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Abstract: In this study, free vibration behaviors of various embedded nanowires made of different
materials are investigated by using Eringen’s nonlocal elasticity theory. Silicon carbide nanowire
(SiCNW), silver nanowire (AgNW), and gold nanowire (AuNW) are modeled as Euler–Bernoulli
nanobeams with various boundary conditions such as simply supported (S-S), clamped simply
supported (C-S), clamped–clamped (C-C), and clamped-free (C-F). The interactions between nanowires
and medium are simulated by the Winkler elastic foundation model. The Galerkin weighted residual
method is applied to the governing equations to gain stiffness and mass matrices. The results are given
by tables and graphs. The effects of small-scale parameters, boundary conditions, and foundation
parameters on frequencies are examined in detail. In addition, the influence of temperature change
on the vibrational responses of the nanowires are also pursued as a case study.

Keywords: nonlocal elasticity theory; Galerkin weighted residual FEM; silicon carbide nanowire;
silver nanowire; gold nanowire

1. Introduction

Nanoscale structures/materials have very different characteristics. Nanostructures/nanomaterials
have attracted great attention because their extraordinary features, such as high strength, low density, high
elasticity modulus, and high hardness [1–4], have become the focus of researchers. The aforementioned
unique properties of such structures, materials, and rapid developments in nanotechnology has led to
use of these structural elements in designing micro- and nanoelectro mechanical systems (MEMS and
NEMS) such as resonators, atomic force microscopes, switches, actuators, and sensors.

Some experimental studies have revealed the deformation behaviors of micro-/nanosized
structures [5,6]. However, experiments are very difficult and quite expensive on these scales because
high precision test devices are needed. On the other hand, atomistic modeling such as molecular
dynamic simulations is computationally expensive and requires a long period of time. Consequently,
this option is limited to structures that have only a few atoms [7].

To understand and accurately interpret the mechanical properties and behaviors of nanoscale
structures, use of models based on continuum mechanics may be a better alternative than experiments
and atomistic modelling. Unfortunately, classical continuum theories are not sufficient to predict
and estimate size dependency because they lack internal/additional material length scale parameters.
In ultrasmall scales (micrometer dimension, nanometer dimension) interactions between atoms and
molecules have increasing importance and cannot be neglected. Therefore, the solution to classical
continuum theories, which does not take into account size effects, does not give accurate results.
In order to obtain more accurate results, higher-order continuum theories such as couple stress
theory [8–10], modified couple stress theory [11], strain gradient theory [12], modified strain gradient
theory [13], and nonlocal elasticity theory [14] have been developed and contain various length scale
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parameters. These theories were used by many researchers for various analyses such as buckling [15],
bending [16,17], free vibration [18,19], forced vibration [20], and nonlinear vibration [21].

Rahmanian et al. [22] presented free vibrations of single-walled carbon nanotubes (SWCNT)
on a Winkler elastic foundation via nonlocal elasticity theory. In this study, SWCNT was modeled
as both beam and shell structures. Demir and Civalek [23] reported thermal vibration formulation
of a nonlocal Euler–Bernoulli beam embedded in an elastic matrix. Finite element formulation for
Eringen’s nonlocal elasticity theory was employed via Hermitian cubic shape functions. Thermal
vibrational behaviors of silicon carbide nanowire on an elastic matrix were investigated for simply
supported (S-S) and clamped–clamped (C-C) boundary conditions. Finite element formulations
of nonlocal elastic Euler–Bernoulli and Timoshenko beam theories were achieved by Pradhan [24].
Vibration, buckling, and bending analyses of carbon nanotubes with four different boundary conditions
were performed by the Galerkin finite element technique. Rajasekaran and Bakhshi Khaniki [25]
reported static deformation, stability, and free vibration responses of small-scale beams. A finite
element model of axial, functionally graded, nonuniform small-scale beams was investigated by using
nonlocal strain gradient theory. Eltaher et al. [26] pursued free vibration analysis of functionally graded
Euler–Bernoulli nanobeams by using Eringen’s nonlocal elasticity theory. Finite element results were
given for a dynamic analysis of the nanobeam. Nejad and Hadi [27] studied bending analysis of
non-homogeneous nanobeams. Eringen’s nonlocal elasticity theory was utilized in Euler–Bernoulli
nanobeams made of bi-directional, functionally graded material. Murmu and Pradhan [28] studied
the thermo-mechanical vibration response of embedded carbon nanotubes surrounded by an elastic
matrix based on nonlocal elasticity theory. Reddy [29] developed nonlocal beam models based on
four different beam theories. Static bending, free vibration, and buckling analyses of nanobeams
are performed in this study. Tornabene et al. [30] presented a multiscale approach for three-phase
carbon nanotube (CNT)/polymer/fiber-laminated nanocomposite structures. Detailed formulations
can be found in the literature [31–35] about CNT-reinforcement or the finite element method (FEM).
More recently, Uzun et al. [36] investigated the free vibration responses of carbon nanotubes and boron
nitride nanotubes based on nonlocal elasticity theory. Nonlocal natural frequencies are obtained for
various cross-section geometries.

In the present study, free vibration analysis of three kinds of nanowires resting on a Winkler
elastic foundation with various boundary conditions are performed. Simply supported (S-S), clamped
simply supported (C-S), clamped–clamped (C-C), and clamped-free (C-F) boundary conditions are
selected. Silicon carbide nanowire (SiCNW), silver nanowire (AgNW), and gold nanowire (AuNW)
are modeled as nonlocal Euler–Bernoulli beams, and their vibration behaviors are investigated using
the finite element method (FEM). A Galerkin weighted residual method is utilized to govern equations
and matrices, and the Winkler foundation parameter and small-scale parameter are gained. Effects
of boundary conditions, temperature rise, and small-scale and Winkler foundation parameters of
frequency values are investigated and compared for three kinds of nanowires.

2. Euler–Bernoulli Nanobeam Resting on a Winkler Elastic Foundation

The nonlocal stress tensor σi j at point x is expressed as follows [14]:

σi j, j = 0, (1)

σi j(x) =
∫

Ω
K(|x′ − x|), τ)Ci jklεkldΩ(x′), (2)

where K(|x′ − x|, τ) is the Kernel function, |x′ − x| is the distance in the Euclidean form, τ = e0a/l is
a material constant that depends upon the internal characteristic lengths (a) and external characteristic
length (l), and e0 is a material constant that is determined experimentally. Ci jkl and εkl represent the
fourth-order elasticity and the strain tensors, respectively, and Ω is the region occupied by the body.
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The nonlocal constitutive formulation is [28]:

[1− τ2l2∇2]σi j = Ci jklεkl. (3)

x, y, z depict length, width, and height of the beam, respectively and u1, u2, u3 are the displacements in
the x, y, z directions. The displacements for a Bernoulli–Euler beam can be written as below [17]:

u1(x, z, t) = −z
∂w(x, t)
∂x

, u2(x, z, t) = 0, u3(x, z, t) = w(x, t). (4)

εi j is the strain tensor, expressed as:

εi j = 0.5(∂ui, j + ∂u j,i). (5)

From Equation (5) we find the strains of the Euler–Bernoulli beam as follows:

εxx = −z
∂2w(x, t)
∂x2 , εxy = εyx = εxz = εzx = εyy = εyz = εzy = εzz = 0. (6)

Stress σ for the linear elastic materials is expressed as follows:

σ = Eε, (7)

where E is the elastic modulus of the material. If εxx, the only nonzero component of strain, is written
in Equation (7), σxx is obtained as:

σxx = −Ez
∂2w(x, t)
∂x2 . (8)

Moment (M) and the moment of inertia (I) are given by:

M =

∫
A

zσxxdA, I =
∫
A

z2dA, (9)

where A represents the cross-section area.
For the transverse vibration of an Euler–Bernoulli beam (shown in Figure 1) resting on a Winkler

elastic foundation, the equilibrium conditions are:

∂V(x, t)
∂x

= −q(x, t) + ρA
∂2w(x, t)
∂x2 + kww(x, t), (10)

V(x, t) =
∂M(x, t)
∂x

, (11)

∂2M(x, t)
∂x2 = −q(x, t) + ρA

∂2w(x, t)
∂x2 + kww(x, t), (12)

where ρ, q(x,t), and kw are the mass density, distributed load, and Winkler foundation
parameter, respectively.

The nonlocal constitutive relations can be simplified in the following form for a one-dimensional
case [14,29]:

σxx − (e0a)2 ∂
2σxx

∂x2 = Eεxx. (13)

By multiplying z on both sides of Equation (13) and integrating the cross-sectional area of the
beam, we obtain: ∫

A
zσdA− (e0a)2

∫
A

z
∂2σ

∂x2 dA =

∫
A

zEεdA = 0. (14)
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Substituting Equations (6) and (9) into (14), we get:

M(x, t) − (e0a)2 ∂
2M(x, t)
∂x2 = −EI

∂2w(x, t)
∂x2 . (15)

By differentiating Equation (15) twice with respect to variable x and substituting Equation (12)
into Equation (15), we obtain the governing equation for the vibration of an Euler–Bernoulli nanobeam
resting on a Winkler elastic foundation, as below:

EI
∂4w(x, t)
∂x4

+ ρA
∂w2(x, t)
∂t2 + kww− (e0a)2 ∂

2

∂x2

[
ρA

∂2w(x, t)
∂t2 + kww

]
= 0. (16)
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3. Solution to the Vibration Problem

3.1. Galerkin Weighted Residual Method

The shape function for beam ϕ is as follows [37,38]:

ϕ=


ϕ1

ϕ2

ϕ3

ϕ4

=


1− 3ξ2 + 2ξ3

L
(
ξ− 2ξ2 + ξ3

)
3ξ2
− 2ξ3

L
(
−ξ2 + ξ3

)
, (17)

where ξ = x/L is a non-dimensional local coordinate. In order to obtain the weak form of the governing
equation of an Euler–Bernoulli nanobeam resting on a Winkler elastic foundation, the residue can be
expressed as:[

EI
∂4w(x, t)
∂x4

+ ρA
∂w2(x, t)
∂t2 + kww− (e0a)2 ∂

2

∂x2

(
ρA

∂2w(x, t)
∂t2 + kww

)]
= residue. (18)

To determine the weighted residue, Equation (18) is multiplied by a weighting function ϕ.
When the weighted residual is integrated over the length:∫ L

0

[
ϕEI

∂4w(x, t)
∂x4

+ ϕρA
∂w2(x, t)
∂t2 + ϕkww−ϕ(e0a)2 ∂

2

∂x2

(
ρA

∂2w(x, t)
∂t2 + kww

)]
dx = 0. (19)

Equation (19) is integrated by parts. According to the chain rule, in the general form:∫ L

0

[
EI
∂2ϕ

∂x2

∂2ϕT

∂x2 + ρAϕϕT ..
w + kwϕϕ

T
− (e0a)2ρA

∂ϕ

∂x
∂ϕT

∂x
..
w− (e0a)2kw

∂ϕ

∂x
∂ϕT

∂x

]
dx = 0. (20)
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By using the shape function in Equation (17) and the non-dimensional local coordinate,
bending stiffness matrix Kb, Winkler foundation stiffness matrix Kw, and the mass matrix M,
the following are obtained:

Kb = EI

L∫
0


ϕ′′1
ϕ′′2
ϕ′′3
ϕ′′4


{
ϕ′′1 ϕ′′2 ϕ′′3 ϕ′′4

}
dx; (21a)

Kb =
EI
L3


12 6L −12 6L
6L 4L2

−6L 2L2

−12 −6L 12 −6L
6L 2L2

−6L 4L2

; (21b)

Kw1 = kw

L∫
0


ϕ1

ϕ2

ϕ3

ϕ4


{
ϕ1 ϕ2 ϕ3 ϕ4

}
dx; (22a)

Kw1 =
kw

420


156L 22L2 54L −13L2

22L2 4L3 13L2
−3L3

54L 13L2 156L −22L2

−13L2
−3L3

−22L2 4L3

; (22b)

Kw2 = (e0a)2kw

L∫
0


ϕ′1
ϕ′2
ϕ′3
ϕ′4


{
ϕ′1 ϕ′2 ϕ′3 ϕ′4

}
dx; (23a)

Kw2 =
(e0a)2kw

30L


36 3L −36 3L
3L 4L2

−3L −L2

−36 −3L 36 −3L
3L −L2

−3L 4L2

; (23b)

M1 = ρA

L∫
0


ϕ1

ϕ2

ϕ3

ϕ4


{
ϕ1 ϕ2 ϕ3 ϕ4

}
dx; (24a)

M1 =
ρA
420


156L 22L 54L −13L2

22L2 4L3 13L2
−3L3

54L 13L2 156L −22L2

−13L2
−3L3

−22L2 4L3

; (24b)

M2 = (e0a)2ρA

L∫
0


ϕ′1
ϕ′2
ϕ′3
ϕ′4


{
ϕ′1 ϕ′2 ϕ′3 ϕ′4

}
dx; (25a)

M2 =
(e0a)2ρA

30L


36 3L −36 3L
3L 4L2

−3L −L2

−36 −3L 36 −3L
3L −L2

−3L 4L2

. (25b)
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The vibration of the Euler–Bernoulli beam is found as follows:

|K −ω2M| = 0, (26)

where K = Kb + Kw1 + Kw2, M = M1 + M2, and ω is frequency.

3.2. Thermal Effect on the Vibrational Response of Embedded Nanowires

Here, the effect of temperature change on the natural frequencies of embedded nanowires in
a thermal environment is investigated. Equation (16) can be rewritten in the presence of thermal
loading as:

(EI −NT(e0a)2)
∂4w
∂x4

+ kww + (NT
− kw(e0a)2)

∂2w
∂x2 + ρA

∂2w
∂t2 − ρA(e0a)2 ∂4w

∂x2∂t2 = 0, (27)

where the additional term NT is the axial load resulting from the temperature change and can be
defined as [28]:

NT =
EA

1− 2v
α∆T, (28)

in which α is the thermal expansion coefficient in the axial direction, ∆T is the temperature change,
and v is Poisson’s ratio. It is notable that only an axial load resulting from temperature change exists
for the nanowires in this study [28].

The following Navier’s solution procedure is applied to achieve simply supported (S-S) nanowires
as an illustrative example:

w(x, t) =
∑
∞

n=1
Wn sin βeiωnt, (29)

where n is the mode number, Wn is the unknown Fourier coefficient, and β = nπx
L . Using Equation (29) in

Equation (27) yields the following relation for small-scale-dependent natural frequencies of embedded
S-S nanowires that includes the thermal effect:

ωn =

√√√√
β4

(
EI −NT(e0a)2

)
+ kw − β2

(
NT − kw(e0a)2

)
ρA

(
1 + β2(e0a)2

) . (30)

4. Results and Discussion

In this section, frequency values of nanowires were obtained with various non-dimensional
small-scale parameters (e0a/L), different non-dimensional Winkler foundation parameters (KW), different
boundary conditions, and different number of elements (N). The material properties for the three
nanowires are listed in Table 1. The results obtained were shown in tables and graphs. The dimensionless
Winkler parameter used for the results is expressed as the formula below:

KW =
kwL4

EI
. (31)

Table 1. Material properties of the nanowires.

Material Properties SiCNW AuNW AgNW

E(GPa) 524.8 79 82.7
v 0.14 0.42 0.37

ρ
(
kg/m3

)
3100 19,320 10,490

α(1/) 3.7 × 10−6 14.2 × 10−6 19.68 × 10−6
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Table 2 presents the natural frequencies of nanowires with C-C, C-S, S-S, and C-F boundary
conditions. Finite element solutions for the three nanowires were compared with each other. It was
clearly observed from the table that the highest frequency value occurred for both SiCNW and the C-C
boundary condition, while the lowest value was seen in both AuNW and C-F boundary conditions.

Table 2. The first three natural frequencies (GHz) of isolated nanowires for four different boundary
conditions (KW = 0, e0a/L = 0.1).

Mode Number
SiCNW

C-C C-S S-S C-F

1 21.8286 15.0969 9.7369 3.5540
2 52.7211 43.2195 34.5672 19.7887
3 88.6384 77.4034 66.8450 48.0785

Mode Number
AuNW

C-C C-S S-S C-F

1 3.3525 2.3186 1.4954 0.5458
2 8.0970 6.6378 5.3089 3.0392
3 13.6133 11.8878 10.2662 7.3840

Mode Number
AgNW

C-C C-S S-S C-F

1 4.6550 3.2195 2.0764 0.7579
2 11.2430 9.2167 7.3716 4.2200
3 18.9025 16.5066 14.2550 10.2529

Tables 3–6 show natural frequencies of embedded simply supported nanowires for KW = 1,
KW = 10, KW = 100, and KW = 1000, respectively, with different e0a/L values. It was found from these
tables that frequency values increased as KW values increased, but frequencies decreased by increasing
e0a/L. Moreover, it was evident that small-scale effects became more considerable for higher modes.

Table 3. The first three natural frequencies (GHz) of embedded nanowires corresponding to various
values of e0a/L (KW = 1).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 10.2583 9.7916 8.7034 7.4989
2 40.8373 34.5827 25.4413 19.1602
3 91.8603 66.8530 43.0600 30.6452

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 1.5755 1.5038 1.3367 1.1517
2 6.2719 5.3113 3.9073 2.9427
3 14.1081 10.2675 6.6133 4.7066

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 2.1876 2.0881 1.8560 1.5992
2 8.7087 7.3749 5.4255 4.0860
3 19.5896 14.2567 9.1827 6.5352
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Table 4. The first three natural frequencies (GHz) of embedded nanowires for various values of e0a/L
(KW = 10).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 10.7171 10.2713 9.2398 8.1152
2 40.9550 34.7215 25.6298 19.4097
3 91.9126 66.9249 43.1716 30.8018

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 1.6460 1.5775 1.4191 1.2464
2 6.2900 5.3326 3.9363 2.9810
3 14.1162 10.2785 6.6304 4.7306

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 2.2855 2.1904 1.9704 1.7306
2 8.7338 7.4045 5.4656 4.1392
3 19.6007 14.2720 9.2065 6.5686

Table 5. The first three natural frequencies (GHz) of embedded nanowires with respect to various
values of e0a/L (KW = 100).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 14.5292 14.2035 13.4764 12.7318
2 42.1135 36.0808 27.4431 21.7480
3 92.4347 67.6401 44.2722 32.3263

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 2.2314 2.1814 2.0697 1.9554
2 6.4679 5.5414 4.2148 3.3401
3 14.1964 10.3883 6.7994 4.9648

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 3.0984 3.0290 2.8739 2.7151
2 8.9809 7.6944 5.8524 4.6379
3 19.7121 14.4245 9.4412 6.8937
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Table 6. The first three natural frequencies (GHz) of embedded nanowires against various values of
e0a/L (KW = 1000).

Mode Number

SiCNW

e0a/L

0.0 0.1 0.2 0.3

1 34.2564 34.1196 33.8234 33.5336
2 52.3064 47.5839 41.4190 37.8864
3 97.5017 74.4150 54.0595 44.8040

Mode Number

AuNW

e0a/L

0.0 0.1 0.2 0.3

1 5.2612 5.2402 5.1947 5.1502
2 8.0333 7.3081 6.3612 5.8187
3 14.9746 11.4288 8.3026 6.8811

Mode Number

AgNW

e0a/L

0.0 0.1 0.2 0.3

1 7.3053 7.2761 7.2130 7.1512
2 11.1545 10.1475 8.8328 8.0794
3 20.7926 15.8693 11.5284 9.5546

In Table 7, the frequency values of C-C nanowires are given by analytical and finite element
solutions for e0a/L = 0.2. For the finite element solution, as the element number increased, the results
approached the real value.

Effects of both temperature rise and the Winkler parameter on the first three natural frequencies
of nanowires are revealed in Table 8. It is apparent from the table that an increase temperature rise
led to a decrease in frequency, contrary to the Winkler parameter. Also, it can be emphasized that the
frequencies of AuNW were more affected than the other nanowires because of their related material
properties, given in Table 1. Moreover, it can be observed that the influence of temperature rise was
more prominent for lower modes and smaller Winkler parameters.

Table 7. Convergence of the present results with the analytical results of different element numbers.

Mode Number
SiCNW

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 Analytical

1 18.9418 18.9252 18.9189 18.9162 18.9148 18.9141 18.9137 18.9129
2 38.0339 37.8398 37.7549 37.7155 37.6955 37.6845 37.6781 37.6656
3 56.8236 57.2104 56.8478 56.6515 56.5467 56.4878 56.4529 56.3826

Mode Number
AuNW

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 Analytical

1 2.9091 2.9066 2.9056 2.9052 2.9050 2.9049 2.9048 2.9047
2 5.8413 5.8115 5.7985 5.7924 5.7894 5.7877 5.7867 5.7848
3 8.7271 8.7865 8.7308 8.7007 8.6846 8.6755 8.6702 8.6594

Mode Number
AgNW

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 Analytical

1 4.0394 4.0359 4.0345 4.0340 4.0337 4.0335 4.0334 4.0332
2 8.1109 8.0695 8.0514 8.0430 8.0387 8.0364 8.0350 8.0323
3 12.1179 12.2003 12.1230 12.0811 12.059 12.0462 12.0388 12.0238
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Table 8. The first three small-scale-dependent natural frequencies (GHz) of embedded nanowires for
different Winkler parameters and temperature changes (e0a/L = 0.1, d = 1 nm, and L = 20 d).

Mode Number

SiCNW

∆T = 0 ∆T = 30 °C

Kw = 100 Kw = 500 Kw = 1000 Kw = 100 Kw = 500 Kw = 1000

1 17.7768 31.4013 42.7034 17.3120 31.1405 42.5119
2 45.1580 52.0507 59.5551 44.4297 51.4201 59.0047
3 84.6569 88.5259 93.1362 83.7854 87.6928 92.3448

Mode Number

AuNW

∆T = 0 ∆T = 30 °C

Kw = 100 Kw = 500 Kw = 1000 Kw = 100 Kw = 500 Kw = 1000

1 2.7628 4.8802 6.6368 0.9103 4.1246 6.1026
2 7.0182 8.0895 9.2558 4.6945 6.1824 7.6454
3 13.157 13.7583 14.4748 10.5767 11.3159 12.177

Mode Number

AgNW

∆T = 0 ∆T = 30 °C

Kw = 100 Kw = 500 Kw = 1000 Kw = 100 Kw = 500 Kw = 1000

1 3.8362 6.7764 9.2153 1.8782 5.8932 8.5868
2 9.7450 11.2325 12.8519 7.0859 9.0229 10.9734
3 18.2689 19.1038 20.0987 15.2661 16.2559 17.4143

Effects of nanoscale and foundation parameters on the first five natural frequencies are respectively
depicted in Figures 2 and 3. It can be concluded from these figures that size dependency was more
pronounced for higher modes, while the natural frequencies in lower modes were more affected
from foundation parameters. As stated before, it was clear that the natural frequencies decreased and
increased by increasing e0a/L and KW, respectively.

Figure 4 displays the variation of fundamental frequencies of the three embedded nanowires with
respect to temperature rise for various small-scale parameter values. It can be recognized from the
figure that the effect of e0a/L was more prominent for SiCNW than the other ones. On the other hand,
the influence of temperature rise was more significant for gold and silver nanowires than the silicon
carbide nanowire.Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW  11 of 13 
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Kw = 1000).

5. Conclusions

Three types of nanowires, SiCNW, AgNW, and AuNW, are modeled as nonlocal Euler–Bernoulli
nanobeams resting on a Winkler elastic foundation. Frequency values of these nanowires are obtained
via a finite element solution, and results are given by tables and graphs. The effect of temperature
change on the vibrational responses of simply supported nanowires is also examined as a case study.
It can be concluded from the results that among all boundary conditions, C-C has the highest frequency
values and C-F has the lowest ones. Also, it can be emphasized that by increasing the Winkler parameter
value, frequency values increase, while by increasing non-dimensional small-scale parameter (e0a/L),
frequency value decreases. When we compare the frequency values of nanowires, SiCNW has the
highest frequency values, while AuNW has the lowest frequency values because of its different material
properties. Additionally, it is revealed that the effects of temperature change and small-scale parameters
on the frequencies of nanowires are both considerable and negligible depending on the values of the
involved material properties.
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18. Togun, N.; Bağdatli, S.M. The vibration of nanobeam resting on elastic foundation using modified couple
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