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Abstract: This article presents an algorithm for solving the unsteady problem of one-dimensional
coupled thermoelastic diffusion perturbations propagation in a multicomponent isotropic half-space,
as a result of surface and bulk external effects. One-dimensional physico-mechanical processes, in a
continuum, have been described by a local-equilibrium model, which included the coupled linear
equations of an elastic medium motion, heat transfer, and mass transfer. The unknown functions of
displacement, temperature, and concentration increments were sought in the integral form, which was
a convolution of the surface and bulk Green’s functions and external effects functions. The Laplace
transform on time and the Fourier sine and cosine transforms on the coordinate were used to find the
Green’s functions. The obtained Green’s functions was analyzed. Test calculations were performed
on the examples of some technological processes.

Keywords: thermoelastic diffusion; Green’s function; Laplace transform; Fourier transform;
multi-component medium; bulk effect; surface perturbations; unsteady problem; modelling of
technological processes

1. Introduction

Creation of materials with pre-programmed properties and modification of existing materials
under new quality standards is one of the development of modern areas, in the construction materials
processing technological field. The mathematical model construction of the various factors impact the
material being processed and the obtained result analyses allow us to consider a greater number of
modification options, while minimizing financial costs in the case of complex and high-tech processes.

There are a number of approaches to mathematical model constructions. The approach to coupled
fields model construction is one that is favorable, is actively developing, and gives the opportunity
to most accurately and analytically describe complex dynamic technological and physical processes.
An example of such a model is a thermomechanical diffusion model, which describes the interaction
of temperature, displacement, and concentration fields.

The relevance of this research direction is confirmed by the presence of the large number of works
in this study area, worldwide. Among the main studies, we can identify [1–5] as the source of the
problem formulation.

Most of the currently available work are devoted to solving static [6], quasistatic [7], and stationary [8]
problems of thermomechanical diffusion. However, unsteady coupled one-dimensional [9] and
two-dimensional problems [10,11] are the most interesting and difficult. In these articles, the solution
of the unsteady problem has been reduced to the Laplace transform on time. Its inversion is associated
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with great mathematical difficulties. Numerical algorithms, ready-made computational mathematics
and mechanics packages have been used most often, in this case, to get the originals of the unknown
functions [12]. In addition to these studies, it should be mentioned that a sufficiently detailed review
on various issues of thermomechanical diffusion processes modeling for the 20th century, is available
in [13]. It is important to note that the very few studies devoted to the unsteady multicomponent
thermoelastic diffusion continuum.

In the represented article, we consider the one-dimensional unsteady thermoelastic diffusion
problem for homogeneous isotropic multicomponent half-space. The linearized local-equilibrium
model of coupled thermoelastic diffusion has been used to describe the medium perturbations
propagation with finite speed. The model includes the equations of elastic medium motion,
heat transfer, and mass transfer [2,4,5,14]. Initial conditions are zero.

The solution of the problem, similar to problems discussed in [15–20], is sought in the integral
convolution form of Green’s functions and functions of bulk or surface external perturbations.
The Laplace transform on time and the Fourier sine and cosine transform on the coordinate are
used to find the Green’s functions. As a result of the transformations, the problem is reduced to a
system of linear algebraic equations. Its solution is represented as rational fractions, which depend on
the Laplace transform parameter. Their originals are found using well-known theorems and tables
of operational calculus. Moreover, there is no need to develop new complex approaches for the
numerical inversion of the Laplace transform, as it has been done in the above-mentioned works [9–11].
The inversion of the Fourier sine and cosine transforms, in general, can be done numerically, using such
well-known approaches as the Filon’s method or the inverse Discrete Fourier Transform (DFT). Such an
algorithm for the problem makes it possible to minimize the use of numerical algorithms and enables
the analyses of the Green’s functions.

The unsteady problems of thermomechanical diffusion (as opposed to steady ones) make it
possible to consider rapid, complex, and coupled dynamic technological processing of metals and
alloys, accompanied by an explosive growth of loads and intensive mass and heat transfer [4,14,21,22].
Examples of such processes can be various pulse-periodic methods of surface treatment, such as
laser [23] or electro-discharge in an oncoming liquid flow [24]. In addition to this, it is necessary to
add that one of the processes that can be quite fully described by the presented mathematical model
is the process of ion implantation. This technology makes it possible to obtain modified coatings,
with exceptional characteristics, and create many different stable solid solutions [25,26].

2. Problem Formulation

We consider an isotropic, homogeneous, N-component half-space bounded by a surface x1 = 0
(Ox1x2x3 is a rectangular Cartesian coordinate system, the axis Ox1 is directed deep into the half-space).
The dimensionless local equilibrium linear model of coupled thermoelastic diffusion is used to describe
the medium perturbations propagation with finite speed and cross-diffusion effects [2,4,5,16,18,21].
This model includes the equation of elastic medium motion, the equation of heat transfer, and N
equations of mass transfer (prime and point, respectively denotes derivatives by the dimensionless
spatial variable x and by the dimensionless time τ) [2,4,5]:

..
u = u′′ − buϑ

′ −
N

∑
q=1

αqη
′
q + F1,

.
ϑ+ τϑ

..
ϑ = κϑ′′ − bϑ

( .
u′ + τϑ

..
u′
)
−

N

∑
q=1

βq

( .
ηq + τϑ

..
ηq

)
+ F2,

.
ηq + τq

..
ηq =

N

∑
p=1

Dqpη
′′
p −Λqu′′′ −Mqϑ

′′ + Fq+2
(
q = 1, N

)
.

(1)
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Displacements, thermal, and diffusion flows are set at the boundary of the half-space [5]:

u|x=0 = f1(τ), ϑ′
∣∣
x=0 = f2(τ),

(
Λqu′′ + Mqϑ

′ −
N

∑
p=1

Dqpη
′
p

)∣∣∣∣∣
x=0

= fq+2(τ). (2)

The limitation conditions are set at infinity (x → ∞) [5]:

u = O(1), ϑ′ = O(1),

(
Λqu′′ + Mqϑ

′ −
N

∑
p=1

Dqpη
′
p

)
= O(1). (3)

Initial conditions are zero:

u|τ=0 =
.
u
∣∣
τ=0 = ϑ|τ=0 =

.
ϑ
∣∣∣
τ=0

= ηq

∣∣∣
τ=0

=
.
ηq

∣∣∣
τ=0
≡ 0. (4)

In Equations (1)–(4) and further, dimensionless quantities are used (if a letter coincides, then the
dimensional quantity is indicated with an asterisk; q = 1, N):

x =
x1

L
, τ =

Ct
L

, C2 =
C1111

ρ
, u =

u1

L
, ηq =

n(q) − n(q)
0

n(q)
0

, ϑ =
T − T0

T0
,

Dqp =
D(qp)

11
CL

, αq =
α
(q)
11 n(q)

0
C1111

, Λq =
m(q)D(qq)

11 α
(q)
11

ρRT0CL
, Mq =

D(qq)
11 ln

[
n(q)

0 γ(q)
]

CL
,

κ =
κ11

ρc0LC
, βq =

n(q)
0 R ln

[
n(q)

0 γ(q)
]

m(q)c0
, bu =

b11T0

C1111
, bϑ =

b11

ρc0
, τϑ =

Ctϑ

L
, τq =

Ct(q)

L
,

f1(τ) =
f ∗1 (t)

L
, f2(τ) =

f ∗2 (t)L
T0

, fq+2(τ) =
f ∗q+2(t)

n(q)
0 C

,

F1(x, τ) =
F∗1 (x1, t)L

C2 , F2(x, τ) =
F∗2 (x1, t)L

c0CT0
, Fq+2(x, τ) =

F∗q+2(x1, t)L

n(q)
0 C

.

(5)

Here t is the time variable; u1 is the displacement vector component; L is the characteristic length
of half-space; q is the component number; n(q)

0 and n(q) are initial and actual concentrations (mass
fractions); tϑ is the thermal relaxation time; t(q) is the diffusion relaxation time; C1111 is the elastic
constant; ρ is the mass density; b11 is a temperature constant characterizing thermal deformations;
α
(q)
11 is a coefficient characterizing the medium volumetric change due to diffusion; D(qp)

11 is the diffusion
coefficient; m(q) is the molar mass; R is the universal gas constant; T0 and T are initial and actual
temperatures; κ11 is the coefficient of thermal conductivity; γ(q) is the activity coefficient; c0 is the
specific heat at constant concentration and deformation; F∗1 (x1, t) is the body force; F∗2 (x1, t) is the bulk
heat inflow; and F∗q+2(x1, t) is the bulk mass inflow.

3. Integral Representation of the Solution

We present the solution of Equations (1)–(4) in the form of convolutions [15–20]:

u(x, τ) =
N+2

∑
k=1

(
G̃1k ∗ ∗Fk + G1k ∗ fk

)
,

ϑ(x, τ) =
N+2

∑
k=1

(
G̃2k ∗ ∗Fk + G2k ∗ fk

)
,

ηq(x, τ) =
N+2

∑
k=1

(
G̃q+2,k ∗ ∗Fk + Gq+2,k ∗ fk

)
.

(6)
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Here G̃ik = G̃ik(x, ξ, τ)
(
i = 1, N + 2

)
are the bulk and Gik = Gik(x, τ) are the surface Green’s functions

of Equations (1)–(4)
(
i = 1, N + 2

)
. The convolutions have the form:

G̃ik ∗ ∗Fk =

τ∫
0

dt
+∞∫
0

G̃ik(x, ξ, τ− t)Fk(ξ, t)dξ,

Gik ∗ fk =

τ∫
0

Gik(x, τ− t) fk(t)dt.

(7)

Bulk Green’s functions are solutions of problems that include equations similar to system of
Equation (1) [27]:

..
G̃1k = G̃′′1k − buG̃′2k −

N

∑
q=1

αqG̃′q+2,k + δ1kδ(x− ξ)δ(τ),

.
G̃2k + τϑ

..
G̃2k = κG̃′2k − bϑ

(
˙̃G
′
1k + τϑ

¨̃G
′
1k

)
−

N

∑
q=1

βq

( .
G̃q+2,k + τϑ

..
G̃q+2,k

)
+ δ2kδ(x− ξ)δ(τ),

.
G̃q+2,k + τq

..
G̃q+2,k =

N

∑
p=1

DqpG̃′′q+2,k −ΛqG̃′′′1k −MqG̃′′2k + δq+2,kδ(x− ξ)δ(τ).

(8)

Bulk Green’s functions problem also includes zero initial conditions like Equation (4) and the following
boundary conditions:

G̃1k

∣∣∣
x=0

= 0, G̃′2k

∣∣∣
x=0

= 0,(
ΛqG̃′′1k + MqG̃′2k −

N

∑
p=1

DqpG̃′p+2,k

)∣∣∣∣∣
x=0

= 0,

G̃1k = O(1), G̃′2k = O(1),(
ΛqG̃′′1k + MqG̃′2k −

N

∑
p=1

DqpG̃′p+2,k

)
= O(1), x → ∞.

(9)

Here and below, δ(x− ξ) and δ(τ) are the Dirac delta-function, δkl is the Kronecker symbol.
Surface Green’s functions are solutions of problems that include homogeneous equations similar

to system of Equation (1) [27]:

..
G1k = G′′1k − buG′2k −

N

∑
q=1

αqG′q+2,k,

.
G2k + τϑ

..
G2k = κG′2k − bϑ

(
Ġ′1k + τϑG̈′1k

)
−

N

∑
q=1

βq

( .
Gq+2,k + τϑ

..
Gq+2,k

)
,

.
Gq+2,k + τq

..
Gq+2,k =

N

∑
p=1

DqpG′′p+2,k −ΛqG′′′1k −MqG′′2k.

(10)
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Surface Green’s functions problem also include zero initial conditions like Equation (4) and the
following boundary conditions:

G1k|x=0 = δ1kδ(τ), G′2k
∣∣
x=0 = δ2kδ(τ),(

ΛqG′′1k + MqG′2k −
N

∑
p=1

DqpG′p+2,k

)∣∣∣∣∣
x=0

= δq+2,kδ(τ),

G1k = O(1), G′2k = O(1),(
ΛqG′′1k + MqG′2k −

N

∑
p=1

DqpG′p+2,k

)
= O(1), x → ∞.

(11)

Thus, the solution of Problem (1)–(4) is reduced to finding the Green’s functions. First of all,
we consider an algorithm for finding the surface Green’s functions. On the basis of this, we describe
an algorithm for the bulk Green’s functions.

4. Algorithm for Finding the Surface Green’s Functions

We apply the Laplace transform on time to the homogeneous system of Equation (10) and the
boundary conditions Equation (11), and get a system of differential equations [17–20] («s» is the
transformation parameter, the index «L» denotes the Laplace transformant):

s2GL
1k = GL′′

1k − buGL′
2k −

N

∑
q=1

αqGL′
q+2,k,

s(1 + τϑs)GL
2k = κGL′′

2k − sbϑ(1 + τϑs)GL′
1k − s(1 + τϑs)

N

∑
q=1

βqGL
q+2,k,

s
(
1 + τqs

)
GL

q+2,k =
N

∑
p=1

DqpGL′′
p+2,k −ΛqGL′′′

1k −MqGL′′
2k ;

(12)

GL
1k

∣∣∣
x=0

= δ1k, GL′
2k

∣∣∣∣
x=0

= δ2k,

(
ΛqGL′′

1k + MqGL′
2k −

N

∑
p=1

DqpGL′
p+2,k

)∣∣∣∣∣
x=0

= δq+2,k. (13)

Further, we apply to system of Equation (12) the Fourier sine and cosine transform («F» denotes
the Fourier transform) [28]:

GL
1k(x, s) =

2
π

∞∫
0

GLF
1k (λ, s) sin(λx)dλ, GL

2k(x, s) =
2
π

∞∫
0

GLF
2k (λ, s) cos(λx)dλ,

GL
q+2,k(x, s) =

2
π

∞∫
0

GLF
q+2,k(λ, s) cos(λx)dλ.

(14)
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To do this, we multiply the first equation in system of Equation (12) by sin(λx) and the rest by cos(λx).
Then, we integrate it along Ox in the interval from 0 to +∞ and take into account Equation (13). As a
result, we obtain the system of linear algebraic equations for the Fourier–Laplace images [17,20]:

k1GLF
1k − buλGLF

2k − λ
N

∑
q=1

αqGLF
q+2,k = λδ1k,

bϑωλGLF
1k + k2GLF

2k +ω
N

∑
q=1

βqGLF
q+2,k = (bϑωδ1k − κδ2k),

Λqλ
3GLF

1k + Mqλ
2GLF

2k − χqGLF
q+2,k − λ

2
N

∑
p=1

DqpGLF
p+2,k =

(
Λqλ

2δ1k − δq+2,k

)
,

(15)

where

k1 = s2 + λ2, k2 = ω+ κλ2, kq+2 = χq + Dqqλ
2, ω = s(1 + τϑs), χq = s

(
1 + τqs

)
.

The solution of System (15) has the form of rational fractions:

GLF
ik (λ, s) =

Pik(λ, s)
P(λ, s)

. (16)

Here P(λ, s) is the determinant of the homogeneous System (15):

P(λ, s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 −buλ −α1λ −α2λ . . . −αNλ

bϑλω k2 β1ω β2ω . . . βNω

Λ1λ
3 M1λ

2 k3 −D12λ
2 . . . −D1Nλ

2

Λ2λ
3 M2λ

2 −D21λ
2 k4 . . . −D2Nλ

2

. . . . . . . . . . . . . . . . . .
ΛNλ

3 MNλ
2 −DN1λ

2 −DN2λ
2 . . . kN

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (17)

Pik(λ, s) are the determinants obtained from P(λ, s) by replacing the i-th column with the right-side
column of the System (15):(

λδ1k, bϑωδ1k − κδ2k, Λ1λ
2δ1k − δ3k, . . . , ΛNλ

2δ1k − δN+2,k

)T
. (18)
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The above is done following Cramer’s rule. Below are the polynomials Pik(λ, s) for the two-component
half-space that we will use for the calculation examples:

P11(λ, s) = λ

∣∣∣∣∣∣∣∣∣
1 −bu −α1 −α2

bϑω k2 β1ω β2ω

Λ1λ2 M1λ2 k3 −D12λ2

Λ2λ2 M2λ2 −D21λ2 k4

∣∣∣∣∣∣∣∣∣, P21(λ, s) = ω

∣∣∣∣∣∣∣∣∣
k1 λ −α1λ −α2λ

bϑλ bϑ β1 β2

Λ1λ3 Λ1λ2 k3 −D12λ2

Λ2λ3 Λ2λ2 −D21λ2 k4

∣∣∣∣∣∣∣∣∣,

P31(λ, s) = λ2

∣∣∣∣∣∣∣∣∣
k1 −buλ λ −α2λ

bϑωλ k2 bϑω β2ω

Λ1λ M1 Λ1 −D12

Λ2λ3 M2λ2 Λ2λ2 k4

∣∣∣∣∣∣∣∣∣, P41(λ, s) = λ2

∣∣∣∣∣∣∣∣∣
k1 −buλ −α1λ λ

bϑωλ k2 β1ω bϑω

Λ1λ3 M1λ2 k3 Λ1λ2
n

Λ2λ M2 −D21 Λ2

∣∣∣∣∣∣∣∣∣,

P12(λ, s) = −κλ

∣∣∣∣∣∣∣
bu α1 α2

M1λ2 k3 −D12λ2

M2λ2 −D21λ2 k4

∣∣∣∣∣∣∣, P22(λ, s) = −κ

∣∣∣∣∣∣∣
k1 −α1λ −α2λ

Λ1λ3 k3 −D12λ2

Λ2λ3 −D21λ2 k4

∣∣∣∣∣∣∣,
P32(λ, s) = κλ2

∣∣∣∣∣∣∣
k1 −buλ −α2λ

Λ1λ M1 −D12

Λ2λ3 M2λ2 k4

∣∣∣∣∣∣∣, P42(λ, s) = −κλ2

∣∣∣∣∣∣∣
k1 −buλ −α1λ

Λ1λ3 M1λ2 k3

Λ2λ M2 −D21

∣∣∣∣∣∣∣,
P13(λ, s) = λ

∣∣∣∣∣∣∣
bu α1 α2

k2 β1ω β2ω

M2λ2 −D21λ2 k4

∣∣∣∣∣∣∣, P23(λ, s) = ω

∣∣∣∣∣∣∣
k1 −α1λ −α2λ

bϑλ β1 β2

Λ2λ3 −D21λ2 k4

∣∣∣∣∣∣∣,
P33(λ, s) = −

∣∣∣∣∣∣∣
k1 −buλ −α2λ

bϑωλ k2 β2ω

Λ2λ3 M2λ2 k4

∣∣∣∣∣∣∣, P43(λ, s) = λ2

∣∣∣∣∣∣∣
k1 −buλ −α1λ

bϑωλ k2 β1ω

Λ2λ M2 −D21

∣∣∣∣∣∣∣,
P14(λ, s) = −λ

∣∣∣∣∣∣∣
bu α1 α2

k2 β1ω β2ω

M1λ2 k3 −D12λ2

∣∣∣∣∣∣∣, P24(λ, s) = −ω

∣∣∣∣∣∣∣
k1 −α1λ −α2λ

bϑλ β1 β2

Λ1λ3 k3 −D12λ2

∣∣∣∣∣∣∣,
P34(λ, s) = λ2

∣∣∣∣∣∣∣
k1 −buλ −α2λ

bϑωλ k2 β2ω

Λ1λ M1 −D12

∣∣∣∣∣∣∣, P44(λ, s) = −

∣∣∣∣∣∣∣
k1 −buλ −α1λ

bϑωλ k2 β1ω

Λ1λ3 M1λ2 k3

∣∣∣∣∣∣∣.
Let sj = sj(λ) ∈ C

(
j = 1, 2N + 4

)
be simple zeros of the polynomial P(λ, s). Based on the

well-known residue theorems, the originals of the surface Green’s functions are written as follows [16,19]:

G1k(x, τ) =
2
π

∞∫
0

GF
1k(λ, τ) sin(λx)dλ, G2k(x, τ) =

2
π

∞∫
0

GF
2k(λ, τ) cos(λx)dλ,

Gq+2,k(x, τ) =
2
π

∞∫
0

GF
q+2,k(λ, τ) cos(λx)dλ,

(19)

where

GF
ik(λ, τ) =

2N+4

∑
j=1

Pik
(
λ, sj

)
P′
(
λ, sj

) exp
(
sjτ
)
. (20)

Here prime denotes derivative by parameter «s».
For the final expression of the unknown functions, the Green’s functions found in this way

are substituted into the convolutions Equation (6). The originals in Equation (19) can be calculated
using well-known numerical algorithms, such as inverse DFT-type methods or the Filon’s method.
The quadrature formula on an irregular sparsening grid presented in [17] can also be used.



Math. Comput. Appl. 2019, 24, 26 8 of 14

5. Algorithm for Finding the Bulk Green’s Functions

By analogy to the algorithm for finding the surface Green’s functions, we apply the Laplace
transform on time and then the sine and cosine transform on the spatial coordinates to the
inhomogeneous system of Equation (8) and boundary conditions Equation (9). Then, we get the
following system of linear algebraic equations:

k1G̃LF
1k − buλG̃LF

2k − λ
N

∑
q=1

αqG̃LF
q+2,k = δ1k sin(λξ),

bϑωλG̃LF
1k + k2G̃LF

2k +ω
N

∑
q=1

βqG̃LF
q+2,k = δ2k cos(λξ),

Λqλ
3G̃LF

1k + Mqλ
2G̃LF

2k − χqG̃LF
q+2,k − λ

2
N

∑
p=1

DqpG̃LF
p+2,k = δq+2,k cos(λξ).

(21)

Its solution has the form similar to Formula (16):

G̃LF
ik (λ, ξ, s) =

P̃ik(λ, ξ, s)
P̃(λ, s)

. (22)

Here P̃(λ, s) ≡ P(λ, s) is the determinant of the homogeneous system in Equation (21). P̃ik(λ, ξ, s) are
the determinants obtained from Formula (17) by replacing the i-th column with the right-side column
of the System (21):

(δ1k sin(λξ), δ2k cos(λξ), δ3k cos(λξ), . . . , δN+2,k cos(λξ) )T. (23)

The above is done following Cramer’s rule. It is important to note that the polynomials P̃ik(λ, ξ, s) can
be written through the Pik(λ, s) for i = 1, N + 2 and k = 2, N + 2, as follows:

P̃i2(λ, ξ, s) = − 1
κ

Pi2(λ, s) cos(λξ), P̃i,q+2(λ, ξ, s) = −Pi,q+2(λ, s) cos(λξ). (24)

Originals of the bulk Green’s functions can be found by a method similar to system of Equation
(19) and Formula (20).

6. Analysis of Singularity

In [20] it was shown that some of the surface Green’s functions originals had singularities in the
form of Dirac delta functions and Heaviside functions on time, when s→ ∞ . If considering the finite
propagation speed, there remains only one singularity of the function G21(x, τ), in the Dirac delta
function form. In the domain of Fourier–Laplace images it has the form:

lim
s→∞

P21(λ, s)
P(λ, s)

= bϑ. (25)

This singularity can be distinguished as an integer part as follows:

P21(λ, s)
P(λ, s)

=
bϑs2

k1
+

P∗21(λ, s)
Q(λ, s)

. (26)

where
P∗21(λ, s) = k1P21(λ, s)− bϑs2P(λ, s), Q(λ, s) = k1P(λ, s).
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When we substitute Equation (26) into Equation (19), the function GL
21(x, s) takes the form [20]:

GL
21(x, s) =

2bϑ

π

∞∫
0

s2

k1
cos(λx)dλ+

2
π

∞∫
0

P∗21(λ, s)
Q(λ, s)

cos(λx)dλ. (27)

In this case, its original can be presented as follows, similar to Equation (19):

G21(x, τ) = bϑδ
′(τ− x) +

2
π

∞∫
0

GF∗
21 (λ, τ) cos(λx)dλ, (28)

where

GF∗
21 (λ, τ) =

2N+4

∑
j=1

P∗21
(
λ, sj

)
Q′
(
λ, sj

) exp
(
sjτ
)
+ 2Re

[
P∗21(λ, λ)
Q′(λ, λ)

]
cos(λτ)− 2Im

[
P∗21(λ, λ)
Q′(λ, λ)

]
sin(λτ).

The analysis of such singularity can help avoid errors in numerical integration and simplify the
calculation of convolutions.

7. The Calculation Example on the Ion Implantation Technology

Ion implantation is a method of introducing impurity atoms into the surface of a substrate,
by bombarding one with a high-energy ion beam [25,26]. As an assumption, the full cycle of ion
implantation technology can be divided into several stages—the formation of the ion beam with
specified characteristics, the fall of the beam on the substrate surface (target bombing process),
the saturation of the target material with insertion elements and, the last stage, material annealing to
form a layer of various chemical compounds and reduce internal stresses after bombing. The proposed
model of thermoelastic diffusion, in a first approximation, is capable of describing the sequential stages
of bombing and annealing, under the following assumptions:

1. The infinite half-space is processed evenly over the entire area.
2. Characteristics of the ion beam during the entire implantation process are constant.
3. The possible inhomogeneity of the ion beam is neglected.
4. The beam consists of only one chemical component.
5. Chemical and phase transformations are not considered.

For example, we choose the two-component problem (N = 2) on the implantation of copper (Cu,
q = 2) into an aluminum substrate (Al, q = 1) at the initial temperature T0 = 700 K. At the initial
time, copper already has a mass fraction in the substrate medium, equal to 0.05. All the rest (0.95) is
aluminum. The characteristic length of a half-space L = 10−2 m. Then, the following dimensionless
values, obtained using Formula (5) [22,29,30], will correspond to the substrate medium:

M1 = −3.00 · 10−14, M2 = −1.67 · 10−18, Λ1 = 1.17 · 10−16, Λ2 = 1.40 · 10−20,

D11 = 1.37 · 10−15, D12 = 5.80 · 10−21, D21 = 4.55 · 10−18, D22 = 4.08 · 10−20,

α1 = 4.41 · 10−9, α2 = 9.28 · 10−10, κ = 9.65 · 10−7, bu = 1.61 · 10−2, bϑ = 1.01,

τϑ = 127.45, τ1 = 1.27 · 107, τ2 = 6.37 · 107, β1 = −7.11 · 10−5, β2 = −6.98 · 10−6.

We will consider the whole technological process inseparably and accept the switch time
τo = 6.37 · 106 (which corresponds to 103 seconds) from the implantation mode (τ < τo) to the
annealing mode (τ ≥ τo). The switching occurs instantly.

To finalize a calculated example, we assume that the half-space boundary [25,26]

• Is always rigidly fixed: f1(τ) ≡ 0;
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• At the implantation stage has no heat inflow, and at the annealing stage the heat flow is
f2(τ) ≡ 4.33 · 10−3 · H(τ− τo);

• At the implantation stage is under inflow of Cu, but at the annealing stage mass transfer with the
environment is absent: f3(τ) ≡ 0, f4(τ) ≡ 9.87 · 10−12 · [H(τ)− H(τ− τo)];

• Bulk and volumetric external perturbations are absent.

Below are the distribution graphs of thermoelastic diffusion perturbations in the medium,
over depth x of the half-space. The graphs were obtained by substituting the above boundary
conditions into convolution Equation (6). All convolutions were found analytical. Only the roots sj of
P(λ, s) and the inverse sine and cosine transforms were calculated numerically. For inverse transforms
we used the quadrature formula on an irregular sparsening grid [17], with 105 integration points.
This method is quite fast, but it has a slow convergence over the grid splitting. It should be used with
good convergence of the integrals in Equation (19), over the transform parameter. The left column
(Figures 1a, 2a, 3a and 4a) of the graphs shows implantation (τ < τo), the right one (Figures 1b, 2b, 3b
and 4b) shows annealing (τ ≥ τo).
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8. The Calculation Example on the Pulse-Periodic Processes

Let us consider some general pulse-periodic method of surface treatment. They can include
technologies such as laser modification [23] or electro-discharge modification in an oncoming liquid
flow [24]. They can be described as a first approximation of the above mathematical model, if we
accept the following assumptions:

1. The infinite half-space is processed, and the impact depth is significantly less than the surface
being treated.

2. A single impulse is considered.
3. Possible non-uniformity of the material is neglected.
4. Chemical and phase transformations, as well as electromagnetic fields and electron–phonon

interaction are not taken into account.
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For brevity and simplicity, we take the duralumin from the first calculation example with
L = 10−3 m and at T0 = 600 K:

M1 = −3.00 · 10−13, M2 = −1.67 · 10−18, Λ1 = 1.17 · 10−14, Λ2 = 1.40 · 10−19,

D11 = 1.37 · 10−14, D12 = 5.80 · 10−19, D21 = 4.55 · 10−16, D22 = 4.08 · 10−20,

α1 = 4.41 · 10−8, α2 = 9.28 · 10−9, κ = 9.65 · 10−6, bu = 1.61 · 10−2, bϑ = 1.01,

τϑ = 1.27 · 103, τ1 = 6.37 · 105, τ2 = 1.27 · 106, β1 = −7.11 · 10−5, β2 = −6.98 · 10−6.

To build the calculation example, we assume that deformations, thermal, and diffusion flows are
given at the boundary of the half-space [23,24]:

f1(τ) = 3.14 · 10−2 τ exp
(
− 10−2 τ

)
, f2(τ) = −2.24 · 10−2 τ exp

(
−10−2 τ

)
,

f3(τ) ≡ 0, f4(τ) = 4.93 · 10−8 τ exp
(
−10−2 τ

)
.

Of all the bulk effects, only the bulk heat inflow is set:

F2(x, τ) = −5.61 · 10−3 τ x exp
(
−10−2[τ+ x]

)
, F1(x, τ) ≡ 0, F3(x, τ) ≡ 0, F4(x, τ) ≡ 0.

Below in Figures 5 and 6 are distribution graphs of thermoelastic diffusion perturbations in the
half-space. The graphs were obtained by substituting the boundary conditions above into convolution
Equation (6). All convolutions were found analytically. Inverse transforms were done similar to the
ion implantation example. It is necessary to add that the elastic problem solution obtained using the
proposed algorithm, converges with one obtained analytically.Math. Comput. Appl. 2019, 24, x FOR PEER REVIEW 12 of 14 
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