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Abstract

:

Three new iterative methods for solving scalar nonlinear equations using weight function technique are presented. The first one is a two-step fifth order method with four function evaluations which is improved from a two-step Newton’s method having same number of function evaluations. By this, the efficiency index of the new method is improved from 1.414 to 1.495. The second one is a three step method with one additional function evaluation producing eighth order accuracy with efficiency index 1.516. The last one is a new fourth order optimal two-step method with efficiency index 1.587. All these three methods are better than Newton’s method and many other equivalent higher order methods. Convergence analyses are established so that these methods have fifth, eighth and fourth order respectively. Numerical examples ascertain that the proposed methods are efficient and demonstrate better performance when compared to some equivalent and optimal methods. Seven application problems are solved to illustrate the efficiency and performance of the proposed methods.
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1. Introduction


This paper concerns the numerical solution of nonlinear equations of the general form f(x)=0. Such equations appear in real world problems frequently while there is no closed form solution for them. That is why the numerical solution of these types of equations draws much attention nowadays. One of the common problems encountered in science and engineering is: given a single variable function f(x), find the values of x for which f(x)=0. The root of such nonlinear equations may be real or complex. There are two general types of methods available to find the roots of algebraic and transcendental equations. One of them is the direct methods which are not always applicable to find the roots and the other one is iterative methods based on the concept of successive approximation. In the second type, the general procedure for solving is to start with some initial approximation near to the root and attain a sequence of iterates which in the limit converges to the true solution. The most efficient existing root-solvers are based on multi-point iterations since they overcome theoretical limits of one-point methods concerning the convergence order and computational efficiency.



To determine the solution of nonlinear equations, many iterative methods have been proposed in [1,2,3] and the references therein. Construction of iterative methods for nonlinear equations is one of the vital area of research in numerical analysis. Among them, the most familiar iterative without memory method is the Newton–Raphson method which is given by


ψ2ndNM(x)=xn-f(xn)f′(xn).



(1)







This method is an optimal method with efficiency index (EI) 1.414. Another well known method is the Halley’s iteration method given by


ψ3rdHL(x)=xn-2f(xn)f′(xn)2f′(xn)2-f(xn)f″(xn).



(2)







To accelerate the convergence of Newton’s method, many authors have modified it as we can see in [4,5]. Significant among them is the Arithmetic mean Newton’s method (3rdAM) [5] and the other one is the Harmonic mean Newton’s method both having cubic convergence. These two-step methods are respectively given as follows:


ψ3rdAM(x)=xn-2f(xn)f′(xn)+f′(ψ2ndNM(x)),



(3)






ψ3rdHM(x)=xn-f(xn)21f′(xn)+1f′(ψ2ndNM(x)).



(4)







The efficiency index of the methods (3) and (4) is 1.442 with three function evaluations per iteration.



Recently, some fourth and eighth order optimal iterative methods have been developed in [6,7]. A more extensive list of references as well as a survey on the progress made in the class of multi-point methods is found in the recent book by Petkovic et al. [8]. In the recent past, many higher order optimal and non-optimal iterative methods have been developed using the idea of weight functions (see [7,9,10,11,12,13]).



The main objective of this paper is to construct multi-step iterative formula without memory with improved convergence and better efficiency index. Therefore, we have presented three new Newton-type iterative methods having fifth, eighth and fourth order convergence whose efficiency indices are 1.495, 1.516 and 1.587 respectively. Among these three methods, fourth order method is a class of optimal method. Section 2 discusses the preliminaries and Section 3 presents the construction of new methods. Section 4 analyses the convergence order of the proposed methods. In Section 5, the performances of new methods are compared with some well known equivalent methods. Seven real life application problems are taken in Section 6, where all the listed methods and the proposed methods are numerically verified. Finally, conclusions are given in Section 7.




2. Preliminaries


The following definitions given below are required for the ensuing convergence analysis.



Definition 1

([14]). If the sequence {xn} tends to a limit x* in such a way that


limn→∞xn+1-x*(xn-x*)p=C








for p≥1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error constant. If p=1, p=2 or p=3, the convergence is said to be linear, quadratic or cubic, respectively.



Let en=xn-x*, then the relation


en+1=Cenp+Oenp+1



(5)




is called the error equation. The value of p is called the order of convergence of the method.





Definition 2

([15]). The Efficiency Index (EI) is given by


EI=p1d,



(6)




where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.





Let xn+1=ψ(xn) define an Iterative Function (I.F.). Let xn+1 be determined by new information at xn,ϕ1(xn),...,ϕi(xn),i≥1 and no old information is reused. Thus, xn+1=ψ(xn,ϕ1(xn),...,ϕi(xn)) is called a multi-point I.F. without memory.



Kung–Traub Conjecture [16]: Let ψ be an iterative function without memory with d evaluations. Then p(ψ)≤popt=2d-1, where popt is the maximum order.



We state below a theorem which helps us to find out the order of the multi-point methods.



Theorem 1

([17]). Let ψ1(x),ψ2(x),...ψs(x) be iterative functions with the orders p1,p2,...,ps, respectively. Then the composition of iterative functions ψ(x)=ψ1(ψ2(....(ψs(x))...)) defines the iterative method of order p1p2...ps.






3. Construction of New Methods


Consider the two-step Newton’s method discussed in [18] given below:


ψ2ndNM(x)=xn-f(xn)f′(xn);ψ4thNR(x)=ψ2ndNM(x)-f(ψ2ndNM(x))f′(ψ2ndNM(x)).



(7)







As per Theorem 1, method (7) has fourth-order convergence and it requires four function evaluations. However, the efficiency index of (7) does not increase and remains equal to Newton’s method (1.414).



New Fifth Order Method (5thPJ): Our aim is to improve the order and efficiency index of (7) by proposing a modification of this method. We achieve this by introducing a weight function G(η) as follows:


ψ2ndNM(x)=xn-f(xn)f′(xn);ψ5thPJ(x)=ψ2ndNM(x)-f(ψ2ndNM(x))f′(ψ2ndNM(x))G(η),



(8)




where G(η), η=f′(ψ2ndNR(x))f′(xn), is chosen as per the requirement of the error term in order to produce fifth order convergence; details are found in the next section. As a consequence, the order of convergence has improved from four to five with four function evaluations and the efficiency index has increased from 1.414 to 1.495.



New Eighth Order Method (8thPJ): Further, we extend 5thPJ method by taking one more weighted Newton’s step and obtain a new eighth order method with one more function evaluation as follows:


ψ2ndNM(x)=xn-f(xn)f′(xn);ψ5thPJ(x)=ψ2ndNM(x)-f(ψ2ndNM(x))f′(ψ2ndNM(x))G(η);ψ8thPJ(x)=ψ5thPJ(x)-f(ψ5thPJ(x))f′(ψ2ndNM(x))(H(η)),



(9)




where H(η) is a weight function. The efficiency index of this method is 1.516, which is better than that of the methods (7) and (8).



3.1. Further Development


Class of Optimal Fourth Order Method: A new two-step optimal iterative method of order four, requiring three function evaluations per iteration, where it uses weight function θ(τ) is presented. This means the new class satisfies the Kung–Traub conjecture and it is given below:


ψ2ndNM(x)=xn-f(xn)f′(xn);xn+1=xn-f(xn)f′(xn)×θ(τ),



(10)




where τ=f(ψ2ndNM(x))f(xn). The above method (10) has fourth order convergence.





4. Convergence Analysis


In order to establish the convergence of the proposed methods (8) and (9), we prove the following theorem with the help of Mathematica software.



Theorem 2.

Let f,G,H:D⊂R→R be sufficiently smooth functions in the neighborhood of the root. If f(x) has a simple root x* in the open interval D and x0 is chosen in a sufficiently small neighborhood of x*, then the methods (8) and (9) have local fifth and eighth-order convergence, when


G(1)=1,G′(1)=0,G″(1)=1/4,|G‴(1)|<∞,H(1)=1,H′(1)=0,H″(1)=1/2,|H‴(1)|<∞.



(11)







These fifth and eighth order methods respectively satisfy the following error bounds:


ψ5thPJ(x)-x*=(4c24-c22c3)en5+O(en6),ψ8thPJ(x)-x*=2c23(-4c22+c3)2en8+O(en9),








where en=xn-x* and ck=f(k)(x*)k!f′(x*), k≥2.





Proof. 

Expanding f(xn) and f′(xn) about x* by Taylor’s method, one gets


f(xn)=f′(x*)[en+c2en2+c3en3+c4en4+c5en5+c6en6+…]



(12)




and


f′(xn)=f′(x*)[1+2c2en+3c3en2+4c4en3+5c5en4+6c6en5+7c7en6+…].



(13)







Now substituting (12) and (13) in (1), we get


ψ2ndNM=x*+c2en2-2(c22-c3)en3+(4c23-7c2c3+3c4)en4+(-8c24+20c22c3-6c32-10c2c4+4c5)en5+(16c25-52c23c3+33c2c32+28c22c4-17c3c4-13c2c5+5c6)en6+….



(14)







Expanding f(ψ2ndNM(x)) about x* and taking into account (14), we have


f(ψ2ndNM(x))=f′(x*)[c2en2-2(c22-c3)en3+(5c23-7c2c3+3c4)en4-2(6c24-12c22c3+3c32+5c2c4-2c5)en5+(28c25-73c23c3+34c22c4-17c3c4+c2(37c32-13c5)+5c6)en6+…].



(15)






f′(ψ2ndNM(x))=f′(x*)[1+2c22en2+2c2(-2c22+2c3)en3+(3c22c3+2c2(4c23-7c2c3+3c4))en4+(6c2c3(-2c22+2c3)+2c2(-8c24+20c22c3-6c32-10c2c4+4c5))en5+(4c23c4+3c3((-2c22+2c3)2+2c2(4c23-7c2c3+3c4))+2c2(16c25-52c23c3+33c2c32+28c22c4-17c3c4-13c2c5+5c6))en6+…].



(16)







Expanding the weight functions G(η) about 1, then we get


G(η)=G(1)+(η-1)G′(1)+12(η-1)2G″(1)+16(η-1)3G‴(1)+…,



(17)




where


η=f′(ψ2ndNM(x))f′(x)=1-2c2en+(6c22-3c3)en2-4(4c23-4c2c3+c4)en3+(40c24-61c22c3+9c32+22c2c4-5c5)en4+(-96c25+198c23c3-66c2c32-88c22c4+24c3c4+28c2c5-6c6)en5+(224c26-584c24c3-15c33+300c23c4+16c42+7c22(45c32-16c5)+30c3c5+c2(-194c3c4+34c6)-7c7)en6+O(en7).



(18)







Finally, using Equations (14)–(17) into (8), we have


ψ5thPJ(x)-x*=(4c24-c22c3)en5+O(en6),








which shows fifth order convergence.



Again Expanding the weight functions H(η) about 1, then we get


H(η)=H(1)+(η-1)H′(1)+12(η-1)2H″(1)+16(η-1)3H‴(1)+….



(19)







Now Expanding f(ψ5thPJ(x)) by using Taylor’s series about x* and taking into account (4), we have


f(ψ5thPJ(x))=(4c24-c22c3)en5+(-30c25+30c23c3-174c2c32-c22c4)en6+2(70c26-120c24c3-94c33+19c23c4-112c2c3c4+c22(1734c32-12c5))en7+(-525c27+1260c25c3-318c24c4-754c32c4-3c23(10274c32-16c5)+c2(4534c33-7c42-272c3c5)+c22(221c3c4-c6))en8+O(en9).



(20)







Now, using Equations (16), (19) and (20) into (9) then we have


ψ8thPJ(x)-x*=2c23(-4c22+c3)2en8+O(en9),








which shows eighth order convergence. □





The following theorem can be proved similar to the above theorem with the help of Mathematica software and hence proof is not given.



Theorem 3.

Let x*∈D be a simple zero of sufficiently differentiable function f:D⊂R→R, D is an open interval. If x0 is sufficiently close to x*, then the method (10) has convergence order four, when


θ(0)=1,θ′(0)=1,θ″(0)=4,|θ‴(0)|<∞



(21)




and it satisfies the error equation en+1=(5-θ‴(0))c23-c2c3en4+O(en5).





A Special Case of Optimal Fourth Order Method (4thPJ): For different choice of θ‴(0) in (21) will produce a different member of the fourth-order class. A particular case from the class of method (10) satisfying (21) with a specific weight function, for the choice of θ‴(0)=4, is given in the following:


ψ2ndNM(x)=xn-f(xn)f′(xn);xn+1=xn-f(xn)f′(xn)×1+τ+2(τ)2+23(τ)3.



(22)








5. Numerical Examples


In this section, several numerical examples are considered to confirm the convergence order and to illustrate the performance of the new methods 4thPJ, 5thPJ and 8thPJ. The new methods are compared with some existing methods such as 2ndNM, 3rdAM, 4thNR, 4thSBS, 4thCH, 5thFLM, 8thPKJ and 8thPKPDM which are given below. Note that all computations are carried out using variable precision arithmetic that uses floating point representation with 500 decimal accuracy using the Matlab software. The number of iterations (N), Error and cpu time in seconds are listed under the condition that Error=|xN-xN-1|<ϵ, where ϵ=10-50. In addition, to testify the theoretical order of convergence, we calculate the computational order of convergence (ρ) defined by


ρ=ln|(xN-xN-1)/(xN-1-xN-2)|ln|(xN-1-xN-2)/(xN-2-xN-3)|.











For demonstrating numerical results of equivalent methods, we have given below a few methods from literature:



A fourth order optimal method proposed by Sharifi–Babajee–Soleymani (4thSBS) [19] is given by


yn=xn-23f(xn)f′(xn),xn+1=xn-f(xn)41f′(xn)+3f′(yn)1+38f′(yn)f′(xn)-12-6964f′(yn)f′(xn)-13+f(xn)f′(yn)4.



(23)







Another fourth order optimal method proposed by Chun et al. (4thCH) [20] is given by


yn=xn-23f(xn)f′(xn),xn+1=xn-16f(xn)f′(xn)-5f′(xn)2+30f′(xn)f′(yn)-9f′(yn)2.



(24)







A fifth order method proposed by Liang Fang et al. (5thFLM) [21] is given by


ψ5thFLM(x)=ψ2ndNM(x)-5f′2(xn)+3f′2(ψ2ndNM(x))f′2(xn)+7f′2(ψ2ndNM(x))f(ψ2ndNM(x))f′(xn).



(25)







An optimal eighth order method proposed by Petkovic et al. (8thPNPDM) [8] is given by


ψ2ndNM(x)=xn-f(xn)f′(xn),z=xn-f(ψ2ndNM(x))f(xn)2-f(xn)f(ψ2ndNM(x))-f(xn)f(xn)f′(xn),ψ8thPNPDM(x)=zn-f(zn)f′(xn)φ(t)+f(zn)f(ψ2ndNM(x))-f(zn)+4f(zn)f(xn),whereφ(t)=1+2t+2t2-t3andt=f(ψ2ndNM(x))f(xn).



(26)







A non-optimal eighth order method proposed by Parimala et al. (8thPKJ) [22] is given by


yn=xn-23f(xn)f′(xn),wn=xn-f(xn)f′(yn)1+14τ(xn)-1+38τ(xn)-12,zn=wn-f(wn)f′(yn)1+32(η(xn)-1)+158(η(xn)-1)2,xn+1=zn-f(zn)f′(yn)1+32(η(xn)-1)+158(η(xn)-1)2,,whereτ(xn)=f′(yn)f′(xn),η(xn)=f′(xn)f′(yn).



(27)







The following examples are used for numerical verification:


f1(x)=sin(2cosx)-1-x2+esin(x3),x*=-0.7848959876612125352...f2(x)=xex2-sin2x+3cosx+5,x*=-1.2076478271309189270...f3(x)=sin(x)+cos(x)+x,x*=-0.4566247045676308244...f4(x)=(x+2)ex-1,x*=-0.4428544010023885831...f5(x)=x3+4x2-10,x*=1.3652300134140968457...f6(x)=x4cos(x2)-x5log(1+x2-π)+(π)2,x*=1.7728106144972171...f7(x)=x2+2x+5-2sinx-x2+3,x*=2.3319676558839640103...f8(x)=ln(x2+x+2)-x+1,x*=4.1525907367571583...











Table 1 shows the efficiency index of the new methods with some known methods. Table 2 and Table 3 display initial value x0, number of iteration (N), computational order of convergence (ρ), Error and CPU time (in seconds) for all the listed methods. From the computational results, we observe that all the proposed methods 4thPJ, 5thPJ and 8thPJ have a lower number of iterations when compared to the other equivalent methods for most of the test functions. In addition, it can be seen that the computational order of convergence perfectly coincides with the theoretical results. Based on the numerical results, it is observed that the presented methods produce converging roots for all the functions, whereas 4thSBS method and 8thPKPDM method diverge for the functions f1(x), f3(x), f4(x) and f2(x), f3(x), f4(x) respectively.




6. Some Real Life Applications


In this section we give some applications and compare the proposed methods to other well known methods:



Application 1: We consider the classical projectile problem [23] in which a projectile is launched from a tower of height h>0, with initial speed v and at an angle ϕ with respect to the horizontal distance onto a hill, which is defined by the function ω, called the impact function which is dependent on the horizontal distance, x. We wish to find the optimal launch angle ϕm which maximizes the horizontal distance. In our calculations, we neglect air resistance.



The path function y=P(x) that describes the motion of the projectile is given by


P(x)=h+xtanϕ-gx22v2sec2ϕ.



(28)







When the projectile hits the hill, there is a value of x for which P(x)=ω(x) for each value of x. We wish to find the value of ϕ that maximizes x.


ω(x)=P(x)=h+xtanϕ-gx22v2sec2ϕ.



(29)







Differentiating Equation (29) implicitly w.r.t. ϕ, we have


ω′(x)dxdϕ=xsec2ϕ+dxdϕtanϕ-gv2x2sec2ϕtanϕ+xdxdϕsec2ϕ.



(30)







Setting dxdϕ=0 in Equation (30), we have


xm=v2gcotϕm



(31)




or


ϕm=arctanv2gxm



(32)







An enveloping parabola is a path that encloses and intersects all possible paths. This enveloping parabola is obtained by maximizing the height of the projectile for a given horizontal distance x which will give the path that encloses all possible paths. Let w=tanϕ, then Equation (28) becomes


y=P(x)=h+xw-gx22v2(1+w2).



(33)







Differentiating Equation (33) w.r.t. w and setting y′=0, Henelsmith obtained


y′=x-gx2v2(w)=0,w=v2gx,



(34)




so that the enveloping parabola is defined by ym=ρ(x)=h+v22g-gx22v2.



The solution to the projectile problem requires first finding xm which satisfies ρ(x)=ω(x) and solving for ϕm in Equation (32) because we want to find the point at which the enveloping parabola ρ intersects the impact function ω, and then find ϕ that corresponds to this point on the enveloping parabola. We choose a linear impact function ω(x)=0.4x with h=10 and v=20. We let g=9.8. Then we apply our I.F.s starting from x0=30 to solve the non-linear equation


f(x)=ρ(x)-ω(x)=h+v22g-gx22v2-0.4x,








whose root is given by xm=36.102990117... and ϕm=arctanv2gxm=48.5∘.



Figure 1 shows the intersection of the path function, the enveloping parabola and the linear impact function for this application when 5thPJ method is applied.



Application 2: The depth of embedment x if a sheet-pile wall is governed by the equation [24]:


x=x3+2.87x2-10.284.62.











It can be rewritten as


f(x)=x3+2.87x2-10.284.62-x.











An engineer has estimated the depth to be x=2.5. Here we find the root of the equation f(x)=0 with initial guess 2.5 and compare some well known methods to our methods.



Application 3: The vertical stress σz generated at point in an elastic continuum under the edge of a strip footing supporting a uniform pressure q is given by Boussinesq’s formula [24] to be:


σz=qπx+CosxSinx.











A scientist is interested to estimate the value of x at which the vertical stress σz will be 25 percent of the footing stress q. Initially it is estimated that x=0.4. The above can be rewritten for σz being equal to 25 percent of the footing stress q:


f(x)=x+CosxSinxπ-14.











Now we find the root of the equation f(x)=0 with initial guess 0.4 and compare some well known methods to our methods.



Application 4: Generally, many problems in scientific and engineering which involve determination of any unknown appearing implicitly give rise to a root-finding problem. The Planck’s radiation law problem appearing in [25,26] is one among them and it is given by


φ(λ)=8πchλ-5ech/λkT-1,



(35)




which calculates the energy density within an isothermal blackbody. Here, λ is the wavelength of the radiation; T is the absolute temperature of the blackbody; k is Boltzmann’s constant; h is the Planck’s constant; and c is the speed of light. Suppose we would like to determine wavelength λ, which corresponds to maximum energy density φ(λ). From Equation (35), we get


φ′(λ)=8πchλ-6ech/λkT-1(ch/λkT)ech/λkTech/λkT-1-5=A·B.











It can be checked that a maxima for φ occurs when B=0, that is when (ch/λkT)ech/λkTech/λkT-1=5.



Here, taking x=ch/λkT, the above equation becomes


1-x5=e-x.



(36)







Let us define


f(x)=e-x-1+x5.



(37)







The aim is to find a root of the equation f(x)=0. Obviously, one of the root x=0 is not taken for discussion. As argued in [25], the left-hand side of Equation (36) is zero for x=5 and e-5≈6.74×10-3. Hence, it is expected that another root of the equation f(x)=0 might occur near x=5. The approximate root of the Equation (37) is given by x*≈4.96511423174427630369. Consequently, the wavelength of radiation (λ) corresponding to which the energy density is maximum is approximated as λ≈ch(kT)4.96511423174427630369.



Application 5: Study of the multipactor effect [27]:



The trajectory of an electron in the air gap between two parallel plates is given by


x(t)=x0+v0+eE0mωsin(ωt0+Ψ)(t-t0)+eE0mω2cos(ωt+Ψ)+sin(ω+Ψ),



(38)




where E0sin(ωt+Ψ) is the RF electric field between plates at time t0, x0 and v0 are the position and velocity of the electron, e and m are the charge and mass of the electron at rest respectively. For the particular parameters, one can deal with a simpler expression as follows:


f(x)=x-12cos(x)+π4.



(39)







The required zero of the above function is x*≈-0.3094661392082146514....



Application 6: Van der Waals equation representing a real gas is given by [28]:


(P+an2V2)(V-nb)=nRT.











Here, a and b are parameters specific for each gas. This equation reduces to a nonlinear equation given by


PV3-(nbP+nRT)V2+an2V-an3b=0.











By using the particular values for unknown constants, one can obtain the following nonlinear function


f(x)=0.986x3-5.181x2+9.067x-5.289,



(40)




having three zeros. Out of them, two are complex zeros and the third one is a real zero. However, our desired root is x*≈1.9298462428478622184875...



Application 7: Fractional conversion in a chemical reactor [29]: In the following expression


f(x)=x1-x-5log0.4(1-x)0.4-0.5x+4.45977,



(41)




x represents the fractional conversion of species A in a chemical reactor. Our required zero to this problem is x*≈-0.8197851865....



Table 4, Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10 display the numerical results with respect to number of iterations (N), Error, order of convergence (ρ) and CPU time (in seconds). The numerical experiments of the above real life problems demonstrate the validity and applicability of the proposed methods. It is observed that the presented methods take less CPU time and equal number of iterations among the equivalent compared methods. This shows that the proposed methods are very much suitable for all the application problems. In most of the cases, the proposed methods show better performance in comparison to the existing methods.




7. Conclusions


We have presented a modification of Newton’s method producing fifth, eighth and fourth order convergence for solving nonlinear equations. At each iteration, the methods require respectively four, five and three function evaluations. The optimal methods 4thSBS and 8thPKPDM diverge for the functions f2(x), f3(x), f4(x) and f1(x), f3(x), f4(x) respectively for some initial points. For these functions, the proposed methods converge even though two methods are non-optimal. Moreover, the proposed new methods 5thPJ and 8thPJ require a lower number of iterations and less cpu time for convergence when compared with other methods. 4thPJ method also performs well when compared with equivalent methods. Table of efficiency indices shows that the new algorithms have better efficiency and perform better than classical Newton’s method and other existing non-optimal methods. Seven application problems are solved where the new methods produce better results than other compared methods. For all the applications, proposed methods consume less cpu time and perform equivalent to other compared methods with respect to iteration number and residual error. For application problems 1 and 4, 4thSBS method diverges, whereas the proposed methods converges. Hence, the new methods can be considered as very good competitors to Newton’s method and many other existing equivalent optimal/non-optimal methods.
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Figure 1. The enveloping parabola with linear impact function. 
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Table 1. Comparison of Efficiency Indices (EI) and Optimality.
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	Methods
	p
	d
	EI
	Optimal/Non-Optimal





	2ndNM
	2
	2
	1.414
	Optimal



	3rdAM
	3
	3
	1.442
	Non-optimal



	4thNR
	4
	4
	1.414
	Non-optimal



	4thSBS
	4
	3
	1.587
	Optimal



	4thCH
	4
	3
	1.587
	Optimal



	4thPJ
	4
	3
	1.587
	Optimal



	5thFLM
	5
	4
	1.495
	Non-optimal



	5thPJ
	5
	4
	1.495
	Non-optimal



	8thPKJ
	8
	5
	1.516
	Non-optimal



	8thPKPDM
	8
	4
	1.682
	Optimal



	8thPJ
	8
	5
	1.516
	Non-optimal
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Table 2. Numerical results for test functions.
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f(x)

	
Methods

	
x0

	
N

	
ρ

	
Error

	
CPU (s)

	
x0

	
N

	
ρ

	
Error

	
CPU (s)






	
f1(x)

	
2ndNM

	
-1.2

	
7

	
1.99

	
0

	
0.8132

	
-0.5

	
8

	
1.99

	
0

	
0.9678




	
3rdAM

	
5

	
3.00

	
6.5582 ×10-52

	
0.7480

	
6

	
2.99

	
5.5304 ×10-147

	
0.7804




	
4thNR

	
4

	
3.99

	
1.5646 ×10-60

	
0.5541

	
5

	
3.99

	
3.0230 ×10-141

	
0.7190




	
4thSBS

	
5

	
4.00

	
2.7218 ×10-133

	
0.7791

	
5

	
3.99

	
2.6895×10-58

	
0.8414




	
4thCH

	
4

	
4.00

	
2.3926 ×10-69

	
0.6136

	
5

	
3.99

	
5.7198 ×10-83

	
0.7323




	
4thPJ

	
5

	
3.99

	
3.8598 ×10-161

	
0.6428

	
5

	
3.99

	
2.6927 ×10-56

	
0.6831




	
5thFLM

	
4

	
4.99

	
7.3159 ×10-102

	
0.6233

	
5

	
5.00

	
5.3712 ×10-208

	
0.7877




	
5thPJ

	
4

	
4.99

	
3.9606 ×10-101

	
0.6101

	
5

	
5.00

	
1.5469 ×10-172

	
0.8262




	
8thPKPDM

	
Div

	
-

	
-

	
-

	
9

	
7.97

	
9.7884 ×10-89

	
1.5789




	
8thPKJ

	
3

	
7.56

	
3.9357 ×10-51

	
0.5658

	
4

	
8.00

	
2.5440 ×10-146

	
0.7457




	
8thPJ

	
4

	
7.99

	
0

	
0.6522

	
4

	
7.99

	
4.1301 ×10-109

	
0.6288




	
f2(x)

	
2ndNM

	
-2.0

	
11

	
2.00

	
0

	
1.1878

	
-0.9

	
9

	
2.00

	
0

	
1.0422




	
3rdAM

	
8

	
3.00

	
9.7915 ×10-131

	
1.1058

	
6

	
3.00

	
1.7913 ×10-57

	
0.8341




	
4thNR

	
6

	
3.99

	
1.8759 ×10-82

	
0.8596

	
5

	
3.99

	
3.3034 ×10-85

	
0.6873




	
4thSBS

	
6

	
4.00

	
2.8346 ×10-110

	
0.8757

	
Div

	
-

	
-

	
-




	
4thCH

	
6

	
3.99

	
1.3659 ×10-81

	
0.8342

	
6

	
3.99

	
1.7462 ×10-198

	
0.8838




	
4thPJ

	
7

	
3.99

	
2.6627 ×10-172

	
0.8589

	
6

	
3.99

	
4.1837 ×10-79

	
0.8242




	
5thFLM

	
6

	
4.99

	
2.1352 ×10-159

	
0.8704

	
5

	
5.00

	
4.4090 ×10-124

	
0.7426




	
5thPJ

	
6

	
4.99

	
2.8057 ×10-173

	
0.8623

	
5

	
5.00

	
2.0232 ×10-53

	
0.7656




	
8thPKPDM

	
5

	
8.00

	
5.8749 ×10-135

	
0.8416

	
119

	
8.00

	
1.0781 ×10-105

	
17.7770




	
8thPKJ

	
4

	
7.68

	
5.1416 ×10-51

	
0.7209

	
4

	
7.97

	
9.8731 ×10-88

	
0.7306




	
8thPJ

	
5

	
7.99

	
4.2577 ×10-170

	
0.7774

	
5

	
7.99

	
1.0553 ×10-221

	
0.8288




	
f3(x)

	
2ndNM

	
-1.2

	
7

	
2.00

	
0

	
0.8068

	
0.8

	
8

	
2.00

	
0

	
0.8805




	
3rdAM

	
5

	
3.00

	
1.4490 ×10-63

	
0.6772

	
6

	
3.00

	
1.2843 ×10-116

	
0.7820




	
4thNR

	
4

	
3.99

	
2.2852 ×10-81

	
0.5533

	
5

	
3.99

	
1.3264 ×10-122

	
0.6884




	
4thSBS

	
5

	
3.99

	
5.7143 ×10-64

	
0.7173

	
Div

	
-

	
-

	
-




	
4thCH

	
4

	
4.00

	
5.9510 ×10-56

	
0.6520

	
6

	
3.99

	
3.7788 ×10-121

	
0.9109




	
4thPJ

	
4

	
4.00

	
8.5723×10-55

	
0.5414

	
13

	
3.99

	
3.8629 ×10-71

	
1.7274




	
5thFLM

	
4

	
4.99

	
2.4053 ×10-120

	
0.5989

	
5

	
5.00

	
1.1557 ×10-131

	
0.7365




	
5thPJ

	
4

	
4.99

	
2.9953 ×10-120

	
0.5914

	
5

	
5.00

	
1.5506 ×10-108

	
0.7225




	
8thPKPDM

	
3

	
7.74

	
5.5579 ×10-57

	
0.5180

	
Div

	
-

	
-

	
-




	
8thPKJ

	
4

	
7.99

	
0

	
0.7201

	
4

	
7.87

	
1.5381 ×10-68

	
0.6986




	
8thPJ

	
3

	
7.86

	
8.7996 ×10-56

	
0.5023

	
4

	
7.79

	
1.0871 ×10-86

	
0.6341




	
f4(x)

	
2ndNM

	
-1.0

	
9

	
2.00

	
5.5018×10-92

	
0.9648

	
1.5

	
10

	
1.99

	
1.8602×10-58

	
1.1393




	
3rdAM

	
6

	
3.00

	
2.1659 ×10-70

	
0.7591

	
7

	
2.99

	
1.0232 ×10-67

	
0.8760




	
4thNR

	
5

	
3.99

	
5.5018 ×10-92

	
0.6659

	
6

	
3.99

	
2.4067 ×10-116

	
0.7890




	
4thSBS

	
Div

	
-

	
-

	
-

	
Div

	
-

	
-

	
-




	
4thCH

	
6

	
3.99

	
7.1333 ×10-186

	
0.8267

	
6

	
3.99

	
7.0897 ×10-109

	
0.9089




	
4thPJ

	
6

	
3.99

	
2.3006 ×10-90

	
0.8025

	
6

	
3.99

	
5.5180 ×10-66

	
0.7802




	
5thFLM

	
5

	
5.00

	
5.7748 ×10-127

	
0.7305

	
6

	
4.99

	
8.4900 ×10-239

	
0.8507




	
5thPJ

	
5

	
5.00

	
2.4834 ×10-60

	
0.7004

	
5

	
4.99

	
6.4034 ×10-51

	
0.6945




	
8thPKPDM

	
Div

	
-

	
-

	
-

	
5

	
8.00

	
2.3085 ×10-210

	
0.8507




	
8thPKJ

	
4

	
7.93

	
2.6279 ×10-88

	
0.7209

	
4

	
7.73

	
4.7311 ×10-70

	
0.6901




	
8thPJ

	
5

	
7.99

	
6.1227 ×10-279

	
0.7822

	
5

	
7.99

	
3.4785 ×10-257

	
0.7926
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Table 3. Numerical results for test functions.
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f(x)

	
Methods

	
x0

	
N

	
ρ

	
Error

	
CPU(s)

	
x0

	
N

	
ρ

	
Error

	
CPU(s)






	
f5(x)

	
2ndNM

	
1.0

	
8

	
1.99

	
2.8512 ×10-88

	
0.8804

	
2.2

	
8

	
1.99

	
1.8136 ×10-65

	
0.8893




	
3rdAM

	
5

	
3.00

	
9.0984 ×10-54

	
0.6280

	
6

	
3.00

	
7.9943 ×10-119

	
0.7683




	
4thNR

	
5

	
3.99

	
3.9853 ×10-176

	
0.6986

	
5

	
3.99

	
1.6125 ×10-130

	
0.6460




	
4thSBS

	
5

	
3.99

	
1.3911 ×10-161

	
0.7247

	
6

	
3.99

	
2.1296 ×10-156

	
0.8241




	
4thCH

	
5

	
3.99

	
7.6378 ×10-145

	
0.7035

	
5

	
3.99

	
3.0782 ×10-118

	
0.7342




	
4thPJ

	
5

	
3.99

	
1.3424 ×10-108

	
0.6296

	
5

	
3.99

	
1.7014 ×10-96

	
0.6713




	
5thFLM

	
4

	
5.00

	
1.5020 ×10-67

	
0.5712

	
4

	
4.99

	
1.4522 ×10-52

	
0.6284




	
5thPJ

	
4

	
5.00

	
2.6952 ×10-62

	
0.5796

	
4

	
4.99

	
1.4276 ×10-52

	
0.6432




	
8thPKPDM

	
4

	
8.00

	
2.2899 ×10-212

	
0.7505

	
4

	
8.00

	
6.4495 ×10-171

	
0.6770




	
8thPKJ

	
4

	
7.99

	
7.0019 ×10-291

	
0.7096

	
4

	
7.99

	
2.1122 ×10-258

	
0.7279




	
8thPJ

	
4

	
7.99

	
1.6051 ×10-218

	
0.6474

	
4

	
7.99

	
8.8152 ×10-190

	
0.6374




	
f6(x)

	
2ndNM

	
1.6

	
7

	
2.00

	
4.9817 ×10-90

	
0.7685

	
2.0

	
7

	
2.00

	
4.4019 ×10-92

	
0.7804




	
3rdAM

	
5

	
3.00

	
2.7315 ×10-83

	
0.6341

	
5

	
3.00

	
2.0696 ×10-82

	
0.6916




	
4thNR

	
4

	
3.99

	
4.9817 ×10-90

	
0.5649

	
4

	
3.99

	
4.4019 ×10-92

	
0.5460




	
4thSBS

	
4

	
4.00

	
2.7447 ×10-52

	
0.6037

	
4

	
4.00

	
4.0535 ×10-58

	
0.6011




	
4thCH

	
4

	
3.99

	
4.2436 ×10-53

	
0.5605

	
4

	
4.00

	
9.3200 ×10-69

	
0.5643




	
4thPJ

	
4

	
4.00

	
5.8466 ×10-62

	
0.5432

	
4

	
3.99

	
2.7833 ×10-63

	
0.5424




	
5thFLM

	
4

	
5.00

	
1.3386 ×10-143

	
0.5997

	
4

	
4.99

	
4.8310 ×10-166

	
0.6264




	
5thPJ

	
4

	
5.00

	
1.8295 ×10-142

	
0.6202

	
4

	
4.99

	
3.2860 ×10-164

	
0.6171




	
8thPKPDM

	
3

	
7.99

	
5.1214 ×10-54

	
0.5122

	
3

	
7.71

	
1.3362 ×10-61

	
0.5367




	
8thPKJ

	
4

	
7.99

	
0

	
0.6343

	
3

	
8.07

	
1.3967 ×10-54

	
0.5533




	
8thPJ

	
3

	
7.77

	
1.1800 ×10-67

	
0.5008

	
3

	
7.54

	
6.0931 ×10-81

	
0.5262




	
f7(x)

	
2ndNM

	
1.8

	
6

	
2.00

	
6.6344 ×10-52

	
0.7203

	
3.0

	
7

	
1.99

	
2.1862 ×10-64

	
0.8478




	
3rdAM

	
5

	
2.99

	
1.3353×10-77

	
0.6675

	
5

	
3.00

	
1.4340 ×10-61

	
0.6600




	
4thNR

	
4

	
4.00

	
4.3869 ×10-104

	
0.5734

	
4

	
4.00

	
2.1862 ×10-64

	
0.6237




	
4thSBS

	
5

	
3.99

	
3.5927 ×10-120

	
0.7383

	
5

	
4.00

	
5.5106 ×10-77

	
0.7201




	
4thCH

	
4

	
4.00

	
1.1320 ×10-72

	
0.5769

	
4

	
3.99

	
2.8160 ×10-59

	
0.5804




	
4thPJ

	
4

	
4.00

	
1.2249 ×10-75

	
0.5229

	
4

	
3.99

	
3.8770 ×10-56

	
0.6859




	
5thFLM

	
4

	
5.00

	
7.0404 ×10-175

	
0.6536

	
4

	
4.99

	
1.2813 ×10-125

	
0.6304




	
5thPJ

	
4

	
5.00

	
1.4577 ×10-175

	
0.6405

	
4

	
4.99

	
2.7292 ×10-130

	
0.6365




	
8thPKPDM

	
3

	
7.74

	
4.0285 ×10-77

	
0.5814

	
3

	
8.02

	
1.0750 ×10-51

	
0.5063




	
8thPKJ

	
3

	
7.90

	
2.4999 ×10-62

	
0.5627

	
3

	
7.98

	
1.2998 ×10-51

	
0.5532




	
8thPJ

	
3

	
7.74

	
6.7632 ×10-85

	
0.5260

	
3

	
7.90

	
8.2127 ×10-64

	
0.5289




	
f8(x)

	
2ndNM

	
3.5

	
7

	
1.99

	
3.6080 ×10-86

	
0.7916

	
4.5

	
6

	
2.00

	
5.1377 ×10-54

	
0.6740




	
3rdAM

	
5

	
3.00

	
2.3142 ×10-143

	
0.6406

	
4

	
2.99

	
8.3066 ×10-61

	
0.5327




	
4thNR

	
4

	
3.99

	
3.6080 ×10-86

	
0.5628

	
4

	
3.99

	
1.5930 ×10-108

	
0.5565




	
4thSBS

	
5

	
4.00

	
5.1837 ×10-94

	
0.7469

	
5

	
3.99

	
1.2140 ×10-199

	
0.6957




	
4thCH

	
4

	
3.99

	
7.9595 ×10-73

	
0.5529

	
4

	
3.99

	
1.1510 ×10-95

	
0.5738




	
4thPJ

	
4

	
3.99

	
2.2758 ×10-68

	
0.5378

	
4

	
3.99

	
1.7406 ×10-92

	
0.5665




	
5thFLM

	
4

	
5.00

	
4.8205 ×10-145

	
0.6274

	
4

	
4.99

	
1.6926 ×10-190

	
0.5912




	
5thPJ

	
4

	
5.00

	
2.2821 ×10-143

	
0.5859

	
4

	
4.99

	
1.8760 ×10-189

	
0.6060




	
8thPKPDM

	
3

	
8.08

	
3.9144 ×10-63

	
0.4873

	
3

	
7.97

	
1.8996 ×10-87

	
0.4825




	
8thPKJ

	
3

	
7.99

	
1.5408 ×10-79

	
0.5438

	
3

	
7.99

	
4.6567 ×10-97

	
0.5478




	
8thPJ

	
3

	
8.07

	
1.1064 ×10-68

	
0.4959

	
3

	
7.97

	
1.6959 ×10-92

	
0.5261
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Table 4. Comparison of results for Application 1.
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	Methods
	N
	Error
	ρ
	CPU (s)





	2ndNM
	7
	4.3980×10-76
	1.99
	0.830575



	3rdAM
	5
	1.2300×10-96
	2.99
	0.681488



	4thNR
	4
	4.3980×10-76
	3.99
	0.630004



	4thSBS
	
	Div
	-
	-



	4thCH
	4
	4.6073×10-69
	3.99
	0.588361



	4thPJ
	4
	1.8103×10-61
	3.99
	0.547790



	5thFLM
	4
	5.7478×10-132
	5.00
	0.586715



	5thPJ
	4
	2.0709×10-129
	5.00
	0.551062



	8thPKPDM
	3
	4.2702×10-57
	8.06
	0.513597



	8thPKJ
	3
	7.6302×10-95
	10.05
	0.538007



	8thPJ
	3
	1.7219×10-61
	8.05
	0.508273
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Table 5. Comparison of results for Application 2.
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	Methods
	N
	Error
	ρ
	CPU (s)





	2ndNM
	9
	1.0193×10-52
	1.99
	0.996467



	3rdAM
	7
	1.3489×10-139
	2.99
	0.849512



	4thNR
	5
	1.0193×10-52
	3.99
	0.672037



	4thSBS
	6
	4.6521×10-79
	4.00
	0.873925



	4thCH
	6
	6.7960×10-181
	3.99
	0.812545



	4thPJ
	6
	1.8054×10-131
	3.99
	0.776537



	5thFLM
	5
	1.2111×10-93
	4.99
	0.732066



	5thPJ
	5
	4.0117×10-95
	4.99
	0.730307



	8thPKPDM
	4
	8.3867×10-56
	7.93
	0.630707



	8thPKJ
	4
	4.2397×10-116
	7.85
	0.759305



	8thPJ
	4
	5.6798×10-65
	7.96
	0.590362
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Table 6. Comparison of results for Application 3.
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	Methods
	N
	Error
	ρ
	CPU (s)





	2ndNM
	6
	6.5591×10-51
	1.99
	0.685187



	3rdAM
	5
	5.5187×10-105
	3.00
	0.637279



	4thNR
	4
	3.9349×10-102
	3.99
	0.557325



	4thSBS
	4
	7.1728×10-65
	4.00
	0.584073



	4thCH
	4
	9.1666×10-80
	4.00
	0.560651



	4thPJ
	4
	1.4377×10-75
	3.99
	0.536090



	5thFLM
	4
	2.8696×10-159
	5.00
	0.605519



	5thPJ
	4
	1.1523×10-158
	5.00
	0.617395



	8thPKPDM
	3
	3.7116×10-71
	8.10
	0.501966



	8thPKJ
	3
	3.6878×10-75
	8.01
	0.578021



	8thPJ
	3
	1.1154×10-75
	8.11
	0.517710
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Table 7. Comparison of results for Application 4.
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	Methods
	N
	Error
	ρ
	CPU (s)





	2ndNM
	6
	4.8109×10-59
	2.00
	0.753920



	3rdAM
	5
	5.3700×10-108
	300
	0.613745



	4thNR
	4
	4.1831×10-119
	3.99
	0.589578



	4thSBS
	Div
	-
	-
	-



	4thCH
	4
	1.1795×10-79
	3.99
	0.583455



	4thPJ
	4
	4.3121×10-90
	3.99
	0.540330



	5thFLM
	4
	1.9579×10-192
	4.99
	0.594375



	5thPJ
	4
	3.1518×10-192
	4.99
	0.579986



	8thPKPDM
	3
	2.0800×10-82
	7.87
	0.595976



	8thPKJ
	3
	2.6914×10-77
	7.91
	0.550664



	8thPJ
	3
	2.1349×10-92
	7.88
	0.508991
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Table 8. Comparison of results for Application 5.
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	Methods
	N
	Error
	ρ
	CPU (s)





	2ndNM
	8
	3.1841×10-78
	2.00
	0.876498



	3rdAM
	6
	7.3356×10-125
	2.99
	0.766441



	4thNR
	5
	2.8479×10-156
	3.99
	0.704363



	4thSBS
	5
	2.2538×10-61
	3.99
	0.727041



	4thCH
	5
	6.8913×10-142
	3.99
	0.714278



	4thPJ
	5
	6.8517×10-96
	3.99
	0.673176



	5thFLM
	4
	3.8194×10-59
	5.00
	0.595414



	5thPJ
	4
	7.5097×10-53
	5.00
	0.594544



	8thPKPDM
	4
	3.6257×10-221
	7.99
	0.665352



	8thPKJ
	4
	3.7564×10-258
	7.99
	0.624762



	8thPJ
	4
	1.8860×10-182
	7.99
	0.647974
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Table 9. Comparison of results for Application 6.
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	Methods
	N
	Error
	ρ
	CPU (s)





	2ndNM
	10
	3.1818×10-79
	1.99
	1.168129



	3rdAM
	7
	1.9114×10-102
	3.00
	0.938796



	4thNR
	6
	6.1785×10-157
	3.99
	0.828477



	4thSBS
	6
	6.3885×10-183
	3.99
	0.858490



	4thCH
	6
	3.4420 ×10-136
	3.99
	0.828262



	4thPJ
	6
	2.6446 ×10-94
	3.99
	0.765311



	5thFLM
	5
	1.8367 ×10-68
	4.99
	0.786621



	5thPJ
	5
	4.1015 ×10-70
	4.99
	0.690104



	8thPKPDM
	5
	1.5540 ×10-306
	7.99
	0.745657



	8thPKJ
	4
	5.4031 ×10-79
	7.92
	0.653454



	8thPJ
	5
	0
	7.99
	0.718040
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Table 10. Comparison of results for Application 7.
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	Methods
	N
	Error
	ρ
	CPU (s)





	2ndNM
	8
	1.4633×10-90
	2.00
	0.934292



	3rdAM
	6
	1.8047×10-148
	3.00
	0.743453



	4thNR
	5
	7.5786×10-181
	3.99
	0.685801



	4thSBS
	5
	2.3233×10-127
	3.99
	0.733919



	4thCH
	5
	2.5520×10-187
	3.99
	0.716272



	4thPJ
	5
	1.8851×10-146
	4.00
	0.700729



	5thFLM
	4
	2.6523×10-78
	5.00
	0.551580



	5thPJ
	4
	5.6837×10-78
	5.00
	0.532049



	8thPKPDM
	4
	8.3091×10-268
	7.99
	0.643239



	8thPKJ
	4
	0
	7.99
	0.687932



	8thPJ
	4
	1.2107×10-291
	7.99
	0.641357
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