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Abstract: Computational models for multicellular biological systems, in both in vitro and in vivo
environments, require solving systems of differential equations to incorporate molecular transport
and their reactions such as release, uptake, or decay. Examples can be found from drugs, growth
nutrients, and signaling factors. The systems of differential equations frequently fall into the category
of the diffusion-reaction system due to the nature of the spatial and temporal change. Due to the
complexity of equations and complexity of the modeled systems, an analytical solution for the systems
of the differential equations is not possible. Therefore, numerical calculation schemes are required and
have been used for multicellular biological systems such as bacterial population dynamics or cancer
cell dynamics. Finite volume methods in conjunction with agent-based models have been popular
choices to simulate such reaction-diffusion systems. In such implementations, the reaction occurs
within each finite volume and finite volumes interact with one another following the law of diffusion.
The characteristic of the reaction can be determined by the agents in the finite volume. In the case
of cancer cell growth dynamics, it is observed that cell behavior can be different by a matter of a
few cell size distances because of the chemical gradient. Therefore, in the modeling of such systems,
the spatial resolution must be comparable to the cell size. Such spatial resolution poses an extra
challenge in the development and execution of the computational model due to the agents sitting
over multiple finite volumes. In this article, a few computational methods for cell surface-based
reaction for the finite volume method will be introduced and tested for their performance in terms of
accuracy and computation speed.

Keywords: partial sphere surface areas; finite volume method; diffusion reaction equation;
mathematical model for biology

1. Introduction

Agent-based models (also called single-cell based models or individual-based models) have been
widely popular in various fields as tools to build computational models. They have been adopted in
biological system modeling [1–3], fluid dynamics simulation [4,5], ecosystem modeling [6,7], human
organizational simulation [8,9], business simulation [10], etc. In agent-based modeling, a system
is modeled as a collection of autonomous self-decision-making entities called agents. Each agent
individually assesses its situation and makes decisions on the basis of a set of rules. These rules can be
designed to make internal decisions altering the fate of an agent or can be written to define interactions
among spatially neighboring agents. The rule set can also be identical to each agent or can be designed
differently for different groups of agents. Agent-based models were proven to be an effective modeling
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approach for complex heterogeneous systems. Though all rules are usually written for small scale,
agent level or local interaction level, agent-based models are capable of showing population level
emerging characteristics that are often unpredictable from the local rule sets. Due to these reasons,
cancer biology is one of those areas where agent-based models have been successful [3,5,11]. In a
biological system, cells interact with one another in various ways, through physical interaction and/or
through chemical signaling. Cells uptake molecules from the surrounding medium, and molecules
may come from nearby cells because they synthesize and secrete molecules. Due to the diffusive nature
of the molecules in media, the mathematical model for the biological cells that consume and secrete
molecules in media would be a diffusion-reaction equation and finite volume methods are a popular
choice for the numerical implementation [11,12].

It has been experimentally observed that cancer cells’ fates can be different by a matter of one or
two cell lengths due to the spatial nutrient concentration change [13]. Thus, a computational model for
cancer cells with physiology including consumption and secretion of molecules will require a spatial
resolution of single cell length. Uptake of molecules by cells may involve receptors on the cell surface
and endocytosis process. If a 3D finite volume implementation is designed with a cell surface reaction,
one cell length spatial resolution, and cells represented by spheres (agents), then a snapshot around one
cell would be like Figure 1. The cell in Figure 1 overlaps with eight finite volumes. The contribution
of this cell to the whole diffusion-reaction system needs to be divided into eight parts proportional
to the cell surface area in each finite volume that the cell overlaps; S1, S2, · · · , S8 in Figure 1. In a
diffusion-reaction equation like Equation (1), the reaction coefficient, λ, would depend, as a function of
spatial variables, on the values of Si’s from all cells in the system. Thus, it is important to calculate the
precise values of Si’s to capture the correct rate of reaction.

∂c
∂t

= D∇2c + λc (1)

S =
x

R

r√
r2 − (x− a)2

− (y− b)2
dA (2)
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Figure 1. Schematic diagram of an agent-based model for 3D cell proliferation (left) and a spherical
agent representing a cell overlapping with surrounding finite volumes (right). There are more than
4600 agents in the snapshot of a simulation (left). A small zoomed-in view of a cell with surrounding
finite volumes (rectangular boxes) is shown in the middle. A further zoomed-in view of the cell is
displayed on the right. When the agent’s diameter is smaller than the edge of the rectangular box,
the agent can overlap with up to eight finite volumes. S1, S2, . . ., and S8 are surface areas that overlap
eight finite volumes.
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Analytic formulas are not readily available for the calculation of these areas even when all
geometric specifications are given. An attempt to calculate these surface areas, Si’s, can be made by

using the function f (x, y) =
√

r2 − (x− a)2
− (y− b)2, which results in a double integral as in Equation

(2). This integral, however, is possible analytically only when the domain R is extremely simple in polar
coordinates. Therefore, numerical calculation methods need to be deployed. Diffusions in biological
contexts are usually fast. The stability of numerical schemes for a fast diffusion requires small time
stepping. Furthermore, typical cancer cell simulations consider thousands of cells and use durations
of days and weeks of their lives [3,5]. Considering all these, we need to find an efficient numerical
method to calculate the cell surface area in finite volumes for thousands of cells repeatedly for the
duration of simulation not to burden the overall numerical simulation. In this article, we suggest three
different computational methods and test them for their performance in terms of the accuracy and the
computational speed. The first one is a surface area calculation based on the triangulation. The second
and the third methods are two different Monte Carlo methods. All these three methods are improved
by using a linear system of equations for Si, i = 1, 2, . . . , 8.

2. Methods

Here, we suggest three different computational methods and test their performance in terms of
accuracy and computation speed. The goal of each method is to calculate the values of Si for 1 ≤ i ≤ 8.
In general, it is not possible to calculate those values analytically unless they fall into special cases such
as when they are all identical. However, the sum of S1, S2, S3, and S4 can be calculated analytically
because it is a surface of revolution that can be obtained by rotating an arc on a circle around an axis.
The same can be computed for S5, S6, S7, and S8. The sum of S1, S2, S3, and S4, and the sum of S5, S6,
S7, and S8 are also areas of two surfaces that we can get by cutting the sphere with a plane. It only
requires knowing the radius of the sphere and the distance from the center of the sphere to the plane
that cuts through it. If the distance between the center and the plane is d and the sphere radius is
R, then

S1 + S2 + S3 + S4 = 2π
∫ R

d

√

R2 − t2

√
1 +

t2

R2 − t2 dt = 2πR(R− d) (3)

and

S5 + S6 + S7 + S8 = 2π
∫ d

−R

√

R2 − t2

√
1 +

t2

R2 − t2 dt = 2πR(d + R). (4)

Here, we assume that S1 + S2 + S3 + S4 is the area of the smaller cut. There are two sets of similar
calculations that can be done. They are the set of S1 + S4 + S5 + S8 and S2 + S3 + S6 + S7, and the set
of S1 + S2 + S5 + S6 and S3 + S4 + S7 + S8. These can be analytically calculated when the radius and
the center of sphere are known. It appears that there is no other analytical closed form equation other
than these. By collecting these, we can form a linear system of equations,

S1 + S2 + S3 + S4 = σ1

S5 + S6 + S7 + S8 = σ2

S1 + S4 + S5 + S8 = σ3

S2 + S3 + S6 + S7 = σ4

S1 + S2 + S5 + S6 = σ5

S3 + S4 + S7 + S8 = σ6

. (5)

Here, the values of σi are knowable. This linear system, however, is redundant. A version without
redundancy will be
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
S1 + S2 + S3 + S4 = σ1

S5 + S6 + S7 + S8 = σ2

S1 + S4 + S5 + S8 = σ3

S1 + S2 + S5 + S6 = σ5

. (6)

Since we have eight variables in four equations, we need to have more equations to find the
solution. To add more equations, we will use numerical methods. In fact, we will calculate some of
the Si values as additional equations. We will deploy numerical methods for this. One method is just
a numerical calculation of the surface area using triangulation. The surface area calculations using
triangulation are easier and simpler for areas that belong to the smaller piece when the sphere is cut
by a plane. For example, S1, S2, S3, and S4 in Figure 1 make the smaller cut, and they can be seen as
function graphs from a same function (of x and y) with different domains on the horizontal plane (xy
plane). The surface for S5 in Figure 1, however, may not be seen as a function graph with a domain
on a plane. This makes the calculation for S5 difficult. We can solve S5 by adding more equations
to Equation (6). The other two methods are Monte Carlo methods. We will generate points on the
sphere. One method will generate sample points from a uniform distribution on a sphere and the
other method will design a set of points that are almost uniform on a sphere. Monte Carlo methods
will count points that fall onto the region for Si and calculate Si by measuring the proportion of those
points. In fact, Monte Carlo methods do not necessarily need to use Equation (6). However, we choose
to use Equation (6) as well for the purpose of comparison and to improve the computation speed.
Details of three methods are described in the following three subsections.

2.1. Surface Area Calculation Using Triangulation

We will use the settings in Figure 1 to explain this method. It is assumed that S1, S2, S3, and S4

in the configuration presented make the smaller piece when the sphere is cut by a horizontal plane.
It is also assumed that the sphere center is in the fifth octant where the surface of S5 belongs. As was
mentioned earlier, the surfaces of S1, S2, S3, and S4 are function graphs with the same function formula
but with different domains on the horizontal plane. Thus, the surface area calculations can be done by
triangulating domains and approximating the surface with triangles. Approximated values for Si for
1 ≤ i ≤ 4 will replace the first equation in Equation (6). S8 will be calculated by the same method and
inserted to Equation (6). Then, the new system equation is

S1 = s1

S2 = s2

S3 = s3

S4 = s4

S8 = s8

S5 + S6 + S7 + S8 = σ2

S1 + S4 + S5 + S8 = σ3

S1 + S2 + S5 + S6 = σ5

. (7)

This equation is consistent and has a unique solution. Bringing the first five equations to the
seventh equation, S5 can be solved. Applying the first five equations and the S5 value to the last
equation, we get S6. The sixth equation can be solved for the last unknown S7. We can avoid the
calculation of S5. While the method is explained based on the setting depicted in Figure 1, in general,
any situation can be like Figure 1 with a maximum of two reflections in the respective planes. If S1, S2, S3,
and S4 make the bigger piece, the sphere can be reflected with respect to the horizontal cutting surface.
Then, the surface above the horizontal cutting plane will be the smaller piece. If S8 belongs to the
bigger piece than S5, the reflection with respect to the vertical plane between S5 and S8 will switch the
roles of S5 and S8. Reflections do not complicate the algorithm too much and it is not computationally
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costly. Furthermore, the S8 calculation can be computed with the domain on the horizontal domain
after a simple linear transformation. If the linear transformation, (x, y, z) 7→ (z, −x, −y) , is applied to
the sphere, the region in the eighth octant comes up to the third octant (Figure 2). Thus, S1, S2, S3, S4,
and S8, all can be calculated as graphs of functions of x and y, which we found convenient.

We discovered that the triangulation of the domains is one of the computationally expensive
parts in the algorithm. To make the algorithm more efficient, we adopted a measure to reduce
the burden of domain triangulation. Once we identify a desired resolution for the triangulation in
terms of the number of vertices, a triangulation of a disk is generated using the mesh generation
package distmesh [14]. The union of the domains for S1, S2, S3, or S4 as function graphs is a disk.
The pre-generated triangulation vertices can be scaled and translated to be used for the domain of
S1, S2, S3, or S4 together. For each domain, we identify vertices that are on the domain (with an
appropriate margin along the straight-line borders) and add vertices with similar spacings along
the straight-line borders. A triangulation is generated based on this collection of vertices using the
Delaunay triangulation (Figure 3).

Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 5 of 13 

 

 

Figure 2. A linear transformation, (𝑥, 𝑦, 𝑧) ↦ (𝑧, −𝑥,−𝑦), converts 𝑆8 to 𝑆3 without changing the size 

and shape. The sphere on the left becomes the sphere on the right after the linear transformation. All 

circles are intersections with 𝑥𝑦, 𝑦𝑧, 𝑥𝑧 planes. Note that the surface for 𝑆8 on the left is in the eighth 

octant. The same size and shape surface is in the third octant of the sphere on the right after the linear 

transformation. 

We discovered that the triangulation of the domains is one of the computationally expensive 

parts in the algorithm. To make the algorithm more efficient, we adopted a measure to reduce the 

burden of domain triangulation. Once we identify a desired resolution for the triangulation in terms 

of the number of vertices, a triangulation of a disk is generated using the mesh generation package 

distmesh [14]. The union of the domains for 𝑆1, 𝑆2, 𝑆3, or 𝑆4 as function graphs is a disk. The pre-

generated triangulation vertices can be scaled and translated to be used for the domain of 𝑆1, 𝑆2, 𝑆3, 

or 𝑆4 together. For each domain, we identify vertices that are on the domain (with an appropriate 

margin along the straight-line borders) and add vertices with similar spacings along the straight-line 

borders. A triangulation is generated based on this collection of vertices using the Delaunay 

triangulation (Figure 3). 

 

Figure 3. The triangulation for the domain of 𝑆1. Panel (A) shows the pre-generated triangulation of 

a disk with a desired resolution. In panel (B), vertices in the domain for 𝑆1  are identified and 

collected. In this process, those vertices that are too close to the inner border lines are excluded. Panel 

(C) shows newly added vertices on the inner border lines (red dots) with a similar spatial resolution. 

The triangulation based on the black and red vertices is done in panel (D). The value of 𝑆1  is 

calculated using this triangulation. 

2.2. Monte Carlo Using Sample Points from a Uniform Distribution on Spheres 

Figure 2. A linear transformation, (x, y, z) 7→ (z, −x, −y) , converts S8 to S3 without changing the size
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eighth octant. The same size and shape surface is in the third octant of the sphere on the right after the
linear transformation.
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2.2. Monte Carlo Using Sample Points from a Uniform Distribution on Spheres 

Figure 3. The triangulation for the domain of S1. Panel (A) shows the pre-generated triangulation
of a disk with a desired resolution. In panel (B), vertices in the domain for S1 are identified and
collected. In this process, those vertices that are too close to the inner border lines are excluded. Panel
(C) shows newly added vertices on the inner border lines (red dots) with a similar spatial resolution.
The triangulation based on the black and red vertices is done in panel (D). The value of S1 is calculated
using this triangulation.
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2.2. Monte Carlo Using Sample Points from a Uniform Distribution on Spheres

There are several different algorithms that generate uniformly distributed sample points on
spheres [15–19]. We used normally distributed random vectors to generate uniformly distributed
sample points on spheres [20,21]. When three-dimensional vectors, X = (x1, x2, x3), are generated
with all xi values from N(0, 1), the standard normal distribution, the collection of X/|X| are uniformly

distributed on the unit 2-sphere as vertices (points). Here, |X| =
√

x2
1 + x2

2 + x2
3. A set of these random

points will be generated. For any sphere representing a cell, these random points will be scaled and
translated to fit on the surface of a cell-representing sphere. Five areas, S1, S2, S3, S4, S8 in Figure 1,
for example, will be approximately calculated using a Monte Carlo method, that is, by counting points
on the corresponding regions. The remaining three values will be calculated by Equation (7).

2.3. Monte Carlo Using the Icosahedron-Based Vertices on Spheres

The method in the previous section was to generate dense enough random samples that converge
to the uniform distribution over the sphere and classify those points using the regions in eight octants.
Since the sample points are randomly generated, the uniformity may vary, and the computational
performance may fluctuate. In this section, we will introduce another method that uses almost uniform
vertices distributed on the sphere. We generate almost uniform vertices on the sphere using icosahedral
triangulation [22]. A regular icosahedron has twelve vertices, thirty edges, and twenty faces. Each face
is an equilateral triangle. A regular icosahedron can be embedded in a sphere in a way that all vertices
are on the surface of sphere. These twelve vertices are vertices of the zeroth-generation almost uniform
vertices on the sphere. The first-generation almost uniform vertices on the sphere are built based on the
zeroth-generation by finding the midpoint of each edge and projecting (from the center of the sphere)
those midpoints on the sphere surface. These projected points are the new vertex addition. Since there
are thirty edges on the icosahedron, the first-generation almost uniform vertices consist of forty-two
vertices. To make the second-generation, it is required to triangulate those forty-two vertices, and the
projections of each edge midpoint onto the sphere surface are added as new vertices. Any generation
can be found iteratively based on the previous generation. Figure 4 shows the triangulation based on
the almost uniform icosahedron-based vertices.
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shown with triangulation.

As the generation number increases, the number of total vertices increases. If Vi, Ei, and Fi denote
the number of vertices, edges, and faces, respectively, of the ith-generation, we have V0 = 12, E0 = 30,
F0 = 20. It is also obvious that Vi+1 = Vi + Ei and Fi+1 = 4Fi. Since the Euler characteristic of a genus
zero surface is 2, Ei+1 = Vi + Ei + 4Fi − 2. Thus, we can only choose the number of vertices from the
sequence of {Vi}

∞

i=1 = {V0 = 12, V1 = 42, V2 = 162, V3 = 642, V4 = 2562, V5 = 10, 242, . . .}. We will
pick a vertex set from a generation and use them as random sample points for the Monte Carlo
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method. Figure 5 compares vertices on a matching region from the random 40,962 sample points
from the uniform distribution in Section 0 and vertices from the sixth-generation icosahedral vertices.
The vertices collected from random sample points show stochasticity, whereas the points from the
icosahedron-based vertices are spaced regularly.
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Figure 5. Comparison of points on a matching region that are collected from 40,962 random sample
points from the uniform distribution (red, left) described in 0 and from 40,962 vertices in the
sixth-generation icosahedron-based vertices (blue, right). The dots in the region on the sphere
and the front views are shown. There are 1086 red dots and 1015 blue dots.

2.4. Implementations for Comparison

We will compare the three methods in different spatial resolutions in terms of computational speed
and accuracy. A set of randomly generated one hundred cells (spheres) is used to test the performance
of three methods. The number of vertices in the icosahedron-based vertex set is fixed at each generation.
The icosahedron-based vertices from the first-generation to the eighth-generation are used. To make
fair comparisons, sets of sample points from the uniform distribution on the surface of the sphere
are generated (middle column in Table 1) following the number of vertices in icosahedron-based
methods. The vertices in the sets of sample points from the uniform distribution are incremental
because the icosahedron-based vertices are incremental. For example, 162 vertices in case number 2
contain 42 vertices in case number 1. While the icosahedron-based vertices and sample point vertices
from the uniform distribution are on the surface of a sphere, the vertices used for the triangulation
method are on a disk and used to triangulate areas on a sphere, but not the whole, half-sphere at
most. Thus, we consider a half number of vertices in the triangulation method to be equivalent to,
in terms of the number of vertices, the Monte Carlo methods with double vertices. The cases used
for the comparison with the number of vertices are listed in Table 1. There are only six cases for the
triangulation method whereas there are eight cases for the other two methods. We did not include
the two cases that correspond to cases 7 and 8 of the other two methods because the triangulation
method takes too long to compute at those resolutions. Instead of including those cases, we will use the
result from the triangulation with 333,065 vertices, which correspond to case number 8, as the accuracy
reference (true values). It is the eight hundred area calculations (8 pieces × 100 cells). The average
percentage errors will be calculated using the result from the triangulation with 333,065 vertices as the
true values. In fact, the triangulation method is a numerical calculation of the integral in Equation (2).
Thus, it is certain that the values from the triangular method converge to the true value.

Cells represented by spheres can be anywhere in the computational domain. Monte Carlo methods
may perform differently not only depending on the sample point used but also depending on the center
location and the radius of the sphere due to the fact that those eight pieces cut by the finite volumes
around the sphere will be different and random. The set of one hundred randomly generated cells
(spheres) that we use for the test has a few conditions. Since we set the dimension of each finite volume
by 7 µm × 7 µm × 7 µm, each cell radius is limited between 5 and 7 µm. So, a cell can overlap with
a maximum of eight finite volumes, as shown in in Figure 1. Therefore, generating random spheres
having centers around the origin and overlapping only with a maximum of eight finite volumes around
the origin will be enough to represent random cells in the whole computational domain. Tests done by
using these randomly generated spheres will also eliminate the necessity to consider other sample
points from the uniform distribution on a sphere. Three methods will be used to calculate five areas
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(S1, S2, S3, S4, and S8 for a cell in Figure 1) of each cell and the remaining three areas will be solved
through system equations such as Equation (7). The time to perform all calculations for one hundred
spheres is measured for the computation speed. The hundred-cell calculation is repeated thirty times
and the average over thirty repetitions is presented. The basic flowchart for the computation is in
Figure 6 and MATLAB® is used for programming.

Table 1. The number of vertices.

Case Number Triangulation Uniform Distribution Icosahedron-Based

1 21 42 42

2 82 162 162

3 320 642 642

4 1243 2562 2562

5 5120 10,242 10,242

6 20,504 40,962 40,962

7 N/A 163,842 163,842

8 N/A 655,362 655,362
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Figure 6. Flow chart for computations in three methods. This flow chart describes the basic structure of
the computations performed by three methods. There are two parts that are method specific. They are
indicated with thickened boxes. A set of pre-generated 100 cells is commonly used. Each method
computed eight areas of every cell—a total of 800 area calculations. These calculations are repeated 30
times to measure the average computation time.
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3. Results

Figure 7 shows the average percentage error and the average computation time of all three
methods with up to eight cases as listed in Table 1. The blue lines in each graph show the average
percentage error and the red graphs are the average calculation time. All methods show increasing
computational time as the error decreases. The patterns of increment and decrement are approximately
exponential. The exponential increment and decrement are expected since the number of vertices in
the icosahedron-based vertex generation approximately goes up by four-fold from one generation to
the next generation, while other methods followed the number of vertices in the icosahedron-based
method. The triangulation method always showed better accuracy for equivalent vertices counts.
The worst error is about 13% whereas the other methods recorded higher than 17% error. The lowest
average error for the triangulation method was 0.015% but the other two methods could not achieve
that low-level error even with a larger number of vertices. While the triangulation method achieved
the best accuracy, it took much longer to produce more accurate results. Monte Carlo methods finished
calculations in about 3 s in case number 8, whereas the triangulation method took approximately
350 s in case number 6. In the algorithm of the triangulation method, the triangulation of the domain
depicted by D in Figure 3 is done by the Delaunay algorithm. This turned out to be computationally
expensive. Comparing two Monte Carlo methods, the icosahedron-based method was superior to the
sampling from a uniform distribution. Since the vertices themselves in the icosahedron-based method
are almost uniform, the icosahedron-based method achieved better average accuracy than the Monte
Carlo method using sample points from a uniform distribution. The stochasticity in the sample points
presumably contributed to the bigger average error even though two methods use the same number of
vertices. Interestingly, the computation time was also slightly but consistently longer in the case of the
sample points method.

Figure 8 has the computational time against the average percentage error in the common logarithm
scale for the three methods. The data points are from Figure 7. All plots show approximately decreasing
linear graphs. Stochasticity of the sample points in the Monte Carlo method negatively impacts the
convergence rate, resulting in the graph being more deviated from a linear graph than the other two
methods in this log scale. These graphs show the performance of the three methods more clearly
and allow us to compare them. According to these graphs, at the average error of 0.1% or higher,
the icosahedron-based method provides quick ways to perform calculations. However, this may not
be true at a lower average error level. The trend shown along the graph of the icosahedron-based
method suggests this. If there were one or two more points to the left end of the current graph (red),
the shape of the graph suggests that it will cross the blue plot. This means that the icosahedron-based
method can be more costly than the triangulation method for the same average accuracy. Adding
two more data points on the red graph requires the ninth and tenth-generation icosahedron-based
vertices. We did not include those generation vertices because generating those vertices was extremely
computationally costly. Judging by the patterns of graphs in Figure 8, using the ninth-generation or
the tenth-generation vertices will be a not efficient method to adopt for finite volume simulations.
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Figure 7. Average percent error and average calculation time from three methods. The blue plots
with diamond markers are the average percent error which follows the vertical axis on the left side.
Each data point is the average over 800 area calculations for 100 cells. The values from the triangulation
method with 333,064 vertices on the disk domain are used as the exact values. The red plots with
asterisks are the average calculation time that uses the axis on the right side. The average time is
calculated from 30 repetitions of the 800 area calculations for 100 cells. The horizontal axes are all case
numbers which are listed in Table 1.
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Figure 8. The average computation time (T) vs. the average percent error (E) in the common logarithm
scale. The method 1 is the calculation based on triangulation. The method 2 is the Monte Carlo method
using sample points from a uniform distribution on a sphere. The method 3 is the Monte Carlo method
using the icosahedron-based vertices. The data points are from Figure 7.

4. Discussion

In this article, we have shown that the quasi-Monte Carlo method using the icosahedron-based
almost uniform vertices on spheres can be a well-balanced method to calculate areas on a sphere
intersecting with rectangular finite volumes. The quasi-Monte Carlo method has been reported to be a
more efficient tool in various contexts [23,24]. We also showed that the triangulation method, in which
the partial sphere surfaces need to be a graph of a two-variable function, can be used in conjunction
with a linear system of equations to calculate the area on a sphere intersecting with rectangular finite
volumes. In all methods discussed in this article, we utilized pre-generated vertices for efficiency and
avoided the full generation of vertices for each sphere. Generating uniformly distributed vertices,
especially with neighborhood relation, is computationally expensive. We tested three methods to
capture the cell surface reaction contribution in a finite volume implementation. The icosahedron-based
method would be our choice because it is capable of obtaining good accuracy in a short time. Moreover,
the coding is simple to produce. These three methods are compared by point-wise comparison. Yet,
the total (global) reaction rate remains the same across these methods because each cell’s reaction rate
contribution is proportional to the cell surface area (sphere area) and the cell surface was kept to be
the exact value through the linear system of equations. The impact of these different methods on the
diffusion-reaction system in the whole domain and in the long term was not within the scope of this
article and we intend to address this in future work.

There is another potential advantage of icosahedron-based methods. Reactions on the cell surface
include the reaction through cell surface receptors. When surface receptor locations are equally likely
on the cell surface, the cell area in each finite volume can be used as the reaction contribution from the
cell to the finite volume. It is, however, known that cell surface receptors can move around and be
localized on the cell surface [25,26]. The icosahedron-based method is capable of tracing any region on
the surface and measuring the area. Therefore, the icosahedron-based method will be suitable in cases
where unequally distributed or localized surface receptors need to be considered.

The icosahedron-based vertices are generated by adding the projection of the midpoint at each
edge of the previous generation. This is why almost uniformity is maintained. It is also why the
number of vertices increases only by four-fold from the previous generation, whereas the number of
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sample points from a uniform distribution can be arbitrary. There is a variation we may introduce to
make icosahedron-based vertices other than those fixed numbers by the generation. Instead of putting
the midpoint on each edge, two trisection points can be added on each edge. This will generate a
different sequence of numbers for the vertex counts. Or, we can even proceed by mixing bisection
generation and trisection generation. Trisection, however, appears to affect the uniformity a bit more.
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