, where


k(r,n)=r+nn-r+n-4n.













The proof of Theorem 2 is based on Lemma 1 about the asymptotic expansion of the solution of the biharmonic equation and the Hardy type inequalities for unbounded domains [1,2,3]. In Case (iv), we need to determine the number of linearly independent solutions of the biharmonic Equation (1), the degree of which not exceed the fixed number.



It is well know that the dimension of the space of all polynomials in Rn of degree ≤r is equal to r+nn [34]. Then, the dimension of the space of all biharmonic polynomials in Rn of degree ≤r is equal to


r+nn-r+n-4n,








since the biharmonic equation is the vanishing of some polynomial of degree r-4 in Rn. If we denote by k(r,n) the number of linearly independent polynomial solutions of Equation (1) whose degree do not exceed r and by l(r,n) the number of linearly independent homogeneous polynomials of degree r, that are solutions of Equation (1), then


k(r,n)=∑s=0rl(s,n),








where


l(s,n)=s+n-1n-1-s+n-5n-1,s>0.











Further, we prove that the mixed Dirichlet–Steklov-type problem in Equations (1) and (2) with the condition Da(u,Ω)<∞ for -2r+2-n≤a<-2r+4-n has equally k(r,n) linearly independent solutions.




3.2. The Steklov-Type Biharmonic Problem


Definition 3.

A function u is a solution of the Steklov-type biharmonic problem in Equations (1) and (3), if u∈Hloc2(Ω), ∂u/∂ν=0 on ∂Ω, such that for every function φ∈C0∞(Rn), ∂φ/∂ν=0 on ∂Ω, the following integral identity holds


∫ΩΔuΔφdx-∫∂Ωτuφds=0.













Theorem 3.

The Steklov-type biharmonic problem in Equations (1) and (3) with the condition D(u,Ω)<∞ has n+1 linearly independent solutions.





Theorem 4.

The Steklov-type biharmonic problem in Equations (1) and (3) with the condition Da(u,Ω)<∞ has:



(i) n linearly independent solutions for n-4≤a<∞;



(ii) n+1 linearly independent solutions for -n≤a<n-4; and



(iii) k(r,n) linearly independent solutions for -2r+2-n≤a<-2r+4-n, r>1, where


k(r,n)=r+nn-r+n-4n.













The results of the article were presented at the 7th International Conference on Mathematical Modeling in Physical Sciences (7th ICMSQUARE, August 27–31, 2018, Moscow, Russia).
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