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Abstract: In the following paper, we consider the problem of constructing a time stable reduced
order model of the 3D turbulent and incompressible Navier–Stokes equations. The lack of stability
associated with the order reduction methods of the Navier–Stokes equations is a well-known problem
and, in general, it is very difficult to account for different scales of a turbulent flow in the same
reduced space. To remedy this problem, we propose a new stabilization technique based on an a
priori enrichment of the classical proper orthogonal decomposition (POD) modes with dissipative
modes associated with the gradient of the velocity fields. The main idea is to be able to do an a priori
analysis of different modes in order to arrange a POD basis in a different way, which is defined by
the enforcement of the energetic dissipative modes within the first orders of the reduced order basis.
This enables us to model the production and the dissipation of the turbulent kinetic energy (TKE) in
a separate fashion within the high ranked new velocity modes, hence to ensure good stability of the
reduced order model. We show the importance of this a priori enrichment of the reduced basis, on a
typical aeronautical injector with Reynolds number of 45,000. We demonstrate the capacity of this
order reduction technique to recover large scale features for very long integration times (25 ms in
our case). Moreover, the reduced order modeling (ROM) exhibits periodic fluctuations with a period
of 2.2 ms corresponding to the time scale of the precessing vortex core (PVC) associated with this
test case. We will end this paper by giving some prospects on the use of this stable reduced model in
order to perform time extrapolation, that could be a strategy to study the limit cycle of the PVC.

Keywords: reduced order modeling (ROM); proper orthogonal decomposition (POD); enhanced
POD; a priori enrichment; modal analysis; stabilization; dynamic extrapolation

1. Introduction

Reduced order modeling (ROM) of the complete Navier–Stokes equations by the projection
of these equations upon a reduced order space, that is generated by a minimal number of spatial
modes, is still an attractive research area especially when we consider turbulent flows such as the ones
encountered in aeronautical engines and that feature a large range of scales. The most important issue
to be addressed when performing an order reduction of the turbulent and unsteady Navier–Stokes
equations is the construction of a minimal reduced order space that could cover properly the large
range of scales of a turbulent fluid flow. If we find a minimal subspace that could verify these
properties, then we can do further studies concerning the efficient adaptivity of the associated reduced
order equations in terms of design and optimization of the components of an aeronautical engine, such
as the combustion chamber and the fuel injection system.
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The large vortices carry the major amount of the turbulent kinetic energy (TKE), while small
scales are responsible for the dissipation of TKE. The real time prediction of this physics, under strong
unsteadiness and variable constraints, is a big challenge for the industrial design in aeronautical
engineering. Reduced order modeling by proper orthogonal decomposition (POD) is a very good
candidate for solving such problems. It enables approximation of the high-fidelity (HF) partial
differential equations (PDE)s in a subspace of small dimension, which reproduces accurately the
energy of the coherent structures of a fluid flow. Nevertheless, the ROMs by POD for the turbulent
and incompressible Navier–Stokes equations suffer a time instability due to the misrepresentation of
the energy of the small vortices of these convection dominated equations, by the coherent energetic
POD modes. Many authors propose techniques to remedy time instability within ROMs by POD
of the Navier–Stokes equations. By time stable reduced order model, we mean the capacity of the
reduced equations to verify the energy balance and the mass conservation properties of the complete
Navier–Stokes equations.

Improvement of the Galerkin reduced order modeling using mathematical approaches such
as the stabilization based on the role of the neglected POD modes to enhance the dissipation of
the TKE [1], or reduced order models based on deconvolution methods for large-eddy simulation
(LES) have been proposed in the literature: Rowley et al. [2] proposed a Galerkin ROM-POD for
the compressible Navier–Stokes equations, constructed by projection via an energy-based inner
product. Codina et al. [3] proposed the enrichment of the ROM by increasing the dimension of
the projection POD subspace, and computing the new temporal weights amplitudes by a least square
minimization with respect to the initial temporal snapshots. The later sub-scale approach was applied
for an incompressible and turbulent flow around a cylinder of which the Reynolds number varies
from 32,000 to 74,000. Balajewicz et al. [4] proposed an enhanced Galerkin approximation by POD
of the compressible Navier–Stokes equations based on an a priori implementation of a traditional
eddy-viscosity based closure model in order to modify the overall eigenvalue distribution of the
dissipative linear operator within the Galerkin reduced order modeling. This technique was applied
for a 2D laminar airfoil at Reynolds 500. Xie et al. [5] proposed a deconvolution method for LES-based
reduced order models in order to model the subfilter stress-scale tensor within the reduced order
modeling. This approach was performed for the 1D Burgers equation and a 3D flow past a cylinder
at Reynolds 1000. In [6], the authors propose to study theoretically and numerically the influence of
different types of finite element on the ROM mass conservation. They tested the Taylor–Hood (TH)
element and the Scott–Vogelius (SV) element. They showed that the SV-ROM yields to more accurate
results when applied to a 2D flow past a circular cylinder at a Reynolds number Re = 100, especially
for coarser meshes and longer time intervals. We can find in literature also stabilization of reduced
order models based on operator splitting, specifically the streamline-upwind Petrov–Galerkin (SUPG)
stabilization method [7].

In the domain of model order reduction for finite volume numerics for computational fluid
dynamics, we cite the work of Carlberg et al. [8], where it has been proposed a method for
model reduction of finite-volume models that guarantees the resulting reduced-order model to be
conservative. The proposed reduced order model is associated with optimization problems that
explicitly enforce conservation over subdomains. In [9], the authors proposed a POD-Galerkin reduced
order methods for CFD using finite volume discretization. This was performed as a consequence
of the projection of the Navier–Stokes equations onto different reduced basis space for velocity and
pressure, respectively. Stabile et al. [10], developed finite volume POD-Galerkin stabilized reduced
order methods for the incompressible Navier–Stokes equations. These methods are based on the
pressure Poisson equation and supremizer enrichment which ensures that a reduced version of the
inf-sup condition is satisfied.

Among the work concerning the stabilisation of the POD-based ROM for turbulent fluids
dynamics, Amsallem et al. [11] have proposed to perform the POD-based model reduction using the
descriptor form of the discretized Euler or Navier–Stokes equations, i.e., the natural variables of these
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equations, whereas many computations are performed in CFD codes using the non-descriptor form
of these equations. In [12], the authors proposed to use the stability of the reduced-order Galerkin
models in incompressible flows in order to study the limit cycle of the hydrodynamic vortex acting on
a circular cylinder. Amsallem et al. [13] have proposed a stabilization of the projection-based linear
reduced order models because of a convex optimization problem that operates directly on available
reduced order operators. This method was tested for computational fluid dynamics-based model of a
linearized unsteady supersonic flow, the reduction of a computational structural dynamic system, and
the stabilization of the reduction of a coupled computational fluid dynamics–computational structural
dynamics model of a linearized aeroelastic system in the transonic flow regime.

Besides these reduced order techniques which are intrusive for the computational fluid dynamics
physics, there are some new non-intrusive reduced order ones, as they rely only on the available
snapshots data, without taking into account all the equations of physics as constraints, but rather
some physical properties as the turbulent kinetic energy conservation by learning the orthogonal
projection coefficients of the solutions over a POD basis using a metamodel or a neural network, see the
work of Wang et al. [14]. These non-intrusive techniques would take into account also the parameters
calibration of the closure terms and the turbulent sub-grid scale modeling in the large eddy simulation
models or the reynolds average Navier–Stokes equations ones, see the work of Lapeyre et al. [15].
There are also some research directions towards combining the machine learning non-intrusive reduced
order techniques with the physics based reduced order ones in order to improve the quality of these
latters, see the work of Xie et al. [16].

In this paper, we are interested in the stabilization of POD-Galerkin reduced order modeling for
the turbulent and incompressible Navier–Stokes equations and we propose a new stabilization and
purely physical approach for the POD-Galerkin approximation of the turbulent and incompressible
Navier–Stokes equations. More precisely, a simplified POD-Galerkin projection of the complete
Navier–Stokes equations is performed within an extended and minimal reduced order subspace, which
reproduces accurately all the scales contained in the different terms of the Navier–Stokes equations,
in order to recover a proper evolution of the fluctuating TKE. The proposed approach is based on the
POD representation of the velocity gradient. A solution for the issue due to the combination of POD
velocity and POD gradient modes is proposed. Moreover, we point out that the proposed stabilization
is based on the a priori analysis of the different velocity modes and gradient velocity modes, in order to
enforce the energetic dissipative modes within the first vectors of the new reduced order basis. This
a priori enrichment by scale seperation is a key point to our proposed approach, and this will lead to
the desired time stability of the reduced order model. We also point out that our proposed strategy is
different from the ones that propose a scalar product change while defining the correlations matrix
of the singular value decomposition (SVD) step of the POD method, in order to take into account the
gradient scales within the scalar product computations, typically as in [17].

The manuscript is organized as follows: the proposed theoretical framework for the construction
of the enhanced reduced order basis is detailed in Section 2. In this section, we motivate the use
of an a priori enhancement of the classical POD basis by POD modes associated with the gradient
velocity. All the numerical results are detailed in Section 3 for a benchmark problem of a typical
aeronautical injection system at Re = 45,000 and 14 millions mesh elements. The flow solver of the
High Fidelity Navier–Stokes equations is first exposed. Reduced order modeling via the enriched
POD is presented and analyzed. In Section 4, we show the dynamic temporal coefficients obtained
by running the enhanced fluid dynamics reduced order model for very long time integrations, even
longer than the one of the high-fidelity solutions that generated the enhanced reduced order basis.
In Section 5, we give some conclusions and prospects to this work. More precisely, we introduce our
future work concerning the use of this stabilization technique for the extrapolation of the reduced
order model in time so that, we can study efficiently the limit cycle of the PVC in an aeronautical
injector [18]. It is well known that the Q-criterion of the smallest vortices is larger than the one of the
large coherent structures, then the PVC is masked by small scales surrounding turbulence in the LES
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simulation. The enhanced ROM enables us to filter the PVC throughout the reduced order simulation
even for large values of Q-criterion and for very long integration times.

2. Theoretical Framework

2.1. POD-Galerkin Reduced Order Modeling Applied to the Unsteady and Incompressible
Navier–Stokes Equations

We denote by X = [L2(Ω)]3 the functional Hilbert space of the squared integrable functions over a
bounded 3D−open set Ω. The corresponding inner product is the kinetic energy-based one associated
with the X-functional norm. They will be denoted respectively by (., .) and ‖.‖. Consider v(t) ∈ X
the velocity field of an unsteady incompressible flow. Denote v̄(t) the filtered field obtained by
a given LES model. A reduced order POD subspace is obtained by the snapshots method [19].
More precisely, if we discretize the time interval to M points, then the snapshots set is given as follows:
S = {v̄(ti) i = 1, ..., M}. The associated POD eigenmodes Φn, n = 1, ..., M are solutions of the
following eigenvalues problems given the temporal correlations matrix:

Cij = (v̄ (ti) , v̄
(
tj
)
), (1)

of size M×M. We denote by An = (Ai,n)1≤i≤M for n = 1, ..., M, a set of orthonormal eigenvectors of
the matrix C. Then, the POD-eigenmodes associated with v̄, are given by:

Φn(x) =
1

√
λn M

M

∑
i=1

Ai,nv̄(ti, x), ∀x ∈ Ω ∀n = 1, ..., M, (2)

where (λn)n=1,...,M is the decreasing sequence of the positive eigenvalues of the correlations matrix C.
To achieve the POD reduced order modeling of the filtered incompressible Navier–Stokes

equations, the approximated velocity field is expressed in the reduced order POD subspace:

ṽ(t, x) =
N

∑
n=1

an(t)Φn(x), ∀x ∈ Ω, (3)

where N << M denotes the number of retained high energetic POD modes, and a1(t), a2(t),..., aN(t)
are the temporal weights which are solutions of the following coupled dynamical system:

dan

dt
+ (div(ṽ(t)⊗ ṽ(t)), Φn) = ν (∆ṽ(t), Φn)−

1
ρ
(∇p(t), Φn)

(q, div(ṽ(t)))H0 = 0 ∀q ∈ H0

an(0) = (v0, Φn)

, (4)

where div denotes the divergence operator, p(t) is the pressure field, ρ the density, ν denotes the
kinematic viscosity, v0 is the initial condition of the velocity field and H0 is the subspace of the
divergence free X-functions.

We point out the fact that the equations upon which we perform the POD-Galerkin projection
are the continuous high-fidelity incompressible Navier–Stokes equations without any turbulence
model taken into account. So, our reduced order modeling formulation is the one associated with the
continuous Navier–Stokes equations. However, it is clear that the POD computation is associated with
High-Fidelity snapshots v̄(t) which are usually obtained from LES of the Navier–Stokes equations.

In general, the first POD mode Φ1(x) which describes the mean topology of the fluid flow is not
kept and a ROM of the fluid dynamics equations represents only the fluctuating part. However in
our case the first POD mode Φ1(x) is kept within the ROM. This could be very valuable when we are
interested in using the reduced order modeling in order to predict the flow with respect to parametric
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variations, or even for new geometries [20]. This enables the ROM to consider naturally the influence
of the velocity fluctuations on the velocity mean.

We point out the following two remarks concerning our formulation of the reduced
order modeling:

Remark 1. The POD modes contain only the energetic scales of the flow. The dissipative scales at the Taylor
macro-scale are not present in the basis.

Remark 2. The flow rate in the flow domain is not guaranteed except if penalization is added in the pressure
term to take into account the pressure difference between inlet and outlet.

We propose to tackle these remarks on account of a physical stabilization by satisfying the kinetic
energy budget.

2.2. Physical Stabilization by Satisfying the Kinetic Energy Budget

2.2.1. Enrichment of the POD-Galerkin ROM with the Flow Rate Driving Forces

If we integrate by part the pressure term in the reduced order model (4), then we get the
following equality:

(∇p(t), Φn) = − (p(t), div(Φn)) +
∫

δΩ
p(t)(Φn(x),~n(x))R3 dδΩ, (5)

where~n is the normal vector to the domain boundaries δΩ.
Using the fact that the incompressibility constraint is also verified by the velocity POD modes,

the pressure term could be written:

(∇p(t), Φn) =
∫

δΩ
p(t)(Φn(x),~n(x))R3 dδΩ. (6)

We propose to model the pressure difference between the inlet Γin and the outlet, because of a
penalization for the flow rate. This could be written mathematically as follows:

N

∑
m=1

am(t)
∫

Γin

(Φn(x), Φm(x))R3 dΓin =
∫

Γin

(
Φn(x), vΓin(x)

)
R3 dΓin, ∀n = 1, ..., N, (7)

where vΓin is the inlet boundary condition of the corresponding High-Fidelity Navier–Stokes equations.
The reduced order model satisfying the flow rate production forces is now written as follows:

∀ n = 1, ..., N,

dan

dt
+ (div(ṽ(t)⊗ ṽ(t)), Φn) = ν (∆ṽ(t), Φn)

+τ

[
N

∑
m=1

am(t)
∫

Γin

(Φn(x), Φm(x))R3 dΓin −
∫

Γin

(
Φn(x), vΓin(x)

)
R3 dΓin

]
,

an(0) = (v̄(0), Φn)

(8)

where τ is the penalization coefficient and which has been chosen equal to 10,000 in the online
resolution of the reduced order modeling (8).

The flow rate penalization will enforce the following equality:

a1(t)Φ1(x) = V(x), ∀x ∈ Ω and ∀t,
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where V is a steady velocity field, that should represents the mean motion. Denote by vreduced(t) =
N

∑
n=2

an(t)Φn the fluctuating reduced order velocity, then the evolution of the turbulent kinetic energy

within the ROM (8) is given by:

1
2

d
dt

N

∑
n=2

a2
n = ν (∆ṽ(t)), ṽ(t)) (9)

−
(

div(vreduced(t)⊗V), vreduced(t)
)
−
(

div(V ⊗V), vreduced(t)
)

(10)

−
(

div(V ⊗ vreduced(t)), V
)
−
(

div(vreduced(t)⊗ vreduced(t)), V
)

(11)

= ν (∆ṽ(t)), ṽ(t)) (12)

−2
(

div(vreduced(t)⊗V), vreduced(t)
)
− 2

(
div(V ⊗V), vreduced(t)

)
(13)

The terms (13) in the assessment of the kinetic energy represents the production rate of the
kinetic energy.

2.2.2. Enrichment of the POD-Galerkin ROM with the Most Dissipative Scales Based on the
Velocity Gradient

To recover the dissipation rate of the fluctuating TKE in (8), we propose the following numerical
algorithm, based on the enrichment of velocity-based POD modes by gradient velocity-based POD
modes following a new a priori approach.

The proposed enrichment algorithm is the following:

• Compute the POD velocity modes Φn =
1

√
λn M

∑M
i=1 Ai,nv̄(ti), n = 1, ..., M and truncate at

N << M these POD modes. We note that N is intentionally chosen to be less than the needed
number of the POD modes to represent all the features of the coherent energetic scales of the
kinetic energy.

• Compute the fluctuating POD gradient modes Ψn =
1√

βn M
∑M

i=1 Bi,n∇v̄(ti), n = 1, ..., M

and truncate at N′ << M. Where Bn = (Bi,n)1≤i≤M for n = 1, ..., M, a set of
orthonormal eigenvectors of the temporal correlations matrix on the fluctuating velocity gradient:(
∇v̄(ti)−W,∇v̄(tj)−W

)
[L2(Ω)]9

, i, j = 1, ..., M (W the mean velocity gradient being removed
from these correlations), and (βn)n=1,...,M is the sequence of the eigenvalues of this latter matrix.

• Compute the following velocity basis functions: ΦE
n =

1√
βn M

∑M
i=1 Bi,nv̄(ti), n = 1, ..., N′.

• Perform the Gram–Schmidt orthonormalization process for the enriched set{
Φ1, ..., ΦN , ΦE

1 , ..., ΦE
N′
}

with respect to the energy-based inner product (., .). This step is
the key of the enforcement of dissipative energy modes with high singular values (βn)n=1,...,N′ in
early ranks of the reduced order basis, which is the opposite case when considering only the
classical velocity-based POD modes (dissipative energy modes are classified respectively with
very small singular values).

We will show that the new reduced order basis features new modes that represent larger ranges
of spatial scales than the ones encountered in the energetic classical velocity POD modes. We point out
also that the intentional a priori enforcement of these new modes within the first ranks of the reduced
order basis has a major role on the quality of the resulting reduced order model. We will show that it
ensures the stability of the reduced order model in an efficient fashion as a result of the availability of
the driving forces and the dissipative ones within a reduced number of velocity modes.
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3. Application of the Stabilization Approach to a Typical Aeronautical Injector

3.1. Flow Solver

For the present simulations, the low-Mach number solver YALES2 [21] for unstructured grids
is retained. This flow solver has been specifically tailored for the direct numerical simulation
and large-eddy simulation of turbulent reacting flows on large meshes counting several billion
cells using massively parallel super-computers [22,23]. It features a central fourth-order scheme
for spatial discretization while time integration of convective terms is performed with an explicit
fourth-order temporal scheme. The Poisson equation that arises from the low-Mach formulation of the
Navier–Stokes equations is solved with a highly efficient Deflated Preconditioned conjugated gradient
method [23].

3.2. Typical Aeronautical Injector of Re = 45,000 Lean Preccinsta Burner

3.2.1. Test Case Presentation

In what follows, we apply our new approach for a 3D unsteady, turbulent and incompressible fluid
flow in a fuel injection system. The main objective is to be able to have an efficient strategy in order to
compute precisely the aerodynamic field in the primary zone of the combustion chamber. The so-called
PRECCINSTA test case [24,25] is presented in Figure 1. This lean-premixed burner has been widely
studied in the combustion community to validate large-eddy simulation models [22,26–31].

Figure 1. The 3D unsteady turbulent and incompressible flow in a fuel injection system and in the
primary zone of the combustion chamber, given a constant inlet velocity, an outlet boundary condition
on the channel outlet and a wall boundary condition on the upper and lower walls of the channel.

The 3D turbulent flow in the complex configuration presented in Figure 1 is considered.
The kinematic viscosity ν = 10−5 m2/s yields a Reynolds number 45,000 based on the inlet velocity
and the length of the duct. The present High Fidelity simulation runs over 512 cores during 5 days in
order to obtain a physical simulation time equal to 250 ms. A velocity-based POD-Galerkin reduced
order modeling is performed, and an evaluation of its accuracy and efficiency is done before and after
applying the a priori enrichment by the dissipative modes. By efficiency, we mean the online time
needed to solve the mesh-independent ordinary differential Equation (8). In order to build the reduced
basis, 2500 snapshots of the solution and its gradient are taken, extracted at each time step of the
original HF simulation. We point out the fact that these 2500 snapshots are taken from 6644 time steps
of the high fidelity simulation corresponding to the final 25 ms of its total physical time. We precise
that these 25 ms represent two times the flow through time (FTT) of this test case.
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3.2.2. POD Modes Computation for the Preccinsta

The velocity-based and gradient velocity-based POD modes were computed through a distributed
snapshots POD performed in the YALES2 code. The CPU ressources needed for this computation
are 768 cores (24 nodes), to guarantee a memory availability to read the 2500 time snapshots.
The computation runs during 6 hours for the velocity-based POD modes and 9 hours for the gradient
velocity-based POD modes. These POD modes for the velocity and gradient velocity fields are shown
respectively starting from Figure 2–17.

Figure 2. Velocity proper orthogonal decomposition (POD) mode Φ1.

Figure 3. Velocity POD mode Φ2.

Figure 4. Velocity POD mode Φ3.

Figure 5. Velocity POD mode Φ4.

Figure 6. Velocity POD mode Φ5.
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Figure 7. Velocity POD mode Φ6.

Figure 8. Velocity POD mode Φ7.

Figure 9. Velocity POD mode Φ8.

Figure 10. Velocity POD mode Φ9.

Figure 11. Velocity POD mode Φ10.

Figure 12. Velocity POD mode Φ11.
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Figure 13. Velocity POD mode Φ12.

Figure 14. Fluctuating gradient velocity POD mode Ψ1.

Figure 15. Fluctuating gradient velocity POD mode Ψ2.

Figure 16. Fluctuating gradient velocity POD mode Ψ3.

Figure 17. Fluctuating gradient velocity POD mode Ψ4.

We can see that the velocity-based POD modes contain the high-scales of the principal coherent
structures of the flow.

Interestingly, compared to the velocity-based POD modes, the velocity gradient-based POD ones
feature high-scales in the dissipative regions such as in the wake of the two channels of the swirler and
in the wake of the combustion chamber.

Moreover, if we compare the cumulative kinetic energies (Figures 18 and 19) associated
respectively with the velocity-based POD modes and the gradient velocity-based ones, we can see
that fewer than 10 velocity-based POD modes are sufficient to reproduce 90% of the high-scales TKE,
however we need a larger number of velocity gradient-based POD modes in order to reproduce 90%
of the small and dissipatives scales of the TKE. Then, it is clear that the dissipative scales are not
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considered in the velocity-based POD modes and should be added in order to preserve the energy
conservation within the ROM.

Figure 18. Cumulative kinetic energy of the velocity-based POD modes.

Figure 19. Cumulative kinetic energy of the velocity gradient-based POD modes.

3.2.3. The Enhanced Reduced Order Basis

We apply our a priori enforcement of the dissipative velocity modes defined previously by our
new approach in the following fashion:

• We choose N = 4 and start the enforcement by the new velocity modes from the 5th rank.
This choice is made because we want to limit the number of classical global POD modes which
do not exhibit at the end very large features of spatial scales, as we can see on the modes Φ5, Φ6,
Φ7, Φ8 and Φ9.

• We choose N′ = 50 because, as already discussed, we need a large number of velocity
gradient-based POD modes in order to reproduce 90% of the small and dissipatives scales
of the TKE as shown on Figure 19.

• We perform the Gram–Schmidt orthonormalization process for the enriched set{
Φ1, ..., ΦN , ΦE

1 , ..., ΦE
N′
}

with respect to the energy-based inner product (., .).

By applying our proposed algorithm with the preceding choices, we get a new velocity-based
reduced order basis as shown from Figures 20–31.

We give some further remarks in what follows:

• We recall that the choice N = 4 is done intentionally in order to retrieve some dissipative modes
at earlier stages than in the classical POD technique where we can see that even after 12 modes
we do not have any modes of large scale’s features.

• The fact that the dissipative energy modes appear at late stages in the classical POD technique with
very small singular values is the reason why we are not able to exploit their physical significance
even if we increase the dimension of the classical POD reduced order model.

• We add starting n = 5 velocity-based modes of high singular values and large features of scales.
• This enrichment by small scale enforcement and separation is the key to multi-scale reproduction

within the reduced order modeling. We precise once more that this approach is very different
than the ones based on the change of the inner product that defines the matrix of the correlations
between the instanteneous snapshots, typically the approach where the H1 inner product is
considered instead of the L2 inner product. By our approach we enable scale separation, then
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small scale’s enforcement, which is very hard to distinguish when performing a H1 correlations
matrix and then retrieving a complete POD basis: the small scales will remain dominated by
the L2 correlated large scales even if we perform this inner product change. Some authors use
mathematical calibration in order to retrieve the small scales [17].

The new velocity-based modes ΦE
5 , ΦE

6 , ΦE
7 , ΦE

8 and ΦE
9 show very large features of spatial

scales which was not observed within the classical global POD modes Φ5, Φ6, Φ7, Φ8 and Φ9.
The margin of variation of these large features, as we can see on Figures 24–28, ranges from 0 to 380 (see
Figures 25, 27 and 28). Moreover, the largest scales exhibit local structures in the fluid domain which
are the small vortices carrying out the dissipative energy by analogy with the gradient velocity-based
POD modes (see Figures 14–17).

In what follows, we call “dissipative ROM” the reduced order model computed using the
proposed enriched basis

(
ΦE

n
)

n, whereas “non-dissipative ROM” refers to the ROM using the classical
POD basis (Φn)n.

Figure 20. Velocity mode ΦE
1 = Φ1.

Figure 21. Velocity mode ΦE
2 = Φ2.

Figure 22. Velocity mode ΦE
3 = Φ3.

Figure 23. Velocity mode ΦE
4 = Φ4.
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Figure 24. Velocity mode ΦE
5 .

Figure 25. Velocity mode ΦE
6 .

Figure 26. Velocity mode ΦE
7 .

Figure 27. Velocity mode ΦE
8 .

Figure 28. Velocity mode ΦE
9 .

Figure 29. Velocity POD mode ΦE
10.
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Figure 30. Velocity mode ΦE
11.

Figure 31. Velocity mode ΦE
12.

3.2.4. The Temporal Coefficients and Kinetic Energy of the Enriched Reduced Order Model and the
Comparaison with the Classical POD-Galerkin Reduced Order Model

Figures 32–36 show the time history of the stabilized ROM amplitudes, when the stabilization
algorithm is performed by enrichment of N = 4 POD velocity modes with N′ = 50 dissipative
modes. We can see that these temporal coefficients obtained from the resolution of the reduced order
model for a time interval equal to 25 ms which corresponds to the total time from which our data set
was extracted in order to compute the POD modes for the velocity and the gradient velocity fields,
tend to stabilize at the end of this resolution (from time step 2000). This could be explained by the
order reduction using a limited number of modes, which means that the ROM needs to retrieve its
equilibrium before the conservation of the kinetic energy. The ROM exhibits periodic fluctuations
with a period of 2.2 ms which is the time scale of the precessing vortex core (PVC) associated with this
test case.

This proves that the dissipative modes play a major role in the evolution of the Turbulent Kinetic
Energy. Their introduction in the set of POD modes of the Galerkin ROM enables us to recover a better
time evolution of the TKE in the system with fewer modes, see Figure 37. If we compare on this plot
the kinetic energy evolutions respectively for the dissipative ROM and the non dissipative ROM, we
can see that in the non dissipative case the plot of the kinetic energy is far from stabilization on the
same time interval which is 25 ms.

Figure 32. Time histories of the modal weights a1(t) and a2(t) for 25 ms time resolution of stabilized
reduced order modeling (ROM)-POD.
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Figure 33. Time histories of the modal weights a3(t) and a4(t) for 25 ms time resolution of stabilized
ROM-POD.

Figure 34. Time histories of the modal weights a5(t) and a6(t) for 25 ms time resolution of stabilized
ROM-POD.

Figure 35. Time histories of the modal weights a7(t) and a8(t) for 25 ms time resolution of stabilized
ROM-POD.

Figure 36. Time histories of the modal weights a9(t) and a10(t) for 25 ms time resolution of stabilized
ROM-POD.
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Figure 37. On the left: evolution the turbulent kinetic energy (TKE) in the dissipative ROM for 25 ms
time resolution. On the right: evolution the TKE in the non-dissipative ROM for 25 ms time resolution.

These results are very encouraging to test the dynamic extrapolation of the stabilized reduced
order model, so that we could access in real time (without any further offline operations) the evolution
of the turbulent and incompressible flow outside the original snapshots data set. The first results of
the dynamic extrapolation are shown in Section 4 in what follows.

3.2.5. 3D Time Fields Obtained by the ROM and the High-Fidelity Model

In what follows we show in Figure 38 plots of the 3D reduced order velocity fields when the
stabilized ROM is applied, compared to the 3D high fidelity velocity fields obtained by LES. Large
scale features of the flow are clearly reproduced by the ROM even for very long time integrations.

Figure 38. X-magnitude of the high-fidelity simulation against reduced order velocity fields.

3.2.6. CPU Time for Offline and Online Computation

In Table 1, we evaluate the efficiency of the stabilized reduced order modeling with respect to
the High Fidelity simulation. Furthermore, we evaluate approximately the cost of the offline phase
(including the snapshots POD, the Galerkin projection and the stabilization when applied) and the
online ROM phase.

We precise that the speed-up is defined by the ratio of the ROM return time and the YALES2
return time. As a consequence of the proposed strategy we are able to enhance the accuracy of the
reduced order modeling with a very good efficiency, regarding the online resolution. Furthermore,
the offline effort associated with the additional stabilization algorithm scales with the high fidelity
YALES2 return time.

It is important to note that the steps which are the most CPU consuming in the offline stage are the
velocity-based POD and the gradient velocity-based one computations, followed by the stabilization
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by Gram–Schmidt. This took 18 h over 768 cores (24 nodes are required), because of the memory
cost needed to read all of the 2500 time snapshots. This operation was not well distributed over the
768 cores due to the following issue: a temporal snapshot was not post-processed as one file per
subdomain, i.e. the number of solution files per time step was less than the number of mesh partitions.
This means that the running cores are working the available memory on the saved nodes in order
to read lots of data per process. However, the Galerkin projection of the Navier–Stokes equations’
operators took only three minutes over 768 cores. This is a consequence of the fact that we do not need
to read any snapshots but, we read only the reduced number of the enhanced reduced order vectors
and, we perform distributed scalar product and classical differentiation operations which scale with
the mesh complexity but are very well parallelized due to distributed tasks on the mesh parts.

Table 1. Offline and online computational cost.

Operation Wall Clock Time

High-fidelity YALES2 solver (512 cores) 5 days
Velocity-based POD + Disipative modes computation (768 cores) 15 h

Stabilization by Gram–Schmidt (768 cores) 3 h
Galerkin projection (768 cores) 3 min

Time python ROM-POD solver (1 core) 3.7 s
Speed up factor 108

4. Temporal Extrapolation of the Dissipative ROM

Running the reduced order model for 250 ms (i.e., 10 times longer than 25 ms that is
the time interval over which the POD basis has been performed), yields the dynamic weight
coefficients (Figures 39–43) and the evolution of the turbulent kinetic energy represented on Figure 44.
These coefficients were obtained as a consequence of the run of the stable ROM over 1 core. In this
case, we can legitimately state that the speed up of the reduced order modeling is 108, due to the fact
that we are accessing physical solutions that were not seen by the offline phase and the learning phase
of the ROM.

Figure 39. Time histories of the modal weights a1(t) and a2(t) for 250 ms time resolution of stabilized
ROM-POD (ten times further than the total time of the snapshots data set).
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Figure 40. Time histories of the modal weights a3(t) and a4(t) for 250 ms time resolution of stabilized
ROM-POD (ten times further than the total time of the snapshots data set).

Figure 41. Time histories of the modal weights a5(t) and a6(t) for 250 ms time resolution of stabilized
ROM-POD (ten times further than the total time of the snapshots data set).

Figure 42. Time histories of the modal weights a7(t) and a8(t) for 250 ms time resolution of stabilized
ROM-POD (ten times further than the total time of the snapshots data set).
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Figure 43. Time histories of the modal weights a9(t) and a10(t) for 250 ms time resolution of stabilized
ROM-POD (ten times further than the total time of the snapshots data set).

Figure 44. Time history of the TKE evolution in the dissipative ROM for 250 ms (ten times further than
the total time of the snapshots data set).

5. Conclusions and Prospects

A new methodology is proposed for the stabilisation of Galerkin reduced order models by POD
for the turbulent and incompressible 3D Navier–Stokes equations. The method is based on adding the
necessary physics in the new reduced order space, so that all the scales modeled in the high-fidelity
Navier–Stokes equations are taken into account by the reduced order model. The only ingredient which
is not represented by the retained POD modes for the reduction process in the classical methodology,
is the small rank scales which are responsible for the dissipation of the turbulent kinetic energy.
This ingredient is added as a result of an a priori enrichment strategy and an enforcement to the
velocity-based POD modes, by a minimal number of new velocity modes which contain the low
dissipative energy in the new reduced order basis. This strategy shows a very good performance when
applied to an unsteady turbulent flow of Reynolds 45,000 in a typical aeronautical injection system.

The prospects of this work are the use of the proposed stable reduced model in order to perform
time extrapolation, that could be a way to study the limit cycle of the Precessing Vortex Core of an
aeronautical injection system.
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Abbreviations

The following abbreviations are used in this manuscript:

ROM Reduced order modeling
POD Proper orthogonal decomposition
PVC Precessing vortex core
SVD Singular value decomposition
HF High-fidelity
LES Large eddy simulation
FTT Flow through time
TKE Turbulent kinetic energy

References

1. Couplet, M.; Sagaut, P.; Basdevant, C. Intermodal energy transfers in a proper orthogonal
decomposition-Galerkin representation of a turbulent separated flow. J. Fluid Mech. 2003, 491, 275–284.
[CrossRef]

2. Rowley, C.; Colonius, T.; Murray, R. Model Reduction for compressible flows using POD and Galerkin
projection. Phys. D Nonlinear Phenom. 2004, 189, 115–129. [CrossRef]

3. Baiges, J.; Codina, R.; Idelsohn, S. Reduced-order subscales for POD models. Comput. Methods Appl.
Mech. Eng. 2015, 291, 173–196. [CrossRef]

4. Balajewicz, M.; Tezaur, I.; Dowell, E. Minimal subspace rotation on the Stiefel manifold for stabilization and
enhancement of projection-based reduced order models for the incompressible Navier–Stokes equations.
J. Comput. Phys. 2016. [CrossRef]

5. Xie, X.; Wells, D.; Wang, Z.; Iliescu, T. Approximate Deconvolution Reduced Order Modeling.
Comput. Methods Appl. Mech. Eng. 2017, 313, 512–534. [CrossRef]

6. Mohebujjaman, M.; Rebholz, L.G.; Xie, X.; Iliescu, T. Energy balance and mass conservation in reduced order
models of fluid flows. J. Comput. Phys. 2017, 346, 262–277. [CrossRef]

7. McLaughlen, B.; Peterson, J.; Ye, M. Stabilized reduced order models for the advection-diffusion-reaction
equation using operator splitting. Comput. Math. Appl. 2016, 71, 2407–2420. [CrossRef]

8. Carlberg, K.; Choi, Y.; Sargsyan, S. Conservative model reduction for finite-volume models. J. Comput. Phys.
2017, 371, 280–314. [CrossRef]

9. Stabile, G.; Hijazi, S.; Mola, A.; Lorenzi, S.; Rozza, G. POD-Galerkin reduced order methods for CFD using
Finite Volume Discretisation: Vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 2017,
8, 210–236. [CrossRef]

10. Stabile, G.; Rozza, G. Finite volume POD-Galerkin stabilized reduced order methods for the parametrised
incompressible Navier–Stokes equations. Comput. Fluids 2018, 173, 273–284. [CrossRef]

11. Amsallem, D.; Farhat, C. On the Stability of Reduced-Order Linearized Computational Fluid Dynamics
Models Based on POD and Galerkin Projection: Descriptor vs Non-Descriptor Forms. In Reduced Order
Methods for Modeling and Computational Reduction; Quarteroni, A., Rozza, G., Eds.; Springer International
Publishing: Cham, Switzerland, 2014; pp. 215–233.

12. Akhtar, I.; Nayfeh, A.H.; Ribbens, C.J. On the stability and extension of reduced-order Galerkin models in
incompressible flows. Theor. Comput. Fluid Dyn. 2009, 23, 213–237. [CrossRef]

13. Amsallem, D.; Farhat, C. Stabilization of projection-based reduced-order models. Int. J. Numer. Methods Eng.
2012, 91, 358–377. [CrossRef]

14. Wang, Q.; Jan, S.H.; Ray, D. Non-intrusive reduced order modeling of unsteady flows using artificial neural
networks with application to a combustion problem. J. Comput. Phys. 2019, 384, 289–307. [CrossRef]

15. Lapeyre, C.J.; Misdariis, A.; Casard, N.; Veynant, D.; Poinsot, T. Training convolutional neural networks to
estimate turbulent sub-grid scale reaction rates. Combust. Flame 2019, 203, 255–264. [CrossRef]

16. Xie, X.; Zhang, G.; Webster, C.G. Data Driven Reduced Order Modeling of Fluid Dynamics Using Linear
Multistep Network. arXiv 2018, doi:arXiv:1809.07820. [CrossRef]

17. Iollo, A.; Lanteri, S.; Desideri, J. Stability properties of POD–Galerkin approximations for the compressible
Navier–Stokes equations. Theor. Comput. Fluid Dyn. 2000, 13, 377–396. [CrossRef]

http://dx.doi.org/10.1017/S0022112003005615
http://dx.doi.org/10.1016/j.physd.2003.03.001
http://dx.doi.org/10.1016/j.cma.2015.03.020
http://dx.doi.org/10.1016/j.jcp.2016.05.037
http://dx.doi.org/10.1016/j.cma.2016.10.005
http://dx.doi.org/10.1016/j.jcp.2017.06.019
http://dx.doi.org/10.1016/j.camwa.2016.01.032
http://dx.doi.org/10.1016/j.jcp.2018.05.019
http://dx.doi.org/10.1515/caim-2017-0011
http://dx.doi.org/10.1016/j.compfluid.2018.01.035
http://dx.doi.org/10.1007/s00162-009-0112-y
http://dx.doi.org/10.1002/nme.4274
http://dx.doi.org/10.1016/j.jcp.2019.01.031
http://dx.doi.org/10.1016/j.combustflame.2019.02.019
https://arxiv.org/abs/1809.07820v1
http://dx.doi.org/arXiv:1809.07820
http://dx.doi.org/10.1007/s001620050119


Math. Comput. Appl. 2019, 24, 45 21 of 21

18. Guedot, L.; Lartigue, G.; Moureau, V. Numerical study of spray/precessing vortex core interaction in
realistic swirling flows. In Proceedings of the 10th International ERCOFTAC Symposium on Engineering
Turbulence Modelling and Measurements, Marbella, Spain, 17–19 September 2014.

19. Sirovich, L. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling. Q. Appl. Math.
1987, 45, 583–590. [CrossRef]

20. Akkari, N.; Mercier, R.; Moureau, V. Geometrical Reduced Order Modeling (ROM) by Proper Orthogonal
Decomposition (POD) for the incompressible Navier Stokes equations. In Proceedings of the 2018 AIAA
Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018.

21. Moureau, V.; Domingo, P.; Vervisch, L. Design of a massively parallel CFD code for complex geometries.
Comptes Rendus Mécanique 2011, 339, 141–148. [CrossRef]

22. Moureau, V.; Domingo, P.; Vervisch, L. From Large-Eddy Simulation to Direct Numerical Simulation of a
Lean Premixed Swirl Flame: Filtered Laminar Flame-PDF Modeling. Combust. Flame 2011, 158, 1340–1357.
[CrossRef]

23. Malandain, M.; Maheu, N.; Moureau, V. Optimization of the deflated conjugate gradient algorithm for the
solving of elliptic equations on massively parallel machines. J. Comput. Phys. 2013, 238, 32–47. [CrossRef]

24. Meier, W.; Weigand, P.; Duan, X.R.; Giezendanner-Thoben, R. Detailed characterization of the dynamics of
thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 2007, 150, 2–26. [CrossRef]

25. Weigand, P.; Duan, X.R.; Meier, W.; Meier, U.; Aigner, M.; Bérat, C. Experimental Investigations of an
Oscillating Lean Premixed CH4/Air Swirl Flame in a Gas Turbine Model Combustor. In Proceedings of the
European Combustion Meeting, Louvain-la-Neuve, Belgium, 3–6 April 2005; p. 235.

26. Lartigue, G.; Meier, U.; Berat, C. Experimental and numerical investigation of self-excited combustion
oscillations in a scaled gas turbine combustor. Appl. Therm. Eng. 2004, 24, 1583–1592. [CrossRef]

27. Roux, S.; Lartigue, G.; Poinsot, T.; Meier, U.; Bérat, C. Studies of mean and unsteady flow in a swirled
combustor using experiments, acoustic analysis, and large eddy simulations. Combust. Flame 2005, 141, 40–54.
[CrossRef]

28. Moureau, V.; Minot, P.; Pitsch, H.; Bérat, C. A ghost-fluid method for large-eddy simulations of premixed
combustion in complex geometries. J. Comput. Phys. 2007, 221, 600–614. [CrossRef]

29. Fiorina, B.; Vicquelin, R.; Auzillon, P.; Darabiha, N.; Gicquel, O.; Veynante, D. A filtered tabulated chemistry
model for LES of premixed combustion. Combust. Flame 2010, 157, 465–475. [CrossRef]

30. Franzelli, B.; Riber, E.; Gicquel, L.Y.M.; Poinsot, T. Large Eddy Simulation of Combustion Instabilities in a
Lean Partially Premixed Swirled Flame. Combust. Flame 2012, 159, 621–637. [CrossRef]

31. Lourier, J.M.; Stöhr, M.; Noll, B.; Werner, S.; Fiolitakis, A. Scale Adaptive Simulation of a thermoacoustic
instability in a partially premixed lean swirl combustor. Combust. Flame 2017, 183, 343–357. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/qam/910464
http://dx.doi.org/10.1016/j.crme.2010.12.001
http://dx.doi.org/10.1016/j.combustflame.2010.12.004
http://dx.doi.org/10.1016/j.jcp.2012.11.046
http://dx.doi.org/10.1016/j.combustflame.2007.04.002
http://dx.doi.org/10.1016/j.applthermaleng.2003.10.026
http://dx.doi.org/10.1016/j.combustflame.2004.12.007
http://dx.doi.org/10.1016/j.jcp.2006.06.031
http://dx.doi.org/10.1016/j.combustflame.2009.09.015
http://dx.doi.org/10.1016/j.combustflame.2011.08.004
http://dx.doi.org/10.1016/j.combustflame.2017.02.024
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Framework
	POD-Galerkin Reduced Order Modeling Applied to the Unsteady and Incompressible Navier–Stokes Equations
	Physical Stabilization by Satisfying the Kinetic Energy Budget
	Enrichment of the POD-Galerkin ROM with the Flow Rate Driving Forces
	Enrichment of the POD-Galerkin ROM with the Most Dissipative Scales Based on the Velocity Gradient


	Application of the Stabilization Approach to a Typical Aeronautical Injector
	Flow Solver
	Typical Aeronautical Injector of Re = 45,000 Lean Preccinsta Burner
	Test Case Presentation
	POD Modes Computation for the Preccinsta
	The Enhanced Reduced Order Basis
	The Temporal Coefficients and Kinetic Energy of the Enriched Reduced Order Model and the Comparaison with the Classical POD-Galerkin Reduced Order Model
	3D Time Fields Obtained by the ROM and the High-Fidelity Model
	CPU Time for Offline and Online Computation


	Temporal Extrapolation of the Dissipative ROM
	Conclusions and Prospects
	References

