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Abstract

:

There are several types of deterministic compartmental models for disease epidemiology such as SIR, SIS, SEIS, SEIR, etc. The exposed population group in, for example SEIS or SEIR, usually represents individuals in the incubation class. Time delays (of which there are several types) when incorporated into a SIR or SIS model, also fulfil the role of the incubation period without necessarily adding another compartment to the model. This paper incorporates time delays into a SIS model that describes the transmission dynamics of cutaneous leishmaniasis. The time lags account for the incubation periods within the sandflies vector, the human hosts and the different animal groups that serve as reservoir hosts. A threshold value, R0, of the model is computed and used to study the disease-free equilibrium and endemic equilibrium of the system. Analysis demonstrating local and global stability of the disease-free equilibrium when R0<1 is provided for all n+1 population groups involved is provided. The existence of an endemic equilibrium is only guaranteed when R0>1 and numerical analysis of the endemic equilibrium for a human host, a vector host and a single animal reservoir host that is globally stable is also provided.
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1. Introduction


Leishmaniasis is primarily a zoonotic disease caused by protozoan parasites that are transmitted to humans by female sandflies. Animals including dogs, cattle, rodents and many others are the main reservoir of the parasite and occasionally humans in some localities. About 30 different species of sandflies are known to transmit more than 20 species of Leishmania parasites resulting in human infection. The incubation period within humans and animals range from two to eight weeks, while that in the sandflies range from four to 25 days [1]. Several forms of the disease have been identified, with the main types being cutaneous, visceral, and mucocutaneous leishmaniasis. Cutaneous leishmaniasis (CL) is the most dominant form of the disease leading to skin lesions that can lead to lifelong scars and disabilities. Visceral leishmaniasis is the most fatal, causing enlargement of the spleen and liver, while mucocutaneous leishmaniasis affects mostly the mucous membranes of the nose and mouth, destroying them in the process.



There is currently no vaccine for CL and although the disease can be treated, the majority of cases occur in developing countries. Estimates of new cases of CL per year range from about 700,000 to 1.2 million or more worldwide [2]. In recent years, CL has become increasingly prevalent in urban areas of Latin America, north Africa and central Asia and the Middle East, with these regions contributing about 95% of new CL cases annually (see Figure 1). Within the endemic regions, six countries, namely; Afghanistan, Algeria, Brazil, Colombia, Iran and Syria, accounted for more than two thirds of new CL cases in 2015 (see Figure 2) [3]. Symptoms of CL in humans are primarily ulcerated lesions on the skin that can take anywhere between a few months and a few years to heal, though cases lasting longer than a year are rare. The lesions usually leave depressed scars on the skin, and can have debilitating effects depending on where they occur. Treatment when available can hasten the healing of lesions and prevents spreading to other parts of the body. Although recognized as one of the most important and widespread parasitic disease in the world, CL prevention and control remains a challenge for health authorities in some countries [4].



Mathematical modeling and analysis has been at the center of infectious disease epidemiology since the classical works of Ross [5] and Macdonald [6]. Various forms of compartmental models for infectious diseases have been formulated [7]. Several models studying the transmission dynamics of CL have been proposed [8,9,10,11,12,13,14]. See [15,16] for a review of mathematical models for visceral leishmaniasis. The majority of these models are deterministic. Bearing in mind that CL is a zoonotic disease that is transmitted to humans by sandflies, in an attempt to reduce the complexities in analyzing models of the disease that incorporate time delays, some authors have only used a single delay, limiting it either to the human host or animal reservoirs. In [17], a mathematical model for CL that incorporates a time delay between infection and infectiousness for the reservoir (animals) hosts only is provided. Their model does not take into consideration time delays in humans (the incidental) host or sandflies (vector) host. In a more recent paper by Roy et al. [18], a model for CL that focuses on the human host and sandflies vector is provided with a single delay incorporated only in the human host. Because within a single locality many different animals can serve as reservoir for CL, Agyingi et al. [19] developed a susceptible-infectious model that describes the transmission dynamics of cutaneous leishmaniasis. The model incorporated a single vector population, multiple animal populations that serve as reservoirs [20] and a human host population. Because the leishmaniasis parasite undergoes an incubation period within the animal reservoirs, sandflies vector and human host, this paper builds on the work in [19] by incorporating time delays in all populations involved, distinguishing it from previous models. The delays represent the time duration between inoculation of susceptible individuals and them becoming infectious.



The paper is organized as follows: the mathematical model is presented in Section 2, followed by the basic properties for nonnegativity, derivation of a threshold value and the existence of equilibriums in Section 3. The local and global stability of the disease free equilibrium is analytically investigated in Section 4. A numerical study of the endemic equilibrium is considered in Section 5 and concluding remarks are given in Section 6.




2. The Mathematical Model


The model presented below builds on the deterministic model in [19]. The CL model in [19] considers n−1 animal populations that serve as reservoirs, a human host population, and a single sand flies vector population. The model consists of n+1 susceptible classes and n+1 infectious classes. In this work, we update all 2(n+1) classes of susceptible and infectious populations with time delays that account for the incubation period of the parasite within each population of reservoirs, hosts, and vectors. The schematics of the 2(n+1) compartmental SIS model is given in Figure 3. As an example, the susceptible compartment label S1 interacts with infectious sandflies from the compartment If, resulting in an outflow rate δ1ρ1 into the compartment I1. S1 is also depleted by natural death at rate σ1. The S1 compartment is populated through a birth rate β1N1 and recovery rate γ1I1. The same process is repeated in all n+1 susceptible compartments.



The system of equations associated with the schematic diagram that governs the model are:


dSkdt=βkNk−δkρkSk(t)NkIf(t−τk)+γkIk−σkSk,k=1,…,ndIkdt=δkρkSk(t)NkIf(t−τk)−γkIk−σkIk,k=1,…,ndSfdt=βfNf−∑k=1nδkρf,kIk(t−τ*)NkSf(t)+γfIf−σfSfdIfdt=∑k=1nδkρf,kIk(t−τ*)NkSf(t)−γfIf−σfIf.



(1)







All parameters in the above system of equations are positive and their descriptions are stated in Table 1. All susceptible classes are depleted to populate the infectious classes, and are being replenished at some constant birth (β’s) and recovery (γ’s) rates. All population groups decay naturally at some constant rate (given by the σ’s).



We define the initial conditions of the system (1) as


Sk(0)=Sk0>0,Ik(t)=ϕk(t)>0,fork=1,…,nSf(0)=Sf0>0,If(t)=φ(t)>0,t∈[−τ¯,0],τ¯=max{τ1,…,τn,τ*},



(2)




where ϕk(t) for k=1,…,n and φ(t) are continuous functions.



Remark 1.

We note here that assumptions such as cutaneous leishmaniasis not leading to any deaths, and equal birth/death rates have been made in the model (1). In this case, the different total populations, N1,…,Nn, and Nf are constant, so that Nk=Sk(t)+Ik(t) for k=1,…,n, and Nf=Sf(t)+If(t). (As a consequence it is clear from (1) that Sk′(t)+Ik′(t)=0 for k=1,…,n, and Sf′(t)+If′(t)=0).





The following result shows that the model (1) with the initial conditions (2) is well-posed.



Theorem 1.

All solutions of the model (1) with initial conditions (2) are positive and bounded.





Proof. 

Let t* be the smallest positive time value where one of the dependent variables in question turns negative, i.e., Z(t*)=0 and dZ/dt(t*)≤0 where Z is one of the functions S1,…,Sn,I1,…,In,Sf,If. Now this Z can not be any of the Sk functions, because dSk/dt(t*)>0 when Sk(t*)=0 and t* was the smallest positive time value where any of these functions turn negative, i.e., Ik(t*)≥0. Similarly, Z can not be any of the Ik functions because dIk/dt(t*)>0 as Sk(t*)>0 and If(t*−τk)>0 because of the minimality of t*. Analogous arguments prove that Z can not be Sf or If either, thus the statement is verified.



The boundedness of the solutions follow from the fact that the different populations are constant populations with Nk=Sk(t)+Ik(t) for k=1,…,n and Nf=Sf(t)+If(t). □





Remark 2.

Theorem 1 shows that the system (1) with initial conditions (2) is positively invariant on the region defined by


Ω={0≤Sf,0≤If,0≤Sf+If=Nf,0≤Sk,0≤Ik,0≤Sk+Ik=Nk,k=1,…,n}.











Further, by the fundamental theorem of functional differential equations [21], the model admits a unique solution.






3. Analysis of the Model


In this section we derive a threshold value of the model and used it to establish the existence of a positive nonzero equilibrium.



In the analysis that follows, we reduced the 2(n+1) system Equations (1) to a smaller system of n+1 equations by focusing only on the equations for the infectious populations. We achieve this by eliminating the equations for the susceptible populations using the conservation equations Nk=Sk(t)+Ik(t) for k=1,…,n and Nf=Sf(t)+If(t). Note that we have assumed that βk=σk for k=1,…,n and βf=σf. The infective equations of the model are now:


dIkdt=δkρk(Nk−Ik)NkIf(t−τk)−γkIk−σkIk,k=1,…,ndIfdt=∑k=1nδkρf,kIk(t−τ*)Nk(Nf−If)−γfIf−σfIf.











We normalize the above equations by defining the dimensionless variables y=If/Nf and xk=Ik/Nk for k=1,…,n. The infective equations now become


dxkdt=ck[αk(1−xk)y(t−τk)−xk]dydt=c0[(1−y)∑k=1nλkxk(t−τ*)−y],



(3)




where y≥0, xk≥0 for k=1,…,n, c0=σf+γf and ck=σk+γk for k=1,…,n and where


αk=δkρkNf(σk+γk)Nk,λk=δkρf,k(σf+γf),fork=1,…,n.











From this point forward, for the purpose of simplicity, we assume that τ1=τ2=…=τn=τ. It is clear that the normalization leading to the system of the Equations (3) constraints the solution space to the positive unit box B={(x1,…,xn,y)|0≤x1,…,xn≤1;0≤y≤1}. The following result, which is a consequence of Theorem 1, establishes that the solution domain given by the unit box B is positively invariant.



Lemma 1.

All solutions of the system (3) that start in the region B remain in B for all t≥0 with the exception of the equilibrium solution at the origin.





The proof of this result follows from Theorem 1.



Next we derive a threshold value of the model (3). It is a useful metric that helps determine whether or not an infectious disease can spread through a population. If the infection is to spread so that we have an outbreak, then we need dxkdt>0 for k=1,…,n and dydt>0 at t=0. Thus we need from (3) that,


αk(1−xk)y(t−τ)−xk>0,fork=1,…,n(1−y)∑k=1nλkxk(t−τ*)−y>0.











The first inequality yields


αk(1−xk)y(t−τ)>xk,



(4)




for k=1,…,n, and the second inequality gives


(1−y)∑k=1nλkxk(t−τ*)>y.



(5)







Multiplying both sides of (4) by λk we get


αkλk(1−xk)y(t−τ)>λkxk,








for k=1,…,n, which upon summing leads to


∑k=1nαkλk(1−xk)y(t−τ)>∑k=1nλkxk.



(6)







By observing that 1−xk≤1 and 1−y≤1, the inequalities in (5) and (6), respectively, become


∑k=1nλkxk(t−τ*)>y,



(7)




and


∑k=1nαkλky(t−τ)>∑k=1nλkxk.



(8)







From (7) and (8) we get that


∑k=1nαkλky(t−τ)>y.











Noting again that y(t−τ)≤y(t) at the start of the infection, the above inequality becomes


∑k=1nαkλk>1.











The quantity on the left hand side gives a threshold value of the system (3), and is denoted by R0. Thus, we have


R0=∑k=1nαkλk.











Remark 3.

We remark here that the threshold value R0 computed above is equivalent to the basic reproduction number obtained in [19]. The basic reproduction number is the average number of secondary cases caused by introducing an infectious individual in a completely susceptible population. Based on the above computation of the threshold value, we see that each animal/human population xk, contributes αkλk infections towards R0.



Further we note that for each population xk, αk is given as the product of the average time spent in an infectious state 1/(σk+γk), the sandflies average biting rate δk, the transmission rate from human/animal to sandflies ρk, and the ratio of total sandflies to human/animal population Nf/Nk. Similarly, λk is given as the product of the average time spent by sandflies in an infectious state 1/(σf+γf), their average biting rate δk, and the transmission rate from sandflies to human/animal ρf,k.





We now turn our attention to computing the equilibriums of the system (3). At the equilibrium points, (x¯1,…,x¯n,y¯), we have that x˙k=0, (k=1,…,n) and y˙=0, leading to the equations


x¯k=αky¯1+αky¯,(k=1,…,n)and∑k=1nλkx¯k=y¯1−y¯.











Eliminating x¯k from the above equations yields the following equation:


∑k=1nαkλky¯1+αky¯−y¯1−y¯=0.



(9)







The Equation (9) governs the equilibriums of the system and an immediate observation is that y¯=0 and consequently (x¯1,…,x¯n,y¯)=(0,…,0,0) is an equilibrium point. We call (0,…,0,0) the disease-free equilibrium (DFE) of the model (3). Further, using the Equation (9), the following result establishes the existence of a unique positive equilibrium other than the DFE, which we refer to as the endemic equilibrium.



Theorem 2

([19]). System (3) has a unique equilibrium solution with positive coordinates if the threshold value R0=∑k=1nαkλk>1. If R0≤1, the system has no equilibria with positive coordinates. The origin is an equilibrium in all cases.





The proof of this result is given in Theorem 3.1 in Agyingi et al. [19].



We remark here that the equations defining the equilibrium points are identical to the equations for the ordinary differential equation model in [19], thus the result describing the equilibriums is also identical. We will investigate the stability of the DFE and the endemic equilibrium in Section 4 and Section 5 respectively.




4. Analysis of the Disease-Free Equilibrium


In this section we study the long term behavior of the disease-free equilibrium of the proposed model. We start by computing the characteristic equation of the delay system (3) which is given as


det(J0+e−sτJτ+e−sτ*Jτ*−sI)=0,



(10)




where I is the (n+1)×(n+1) identity matrix and where the Jacobian matrices J0, Jτ, and Jτ* are defined respectively as


J0=−c1α1y−c100⋯00−c2α2y−c20⋯0⋮⋱⋱⋱⋮⋮0−cnαny−cn00⋯⋯0−c0∑k=1nλkxk−c0,










Jτ=00⋯0c1α1(1−x1)00⋯0c2α2(1−x2)⋮⋮⋮⋮00⋯0cnαn(1−xn)00⋯00and










Jτ*=00⋯0000⋯00⋮⋮⋮⋮00⋯00c0λ1(1−y)c0λ2(1−y)⋯c0λn(1−y)0.











Bearing in mind that the origin is the DFE of the system, the characteristic equation evaluated at the DFE yields


det−c1−s0⋯0e−sτc1α10−c2−s⋱⋮e−sτc2α2⋮⋱⋱0⋮0⋯0−cn−se−sτcnαne−sτ*c0λ1e−sτ*c0λ2⋯e−sτ*c0λn−c0−s=0,








and on evaluating the above determinant, the characteristic equation at the disease-free equilibrium becomes


(−1)n+1∏j=0n(cj+s)+(−1)ne−s(τ+τ*)c0∑k=1n∏j=1;j≠kn(cj+s)ckαkλk=0.



(11)







Theorem 3.

The disease-free equilibrium of the system (3) is unstable if R0>1 and stable if R0<1.





Proof. 

We begin by showing that the disease-free equilibrium is unstable if R0>1. Denoting the function on the left side of (11) by f(s), that is,


f(s)=(−1)n+1∏j=0n(cj+s)+(−1)ne−s(τ+τ*)c0∑k=1n∏j=1;j≠kn(cj+s)ckαkλk,



(12)




when s=0, we get


f(0)=(−1)n+1∏j=0ncj+(−1)n∏j=0ncj∑k=1nαkλk.











Observing that ∑k=1nαkλk=R0, the preceding equation becomes


f(0)=(−1)n∏j=0ncj[R0−1].



(13)







We see from (12) that if n is odd, then f(s)→∞ as s→∞, and if R0>1 in (13) then f(0)<0. Similarly, if n is even, then f(s)→−∞ as s→∞, and f(0)>0 as long as R0>1. Thus there exists a positive real root of f(s), establishing the instability of the disease-free equilibrium.



Next we show that the disease-free equilibrium is stable if R0<1. Re-writing Equation (11) and dividing both sides by (−1)n+1, we obtain


∏j=0n(cj+s)=e−s(τ+τ*)c0∑k=1n∏j=1;j≠kn(cj+s)ckαkλk,








which is equivalent to


c0+s=e−s(τ+τ*)c0c1α1λ1c1+s+c2α2λ2c2+s+⋯+cnαnλncn+s.



(14)







Suppose that there is a s≥0 which satisfies the above equation, then we have that,


c0+s=e−s(τ+τ*)c0c1α1λ1c1+s+c2α2λ2c2+s+⋯+cnαnλncn+s<e−s(τ+τ*)c0c1α1λ1c1+c2α2λ2c2+⋯+cnαnλncn=e−s(τ+τ*)c0∑k=1nαkλk=e−s(τ+τ*)c0R0.











We get from the above computation that


s<c0R0es(τ+τ*)−1.



(15)







If s≥0 and R0<1, then the righthand side of the inequality (15) is negative which is a contradiction. Therefore all real eigenvalues are negative when R0<1.



Further, we investigate whether there are complex eigenvalues with positive real parts. Suppose that s=ν+iω, where ν,ω>0, then from Equation (14) we get


c0+ν+iω=e−(ν+iω)(τ+τ*)c0c1α1λ1c1+ν+iω+c2α2λ2c2+ν+iω+⋯+cnαnλncn+ν+iω.











Re-writing the above equation we get


1+νc0+iωc0=e−ν(τ+τ*)[cos(ω(τ+τ*))−isin(ω(τ+τ*))]×c1α1λ1(c1+ν)2+ω2(c1+ν−iω)+⋯+cnαnλn(cn+ν)2+ω2(cn+ν−iω).











Equating the real and imaginary parts of the above equation we respectively obtain


1+νc0=cos(ω(τ+τ*))c1α1λ1(c1+ν)(c1+ν)2+ω2+⋯+cnαnλn(cn+ν)(cn+ν)2+ω2e−ν(τ+τ*)−ωsin(ω(τ+τ*))c1α1λ1(c1+ν)2+ω2+⋯+cnαnλn(cn+ν)2+ω2e−ν(τ+τ*).



(16)




and


ωc0=−ωcos(ω(τ+τ*))c1α1λ1(c1+ν)2+ω2+⋯+cnαnλn(cn+ν)2+ω2e−ν(τ+τ*)−sin(ω(τ+τ*))c1α1λ1(c1+ν)(c1+ν)2+ω2+⋯+cnαnλn(cn+ν)(cn+ν)2+ω2e−ν(τ+τ*).



(17)







Adding the squares of both sides of Equations (16) and (17), we get that


1+νc02+ω2c02=∑k=1nckαkλk(ck+ν)(ck+ν)2+ω22+ω∑k=1nckαkλk(ck+ν)2+ω22e−2ν(τ+τ*)<∑k=1nckαkλk(ck+ν)(ck+ν)2+ω22+ω2∑k=1nckαkλk(ck+ν)2+ω22<∑k=1nckαkλk(ck+ν)2+ω2∑k=1nckαkλk(ck+ν)22<∑k=1nckαkλkck2+ω2∑k=1nckαkλkck22<∑k=1nαkλk2+ω2∑k=1nαkλkck2<R02+ω2c*2R02,








where c*=min{c1,c2,…,cn}. The above inequality yields


1+νc02+ω2c02<R021+ω2c*2,








which cannot be satisfied by any positive ν and ω values when R0<1, if we impose the sufficient condition that c*≥c0. Therefore there are no complex eigenvalues with positive real parts. Also observe that if ν=0, there are no imaginary eigenvalues since no ω>0 satisfies the above inequality. We conclude that the disease-free equilibrium is locally asymptotically stable. □





Remark 4.

The condition that c*≥c0 in the above proof is only a sufficient condition since the disease-free equilibrium does not exhibit any form of instabilities. The disease-free equilibrium remains stable even when c*≤c0 as demonstrated in the next result.





We complete our analysis of the disease-free equilibrium by providing the following global stability result, which is stronger than local stability whenever the threshold value R0 is smaller than 1.



Theorem 4.

The disease-free equilibrium of the system (3) is globally asymptotically stable if R0<1.





Proof. 

We start with the first equation of the system (3), that is, for k=1,…,n we have


dxkdt=ck[αk(1−xk)y(t−τ)−xk].











Recalling from Remark 1 that all solutions are contained within a unit box, we have the differential inequalities


dxkdt≤ck[αky(t−τ)−xk],k=1,…,n,








which are the same as


dxkdt+ckxk≤ckαky(t−τ)k=1,…,n.











Multiplying both sides of the preceding inequalities by eckt, we obtain that


dxkdteckt+ckxkeckt=ddt(xk(t)eckt)≤ckαkeckty(t−τ),k=1,…,n.











Integrating the above inequalities on the interval (0,t), we obtain


xk(t)eckt−xk(0)≤∫0tckαkecksy(s−τ)ds,k=1,…,n.











Rearranging these inequalities, we have that


xk(t)≤e−cktxk(0)+e−ckt∫0tckαkecksy(s−τ)ds,k=1,…,n.











Now this implies that for k=1,…,n,


xk(t)≤e−cktxk(0)+e−cktsupy(t)∫0tckαkecksds=e−cktxk(0)+supy(t)(αk−αke−ckt).











Thus we get that


lim suptxk(t)≤αklim supty(t),k=1,…,n.



(18)







In a similar fashion, taking the second equation of the system (3), that is,


dydt=c0[(1−y)∑k=1nλkxk(t−τ*)−y],








andbearing in mind Remark 1, we obtain the differential inequality


dydt≤c0[∑k=1nλkxk(t−τ*)−y],








which is the same as


dydt+c0y≤c0[∑k=1nλkxk(t−τ*)].











Again, multiplication by ec0t gives


dydtec0t+c0yec0t=ddt(y(t)ec0t)≤c0ec0t[∑k=1nλkxk(t−τ*)],








andthen integration on the interval (0,t) yields


ec0ty(t)−y(0)≤∫0tc0ec0sλ1x1(s−τ*)ds+⋯+∫0tc0ec0sλnxn(s−τ*)ds.











We again rewrite this as


y(t)≤e−c0ty(0)+e−c0t∫0tc0ec0sλ1x1(s−τ*)ds+⋯+e−c0t∫0tc0ec0sλnxn(s−τ*)ds.











Taking the supremums we get


supy(t)≤e−c0ty(0)+ec0tsupx1(t)∫0tc0ec0sλ1ds+⋯+ec0tsupxn(t)∫0tc0ec0sλnds.











After integration, we then obtain


lim supty(t)≤λ1lim suptx1(t)+⋯+λnlim suptxn(t).



(19)







Combining the inequalities (18) and (19), we get


lim supty(t)≤α1λ1lim supty(t)+⋯+αnλnlim supty(t)=lim supty(t)∑k=1nαkλk.











The preceding inequality is the same as


lim supty(t)≤R0lim supty(t).











Since R0<1, we get that lim supty(t)=0; consequently, by (18), lim suptxk(t)=0 for k=1,…,n. This concludes the proof. □






5. Numerical Results and Discussion


In this section, we continue our analysis of the equilibriums by considering the case n=2 of the system (3), where the x1 variable represents a proportion of infectious human population, x2 variable represents a proportion of infectious animal population and y is a proportion of infectious sandflies. Here we numerically confirm the theoretical results established in the previous section on the stability of the disease-free equilibrium. Next we investigate the stability of the endemic equilibrium for different parameter values of the model, in particular, the population densities and time delays.



The parameter values used in the analysis are mostly similar to parameter values in related works [17,18,19], or arbitrarily chosen to explore the behavior of the model. The average biting rates of human and animal by sandflies are equal and set at δ1=δ2=0.25per day. The transmission rate from human and animal to sandflies are also equal and set at ρ1=ρ2=0.25. The transmission rate from sandflies to humans and animals are equal and set at ρf,1=ρf,2=0.25. The death rate of humans, animals and sandflies respectively are σ1=0.0001per day, σ2=1/365per day, and σf=1/14per day. Values for the recovery rates of humans, animals and sandflies respectively are γ1=12/365per day, γ2=5/365per day and γf=1/14per day.



Because animals are mostly the reservoir of the parasite, the initial conditions for all simulations reported below were set at x1(0)=0, x2(0)=0.1 and y(0)=0. We performed multiple simulations in which the initial conditions were perturbed and no changes in the behavior of the equilibrium solutions were observed.



In the simulations that follow, we use two sets of time delays, {τ=28,τ*=14} which is well within the known incubation periods, and extreme values {τ=1000,τ*=1000} which are biologically impossible. The very extreme set of time delays was chosen simply to investigate the nature of the stability of the endemic equilibrium, that is, whether there exist critical delay values at which bifurcations take place.



The calculated threshold value R0 of the system for the stated parameter values is given as R0=α1λ1+α2λ2, or R0=0.2985Nf/N1+0.5988Nf/N2. It is therefore evident that the sandflies to human/animal ratios determines whether R0<1 or R0>1. We examine each of these cases below.



We begin with the case where the ratios Nf/Nk≤1 for k=1,2 and where R0<1. The time evolution of all infectious classes is demonstrated in Figure 4, where there are fewer sandflies compare to humans/animals, and in Figure 5, where the densities of sandflies, humans and animals are equal. For population densities N1=N2=5000 and Nf=2500, the results in Figure 4a are for the time delays {τ=28,τ*=14}, while the results in Figure 4b are for the time delays {τ=τ*=1000}. Similarly, for equal population densities N1=N2=Nf=12,500, the results in Figure 5a are for the time delays {τ=28,τ*=14}, while the results in Figure 5b are for the time delays {τ=τ*=1000}. The results in Figure 4 and Figure 5 show that the disease dies out in both cases since R0<1. The presence of very large delays only induces small oscillations whose amplitude decreases with time and all solutions converge to the disease-free equilibrium that is asymptotically stable.



We now turn our attention to the case where for k=1,2, the ratios Nf/Nk>1 and where R0>1. First we note that it is possible for all k=1,2, the ratios Nf/Nk>1 to still lead to R0<1. As an example, if Nf=5200, and N1=N2=5000 then we get R0=0.9332<1, leading to the stability of the DFE. Since the endemic equilibrium only exists if R0>1, we focus on those cases where at least one of the ratios Nf/Nk≫1 for k=1,2 and that R0>1.



The simulations in Figure 6 give the solution profiles of the model for population densities N1=N2=5000 and Nf=12,500. The computations in Figure 6a are for the time delays {τ=28,τ*=14}, while those in Figure 6b are for the time delays {τ=τ*=1000}. The results indicate the global stability of the endemic equilibrium. Given very large time delays as illustrated in Figure 6b, the endemic equilibrium at the onset induces some form of instability that grows with time and on attaining maximum amplitude begins to fissile out, and then eventually becomes stable. Although the human and animal population densities are equal, the results in Figure 6 show that the disease is more prevalent in the animal reservoir. This can be attributed to the initial conditions.



The next results given in Figure 7 are for population densities N1=5000, N2=12,500 and Nf=12,500. As in previous computations, Figure 7a is for time delays {τ=28,τ*=14} and Figure 7b is for time delays {τ=τ*=1000}. The simulations in Figure 7 also indicate the global stability of the endemic equilibrium. Exceedingly large time delays that initially rattle the solutions (see Figure 7b), do not render the endemic equilibrium unstable with time. We also observe here that when the animal (reservoir) population is significantly higher than that of human, then the model predicts higher disease prevalence among humans.



Finally, we consider the case with population densities N1=12,500, N2=2500 and Nf=12,500. Note that in this case, the reservoir density is significantly lower than that of human. The simulations given in Figure 8 indicate a very high level of disease prevalence in the reservoir population and the least disease prevalence among humans. This is unlike in all other cases indicated above where the least prevalence has always been among sandflies.




6. Conclusions


In this paper we have presented a model with time delays for the transmission dynamics of cutaneous leishmaniasis, an infectious disease whose prevalence is on the increase. Although mostly located in tropical regions, global warming may provide suitable conditions for its vector to migrate to subtropical regions and spread the disease. The life cycle of the parasite begins in animals which are usually the reservoirs and manifest as some form of the disease in humans via sandflies transmission.



Mathematical models for leishmaniasis pale in comparison to other infectious diseases and as noted before, only a handful of such models account for the incubation period of the parasite within reservoirs, vectors and humans. The novelty of the model constructed here is that time delays serving as the incubation period have been incorporated into all population groups, which has often been avoided or neglected in past works. Starting with an existing deterministic SIS model, delays were inserted into the 2(n+1) dimensional system of equations. Because all populations involved were assumed to be constant, the dimension of the model studied was reduced to a system of only n+1 infective equations by eliminating the susceptible terms.



A threshold value R0 of the model was computed as a sum of the products of the infected sandflies and the resulting human/animal infections for each human/animal population group. We used R0 to analyze equilibriums of the model. The disease-free equilibrium of the model is both locally and globally stable when R0<1. A numerical study of the positive endemic equilibrium for the case n=2 which only exist when R0>1, shows that it is globally asymptotically stable even when very extreme time delay values are employed.



From the model simulations we observe that as long as the sandflies population is kept lower or near the level of the human and animal populations, the disease will die out. We also learn that if the sandflies population is substantially higher than that of humans and/or animals, the disease will persist in all populations. In the situation where the disease is persistent, the model predicts the following: (i) the prevalence is higher in animals for equal human and animal populations; (ii) the prevalence is higher in humans when the human population is smaller than that of animals; and (iii) the prevalence is least in humans when the animal population is smaller than the human population.



The main limitation of the model presented in this work is the assumption that all infected hosts will survive the incubation period. A possible way of addressing that is the inclusion of an exponential decay term that represents the average proportion of infected individuals which survive the incubation period. The threshold value R0 then will depend on the incubation periods as well.
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Figure 1. Number of new cases of cutaneous leishmaniasis within the most endemic region of the world between 2005–2015. Data from the World Health Organization (WHO) [3]. 
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Figure 2. Number of new cases of cutaneous leishmaniasis for the most endemic countries of the world between 2005–2015. Data from WHO [3]. 
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Figure 3. Schematic diagram of the SIS model. The dash lines represent interaction between infectious and susceptible populations, while the solid lines represent population movement into and out of a compartment. For i=1,2,…,n,f, the susceptible compartment Si interacts with infectious sandflies from the compartment If, with an outflow rate δiρi into compartment Ii. Si decreases by a natural death rate of σi. The Si compartment is populated through births at a rate of βiNi and through recovery at a rate of γiIi. 
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Figure 4. Time evolution of infectious human population x1(t), infectious animal population x2(t) and infectious sandflies population y(t) for parameter values δ1=δ2=0.25, ρ1=ρ2=0.25, ρf,1=ρf,2=0.25, σ1=0.0001, σ2=1/365, σf=1/14, γ1=12/365, γ2=5/365, γf=1/14, N1=N2=5000 and Nf=2500. The plots given in (a) are for τ=28 and τ*=14, while the plots in (b) are for τ=τ*=1000. 
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Figure 5. Time evolution of infectious human population x1(t), infectious animal population x2(t) and infectious sandflies population y(t) for parameter values δ1=δ2=0.25, ρ1=ρ2=0.25, ρf,1=ρf,2=0.25, σ1=0.0001, σ2=1/365, σf=1/14, γ1=12/365, γ2=5/365, γf=1/14, N1=N2=12500 and Nf=12500. The plots given in (a) are for τ=28 and τ*=14, while the plots in (b) are for τ=τ*=1000. 
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Figure 6. Time evolution of infectious human population x1(t), infectious animal population x2(t) and infectious sandflies population y(t) for parameter values δ1=δ2=0.25, ρ1=ρ2=0.25, ρf,1=ρf,2=0.25, σ1=0.0001, σ2=1/365, σf=1/14, γ1=12/365, γ2=5/365, γf=1/14, N1=N2=5000 and Nf=12,500. The plots given in (a) are for τ=28 and τ*=14, while the plots in (b) are for τ=τ*=1000. 
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Figure 7. Time evolution of infectious human population x1(t), infectious animal population x2(t) and infectious sandflies population y(t) for parameter values δ1=δ2=0.25, ρ1=ρ2=0.25, ρf,1=ρf,2=0.25, σ1=0.0001, σ2=1/365, σf=1/14, γ1=12/365, γ2=5/365, γf=1/14, N1=5000, N2=12,500 and Nf=12,500. The plots given in (a) are for τ=28 and τ*=14, while the plots in (b) are for τ=τ*=1000. 
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Figure 8. Time evolution of infectious human population x1(t), infectious animal population x2(t) and infectious sandflies population y(t) for parameter values δ1=δ2=0.25, ρ1=ρ2=0.25, ρf,1=ρf,2=0.25, σ1=0.0001, σ2=1/365, σf=1/14, γ1=12/365, γ2=5/365, γf=1/14, N1=12500, N2=2500 and Nf=12,500. The plots given in (a) are for τ=28 and τ*=14, while the plots in (b) are for τ=τ*=1000. 
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Table 1. Definition of the parameters of the model.
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	Parameter
	Definition





	Sk
	susceptible human/animal population for k=1,…,n



	Ik
	infectious human/animal population for k=1,…,n



	Nk
	total human/animal population for k=1,…,n



	Sf
	susceptible sandfly population



	If
	infectious sandfly population



	Nf
	total sandfly population



	βk
	birth rate for human/animal for k=1,…,n



	βf
	sandfly reproduction rate



	σk
	natural death rate for human/animal for k=1,…,n



	σf
	sandfly death rate



	γk
	recovery rate for human/animal for k=1,…,n



	γf
	sandfly recovery rate



	δk
	average biting rate of human/animal by sandflies for k=1,…,n



	ρk
	transmission rate from human/animal to sandfly for k=1,…,n



	ρf,k
	transmission rate from sandfly to human/animal for k=1,…,n



	τk
	incubation period in human/animal population for k=1,…,n



	τ*
	incubation period in sandfly population
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