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Abstract: In this paper, a prescribed performance adaptive backstepping control (PPABC) strategy is
proposed to control the speed of a winding segmented permanent magnet linear synchronous motor
(WS-PMLSM) with variable parameters and an unknown load disturbance. Firstly, a mathematical
model of WS-PMLSM is provided. Then, the prescribed performance technique is introduced in the
adaptive backstepping control to improve the transient performance and ensures the tracking error
converges within a predetermined range. In addition, a constrained command filter is introduced to
address the problem of differential expansion which exists in the traditional backstepping method,
and a filter compensation signal is designed against the filter error. Moreover, the adaptive law
is designed based on Lyapunov stability theory to estimate the uncertainties caused by parameter
changes and load disturbances. The stability of the proposed control strategy is given and the
simulation of the control system is carried out under the proposed PPABC in contrast with another
backstepping control and traditional PI control. Finally, the experiment is conducted to further show
the effectiveness of the proposed controller.
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1. Introduction

In recent years, the linear motor (LM) is widely used in many fields such as machine tools [1],
vehicles [2], and workshop transportations [3]. In terms of its structure, there are no intermediate
devices like screws and gears inside the LM since its working process doesn’t contain conversion
from rotational motion to linear motion which is required in the conventional rotary motor. Hence,
the mechanical loss exhibits little in the LM, which makes LM more popular in the field of linear
motion [4,5]. In addition, LM also possesses many other advantages, such as high precision,
high efficiency, low noise, simple mechanism, and high power density [2]. Compared with linear
induction motors, permanent magnet synchronous linear motors (PMLSMs) are more efficient and
have a higher power density [3]; thus, they are widely used in high quality linear motion systems.
PMLSMs can be divided into two categories according to their structural characteristics: long primary
short secondary and long secondary short primary. The latter requires that the driven cable moves
with the secondary mover, which reduces the reliability of the system and limits the speed of the
secondary mover. The long primary winding needs a high supply voltage due to its length which
results in excessive resistance and inductance, producing a large electromagnetic loss [6]. To overcome
the shortcomings of traditional long primary PMLSMs, a winding segmented permanent magnet linear
synchronous motor (WS-PMLSM) is proposed. The WS-PMLSM basically decomposes a high-power
linear motor into multiple low-power linear motor units, in order to avoid powering the whole
primary winding. The drive system only needs to drive the primary sections coupled with the mover,
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reducing the pressure on the drive system and improving the efficiency. Additionally, in terms of
manufacturing and maintenance, the modular segmented structure of the primary winding has the
advantages of flexible topology, convenient fabrication, ease of manufacture, assembly and disassembly,
adjustable stroke length, and easy maintenance [6]. However, many parameters of WS-PMLSM are
variable due to its special structure, such as the resistance which varies with temperature and the
three-phase unbalance. In particular, when the mover is coupled with the two segments at the
same time, the flux and inductance of the primary winding changes with the position of the mover.
The uncertainty of the motor parameters makes control difficult, and it is obviously difficult to achieve
a good control effect of the WS-PMLSM using traditional PI control.

In recent years, scholars have done a lot of research on WS-PMLSM. In [6], the effect on inductance
and magnetic field was studied due to winding section and the position of the mover changes. In [7],
the influence of inductance and flux linkage variation on control performance was researched. In [8],
an adaptive backstepping method was proposed using an adaptive rate that was designed based
on Lyapunov stability theory to handle the parameter variation, in order to eliminate the influence
of parameter uncertainty of the control system. However, this method did not consider differential
expansion; the designed controller was too large for calculation and difficult to use in practical
applications. Additionally, it did not consider the dynamic performance of the system. In [9,10],
the controller was designed based on predictive control and achieve good control performance;
however, this control method was too large in calculation, which limited its application in practice.
In [11], a new control method was proposed based on support vector machine and direct torque
control, but this method has a large thrust ripple.

Backstepping has been widely used in motor control due to its easy combination with other
control techniques such as adaptive control and slide structure control. Backstepping control can
achieve complete decoupling of the PMLSM [12], and a controller based on backstepping has global
stability [13]. However, traditional backstepping control requires accurate model information and
cannot adapt to parameters that are changing with time [14–16]. In order to improve the robustness of
traditional backstepping control, adaptive control [17–19] and sliding structure control [20–23] have
been introduced to manage the uncertainties and nonlinearity, and these methods have achieved good
control effect. In [10], a sliding structure method was proposed, which applied the sliding mode
structure method to adaptive backstepping control. The proposed method could enhance the dynamic
performance of the system, but the sliding mode variable structure control caused shake, especially
at low speeds. However, neither of these control methods considered the input limitation problem.
When there are limited inputs, the controller designed by either method may be unstable, limiting its
use in practical applications.

In this paper, prescribed performance and constrained command filter are introduced to adaptive
backstepping control. The command filter is introduced to address input limitation and differential
expansion [24–26]. Prescribed performance is introduced to improve dynamic performance by taking
transient performance such as overshoots and adjustment time into consideration to ensure that the
tracking error converges to a prescribed area within a prescribed time [27–29]. The advantages of the
controller designed in this paper are as follows: 1. A constrained command filter is implemented in
the backstepping control to handle differential expansion. 2. The constrained command filter limits
the amplitude and rate of change of the virtual control signal, ensuring that the signal satisfies the
constraints of the system and enhancing its practicability. 3. The prescribed performance method
considers transient performance of the error based on stability error analysis, thus enhancing the
dynamic performance of the system.
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2. Mathematical Model of Winding Segmented Permanent Magnet Linear Synchronous Motor

Mathematical Model of PMLSMs

The structure of WS-PMLSM is shown as Figure 1. Ignoring the influence of the PMLSM flux
leakage and harmonics in the gap magnetic field, the gap magnetic field generated by the permanent
magnet has a positive dark wave distribution, and the expression of air gap flux is:

B(x) =

{
Bm sin((x− r)π/τ) 0 ≤ x < l
0 others

(1)

where Bm is the max gap flux, x is the position of mover, l is the length of mover, τ is pole pitch, and r
is the half coupling length of the mover.

Mover

Segment 1 Segment 2 Segment 3

Air Gap

Figure 1. Structure of the WS-PMLSM.

When the mover is moving at speed v, the relationship between the induced electromotive force
in the primary winding and the position of the mover is:

E = −vNc
dψ

dt
= −vNc

d
dt

∫ x2

x1
B(x)ldx (2)

where E is the induced electromotive force and Nc is the number of coil turns.
Based on the position of the mover, the induced electromotive force can be written uniformly as:

E =


0 r > x2 or r < x1 − l
−vNcBm sin ((x2 − r)π/τ) l x1 < r < x2

−vNcBm sin ((x2 − r)π/τ − (x1 − r)π/τ) l x2 − l < r < x1

−vNcBm sin ((x1 − r)π/τ) l x1 − l < r < x2 − l

(3)

The primary winding’s induced electromotive force is the sum of the induced electromotive forces
of each coil and the induced electromotive force of the primary winding is given as:

∑ E = E1 (r) +E2 (r) + ... + En (r) (4)

As the mover gradually enters or leaves a segment, the number of coupled coils changes with
the position of the mover, causing instability due to an electromagnetic thrust in the single primary
segment. By considering the process of the mover as it moves between the two primary windings,
the electromagnetic thrust of the primary can be obtained as the result of the combined action of the
two adjacent primary segments, as the mover is coupled with two adjacent segments at the same time.
Thus, the electromagnetic thrust of the primary is:

∑ F =
1

2v
((Ea1 Ia1 + Eb1 Ib1 + Ec1 Ic1) + (Ea2 Ia2 + Eb2 Ib2 + Ec2 Ic2)) (5)

If the currents in both adjacent segments are maintained at exactly the same magnitude and phase,
the electromagnetic thrust can be rewritten as:

∑ F =
1

2v
((Ea1 + Ea2)Ia + (Eb1 + Eb2)Ib + (Ec1 + Ec2)Ic) (6)
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It can be obtained from (3), (4), and (6) that, as long as the coupling area of the primary winding
and the secondary actuator is constant, the electromagnetic thrust remains stable while the mover is
moving in and out of the adjacent segment. The primary winding consists of multiple segments which
are each powered and controlled independently. Unlike a traditional PMLSM, many parameters of
WS-PMLM change depending on the relative position between the primary and mover while the mover
is moving. This change causes variation in the electromagnetic parameters of the segment which are a
function of the mover position. As the mover moves in or out or each segment, the mover magnetic
field affects the segment magnetic field. As the coupling area increases, the magnetic reluctance,
the self-inductance, the mutual inductance, and the excitation electromotive force of the segment shows
an upward trend. When the mover moves completely over the segment and the magnetic circuit is fully
coupled, the magnetic reluctance of the segment and the amplitude of the self-inductance, the mutual
inductance and the excitation electromotive force remain stable and there is no further change. As the
mover exits the segment and the coupling area decreases, the magnetic reluctance of the segment and
the amplitude of the self-inductance, the mutual inductance and the excitation electromotive force
show a downward trend. The mathematical model of the primary winding segmented permanent
magnet linear motor is similar to the mathematical model of the conventional surface-mounted
permanent magnet linear synchronous motor. The difference is that the parameter changes due to
mover movement should be considered in WS-PMLSM. The motor parameters are related to the
position of the mover. In order to simplify the expression of the mathematical model, the synchronous
inductance and the permanent magnet flux are denoted by Ls(x) and ψ f (x), respectively. The voltage
equation of the WS-PMLSM segment in the d-q axis synchronous rotating coordinate system is:{

ud = Rid + L(x) did
dt − vp π

τ L(x)iq

uq = Riq + L(x) diq
dt − vp π

τ

(
L(x)id + ψ f (x)

) (7)

where ud, uq, id, and iq are the d-axis, q-axis voltage and d-axis, q-axis current, R is the primary winding
resistance, and v is the mover movement speed. The electromagnetic thrust equation of the primary
winding is described as:

Fe =
3π

2τ
Piqψ f=KTiq (8)

where Fe is the electromagnetic thrust, P is the number of pole pairs, and KT is the thrust coefficient.
The dynamic equation of the secondary mover is described as:

Fe = Tl + M
dv
dt

+ Bv (9)

where Tl is the external disturbance term, M is the mass of the mover, and B is the friction coefficient.
As the WS-PMLSM motor parameters change with the position of the mover, its parameters

cannot be accurately obtained, and the WS-PMLSM motor model equation can be rewritten as:
i̇d = 1

L ud − R
L id + vp π

τ iq + β1

i̇q = 1
L uq − R

L iq − v π
τ id −

vpπψ f
Lτ + β2

Fe = M v̇ + Bv + Tl + β3

(10)

where β1, β2, and β3 are error variables.
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3. Prescribed Performance Adaptive Backstepping Controller Designer

3.1. Constrained Command Filter

The backstepping control method should differentiate the level of virtual control required
incrementally as differential expansion occurs. Since actuator saturation can occur in practical
applications, this paper uses a constrained command filter, which addresses the differential expansion
and controller saturation. The mathematical form of its state space model is described as [30]:[

q̇1

q̇2

]
=

[
q2

2ξωn

[
SR

(
ω2

n
2ξωn

(SM(u)− q1)
)
− q2

] ] (11)

where [q1, q2]
T = [xc, ẋc]T is magnitude limit. The structure of constrained command filter is defined

as in Figure 2.
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Figure 2. Constrained command filter structure.

The constrained command filter can solve the problems of differential expansion and controller
saturation but will produce a filtering error [31] η = ic

q − id
q , which will interfere with the performance

of the controller and should be taken into consideration. In this paper, a filter compensator signal is
introduced to eliminate this error which can be defined as:

η̇ = −kη +
KT
M

(ic
q − id

q) (12)

where id
q is the given q-axis primary current, ic

q is the output of the constrained command filter, and k
is a positive scalar.

3.2. Prescribed Performance Function and Error Transformation

In order to obtain the prescribed control performance, a prescribed performance method is
proposed which bounds the tracking error of the system by the prescribed performance. The definition
of the prescribed performance function is given as follows [32,33]:

Definition 1. A smooth function ρ(t) : R+ → R+ that satisfies the following two conditions can be used as
prescribed performance function:

1. ρ(t) is positive and strictly decreasing.
2. lim

t→∞
ρ(t) = ρ∞ > 0

In this paper, a prescribed performance function is selected as:

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞ (13)

where ρ0, ρ∞, and l are positive constants.
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The speed tracking error is defined as follows:

e1(t) = v(t)− vc(t) (14)

where vc(t) is the given speed. In addition, vc(t) must be continuous and be derivable, and v̇c(t) must
be continuous and derivable and bounded. The defined compensated track error is:

ē1(t) = e1(t)− η (15)

In order to ensure that the compensated error meets the prescribed static and dynamic
performance, the compensated track error ē1(t) is bounded by the following criteria:{

−Nρ(t) < ē1(t) < ρ(t), ē1(0) > 0
−ρ(t) < ē1(t) < Nρ(t), ē1(0) < 0

(16)

where 0 ≤ N ≤ 1.
According to (13) and (16), at time t = 0, if the compensated error ē1(t) satisfies function (16),

the performance of the compensated track error ē1(t)is governed by ρ(t), and the convergence speed
of ē1(t) is determined by ρ(t) as well.

In order to convert the inequality to equation form, a conversion function is introduced to the
prescribed performance function. The error transformation function is defined as:

ē1(t) = ρ(t)L(ε(t)) (17)

where ε(t) is the transformed error, and L (.) is a smooth and strictly increasing function which must
meet the following two functions:

{
−N < L(ε) < 1, ē1(0) > 0
−1 < L(ε) < N, ē1(0) < 0

(18)

 lim
ε→−∞

L(ε) = −M

lim
ε→∞
L(ε) = 1

ē1(0) > 0 lim
ε→−∞

L(ε) = −1

lim
ε→∞
L(ε) = M

ē1(0) < 0

(19)

In this paper, L(ε) is selected as:

L(ε) =
{

eε−Ne−ε

eε+e−ε , ē1(0) > 0
Neε−e−ε

eε+e−ε , ē1(0) < 0
(20)

According to (17) and (20), ε(t) can be rewritten as:

ε(t) = L−1
(

ē1(t)
ρ(t)

)
(21)

The derivative of ε(t) and the following function can be obtained as:

ε̇ =
∂L−1

∂(ē1/ρ)

1
ρ

(
˙̄e1 −

ρ̇ē1

ρ

)
(22)
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According to (15) and (22), following function can be achieved as:

ε̇ =
∂L−1

∂(ē1/ρ)

1
ρ

(
v̇− v̇c − η̇ − ρ̇ē1

ρ

)
= r (v̇− v̇c − η̇ − α) (23)

where r = ∂L−1

∂(ē1/ρ)
1
ρ , α = ρ̇ē1

ρ .

3.3. Prescribed Performance Adaptive Backstepping Controller Designer

The WS-PMLSM model has nonlinear characteristics and its model parameters are uncertain.
Since traditional PI control cannot get adequate control effects, in order to obtain accurate speed
control, this paper designs a prescribed performance adaptive backstepping controller as follows:

Step 1. Define the Lyapunov function as:

V1 =
1
2r

ε2 (24)

Then, the derivation of V1 is obtained as:

V̇1 = ε(
KT
M

eq −
Bv
M
− β3

M
− v̇c + kη +

KT
M

id
q + α) (25)

Select iq and id as the virtual control variables to stabilize the velocity. With respect to function
(25), the following function is chosen to stabilize the velocity:

id
q =

M
KT

(
−k1ε +

Bv
M

+
β3

M
+ v̇c − kη − α

)
(26)

where id
q and id

d are the command currents and k1 is a positive scalar.
Since the parameters β1, β2 and β3 cannot be accurately obtained, they can be replaced with

adaptive estimated values β̂1, β̂2, and β̂3.
Rewrite (26) as

id
q =

M
KT

(
−k1ε +

Bv
M

+
β̂3

M
+ v̇c − kη − α

)
(27)

In this paper, we choose id
d = 0. Then, substituting (26) into (25), it can be obtained that

V̇1 = ε(
KT
M

eq +
β̃3

M
− k1ε) = −k1ε2 +

KT
M

eqε +
β̃3

M
ε (28)

Step 2. Defined the current loop error as follows:

e2(t) = iq(t)− ic
q(t)

e3(t) = id(t)
(29)

In order to obtain the adaptive law of β1, β2, andβ3 and the current loop control rate, the second
step of the Lyapunov equation is selected as

V2 = V1 +
1
2

eq
2 +

1
2

ed
2 +

1
2γ1

β̃2
1 +

1
2γ2

β̃2
2 +

1
2γ3

β̃2
3 (30)
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where γ1, γ2, and γ3 are positive scalars, β̃1=β1 − β̂1, β̃2=β2 − β̂2 and β̃3=β3 − β̂3 are the errors in
the estimated parameters. The derivation of V2 is taken as:

V̇2 = ε

(
KT
M

eq − k1ε +
β̃3

M

)
+ eq(i̇q − i̇c

q) + ed i̇d +
1

γ1
β̃1

˙̂β1 +
1

γ2
β̃2

˙̂β2 +
1

γ3
β̃3

˙̂β3 (31)

Substituting (10) into (31), we can obtain that:

V̇2=− k1ε2 + eq

(
KT
M ε + 1

L uq − R
L iq −

vpπψ f
Lτ + β̂2 − i̇c

q − v π
τ id
)
+ ed

(
1
L ud − R

L id + vp π
τ iq + β̂1

)
+ 1

γ1
β̃1

(
˙̂β1 − γ1ed

)
+ 1

γ2
β̃2

(
˙̂β2 − γ2eq

)
+ 1

γ3
β̃3

(
˙̂β3 + γ3

ε
M

)
(32)

According to (32), the current loop control law is designed as:{
ud

q = − LKT
M ε + Riq +

vpπψ f
τ − Lβ̂2 + Lic

q +
Lvpπ

τ id − k2eq

ud
d = Rid − Lvπ

τ iq − Lβ̂1 − k3ed
(33)

where ud
q and ud

d are the command voltage.
According to (32), the update laws for parameter error estimation can be obtained as:

˙̂β1 = γ1ed
˙̂β2 = γ2eq
˙̂β3 = −γ3

ε
M

(34)

Substituting (33) and (34) into (32), the following result can be obtained as:

V̇2=− k1ε2 − k2e2
q − k3e2

d < 0 (35)

3.4. Stability Analysis

Theorem 1. The designed controllers and parameter adaptive laws designed according to (26), (33), and (34)
ensure that all signals are bounded, thus ensuring that the compensation error meets the prescribed static and
dynamic performance.

Further analysis can provide the following conclusions:

Corollary 1.

lim
t→∞
|ē1| = lim

t→∞

∣∣∣iq − ic
q − η

∣∣∣ = 0 (36)

Proof. (1) If the command filter is not saturated, it can be obtained from (12) that lim
t→∞
|η| = 0. Therefore,

it can be obtained by Theorem 1 that:

lim
t→∞
|ē1| = lim

t→∞

∣∣∣iq − ic
q − η

∣∣∣ = 0

(2) If the command filter is saturated, based on LaSalle–Yoshizawa Theorem [34] and (35),
the following conclusion can be obtained:

lim
t→∞
|ē1| = lim

t→∞

∣∣∣iq − ic
q − η

∣∣∣ = 0

Based on Theorem 1 and Corollary 1, the following theorem can be obtained that:
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Theorem 2. (1) lim
t→∞
|ē1| = 0

(2) Tracking error e1 satisfies the following inequality:

|e1| ≤ |L| |ρ|

√√√√ 3

∑
i=1

1
2γi

β̃i(0)β̂i(0) +

∣∣eq
∣∣ kT

M
2k

(37)

Proof. (1) The first part has already been proven by Theorem 1.
(2) In light of (35) and Theorem 1, the following inequality can be obtained:

ε2
1 ≤

1
k1

(V2(0)−V2(∞)) ≤ 1
k1

V2(0) (38)

Initial ε(0) = eq(0) = ed(0) = 0, and following equation can be obtained:

V2(0) = V1(0) +
1
2

eq(0)2 +
1
2

ed(0)
2 +

1
2γ1

β̃1(0)2 +
1

2γ2
β̃2(0)2 +

1
2γ3

β̃3(0)2 (39)

Combining (38) with (39), it can be obtained as follows:

|ε| ≤

√√√√ 3

∑
i=1

1
2γi

β̃i(0)β̂i(0) (40)

As ε(t) = L−1
(

ē1(t)
ρ(t)

)
and L−1 is a monotonic and bounded function, it can be obtained as follows:

|ē1| ≤ |L|

√√√√ 3

∑
i=1

1
2γi

β̃i(0)β̂i(0) |ρ| (41)

Then, the Lyapunov function is defined as

Vη =
1
2

η2 (42)

Take the derivation of V2 as:

V̇η = ηη̇=− kη2 + η

(
KT
M

(ic
q − id

q)

)
(43)

The following inequation can be obtained as:

V̇η ≤ −
(

kη −
KT
M (ic

q − id
q)

2k

)2

+

( KT
M (ic

q − id
q)

2k

)2

(44)

Similarly, the following conclusions can be obtained as:

|η|2 ≤ Vη(0)−Vη(∞) +

( KT
M (ic

q − id
q)

2k

)2

(45)

Defining η(0) = 0 , Vη(0) = 0, it can be obtained that:

|η| ≤
( KT

M (ic
q − id

q)

2k

)
(46)
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Thus, we can get the final result as

|e1| ≤ |L|

√√√√ 3

∑
i=1

1
2γi

β̃i(0)β̂i(0) |ρ|+
∣∣eq
∣∣ kT

M
2k

(47)

When the input is limited, the tracking error can be reduced by adjusting L and ρ in the method
proposed in this paper. This is in contrast with the traditional backstepping method that can only
reduce the tracking error by increasing the gains k1 or adjusting the initial value of the adaptive function.
PPABC has obvious advantages compared with the traditional backstepping method. The introduction
of the prescribed performance method reduces the tracking error due to both signal limitations and
filter errors and compensates for the deficiencies of traditional command filtering backstepping.
Additionally, the traditional prescribed performance function limits the steady-state error within a
certain range and requires that ρ(∞) is small enough in order to achieve high track precision.

4. Simulation Study

In this section, the effectiveness of the designed controller with respect to WS-PMLSM is verified
via simulation. The parameters of the motor is listed in Table 1. In addition, according to the references
and the parameters of the actual motor, disturbances such as inductance and flux changes are added to
the simulation model to approximate the dynamic response of the actual motor. In order to clarify
the control design process, a principle block diagram of the proposed control strategy is described
in Figure 3.

Prescribed 

Performance 

eq(21)

Speed Loop 

Controller 

eq(27)

Constrained 

Command 

Filter eq(11)

Current Loop 

Controller 

eq(33)

SW-PMLSM

compensator signal 

eq(12)

Adaptive law 

eq(34)

v

cv e d

qi

,q dii

, 0
c d

q di i = ,
d d

d qu u

h

-

-

-

1 2
,ˆ ˆb b

3
b̂

Figure 3. PPABC block diagram.

Table 1. Parameters of WS-PMLSM.

Definition Parameter/Measure Value

Mass M/kg 3.5
Magnetic flux ψ f /Wb 0.2

Friction coefficient B/(N/(m · s−1)) 0.027
Inductance L/H 0.1021
Resistance R/Ω 6.2689
Pole pitch τ/m 0.027

Number of pole pairs P 2

In order to achieve suitable control effects, the parameters of PPABC strategy require proper
adjustment. The main work is to design the parameter of prescribed performance function. During the
parameter adjustment process, ρ0 must be set larger than the maximum tracking error once the motor
starts to work. However, if it is selected too large, the overshoot may be large as well, which requires
a balance between the tracking performance and overshoot. Moreover, ρ∞ is the required precision
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when the system tends to be stable and l determines the convergence rate of the system. The larger l
is, the faster the error converges, yet the maximum response capacity of the system should also be
considered. On the other hand, during the design process of adaptive parameters, once the estimation
error is generated, the corresponding adaptive parameters ought to be adjusted according to the error
to make minimum impact on the system. Motivated by the aforementioned adjustment, the controller
parameters are designed as k = 500, k1 = k2 = k3 = 10, 000, adaptive parameters are designed
as γ1 = 10, 000, γ2 = 100, 000, γ3 = 10, 000, the prescribed performance function is designed as
ρ(t) = (1− 0.005)e−90t + 0.005 and the constrained command filter is designed with ω = 3000, ξ = 0.1,
current magnitude limit is designed as ±10 A and current rate limit is designed as ±500 A/s.

Based on the above parameter adjustment, the simulation results are obtained. The compensated
error ē1 curves are shown in Figure 4. It is clear that the compensated error is bounded by the prescribed
performance function and gradually converges to zero which indicates the stability of the system.
In Figure 5, it is shown that the compensated error ē1 still possesses quick response, fast convergence
rate and stable state when the mass of mover turns to 3M, which demonstrates that the controller
designed in this paper owns robustness against parameter changes.
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Figure 4. Compensated error curve.
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Figure 5. Compensated error curve with different mass.

The speed tracking performances of the proposed controller are shown in Figures 6 and 7, and the
adaptive backstepping control (ABC) strategy in [8] and the conventional PI control are also applied to
the system for comparison. It can be observed from Figure 6 that the speed under the proposed PPABC
and ABC both have shorter convergence time and less overshoot than the conventional PI control,
which verifies the effectiveness of the adaptive backstepping technique. However, the proposed
PPABC exhibits less overshoot at the beginning and stays more stable than the ABC when the external
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load disturbance occurs at 0.3 s owing to the introduction of the prescribed performance technique.
In addition, Figure 7 presents the comparison more clearly from the point of view of error.
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Figure 6. Speed tracking curves.
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Figure 7. Speed error curves.

Similarly, the simulations with 3M mover mass are also carried out and the corresponding results
are shown in Figures 8 and 9. It can be found that the speed under PPABC is kept stable regardless
of the disturbance, which further demonstrates better robustness of the PPABC than ABC and PI.
To sum up, the proposed PPABC owns better static and dynamic performance with quicker response,
faster convergence rate, and better robustness than ABC and PI.
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Figure 8. Speed tracking curves with 3M.



Math. Comput. Appl. 2020, 25, 18 13 of 16

0 0.2 0.4 0.6 0.8 1

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

e
 (

m
/s

)

PPABC

PI

ABC

0 0.01 0.02
-0.1

0

0.1

0.2

0.3 0.35 0.4

-0.02

0

0.02

Figure 9. Speed error curves with 3M.

5. Experiment Validation

To further verify the effectiveness of the proposed algorithm, a physical experiment has been
built, which is shown in Figure 10. The current signals are measured by hall sensors and the speed and
position are measured by an incremental encoder, and the sampling period of velocity and current is
400 µs and 200 µs, respectively. The dead band is set to 5 µs.

Segment 1 Mover Segment 2 Segment 3

Driver 1 Driver 2 Driver 3

Figure 10. Configuration of experiment.

The reference speed is set to 1 m/s in the experiment. The speed control loop parameters of PI
are kvp = 100, kvi = 50 and the q-axis current loop parameters are kvp = 200, kvi = 80, the d-axis
current loop parameters are kvp = 150, kvi = 60. The main idea of parameter adjustment with respect
to the proposed controller in the experiment is similar to that in simulation. In particular, the actual
system suffers more disturbance, which makes the control accuracy lower than that in the simulation.
Therefore, ρ∞ in the experiment ought to be set larger than that designed in the simulation. In addition,
there are differences in their inverter bridge, controller, and mathematical model which makes other
parameters different between the simulation and the experiment. According to the above regulation,
the parameters of PPABC controller in the experiment are designed as k = 180, k1 = k2 = k3 = 240,
the prescribed performance function is designed as ρ(t) = (1− 0.03)e−120t + 0.03.

The speed tracking performances are shown in Figures 11 and 12. As can be seen from
experimental results, the response of the two control methods are roughly the same. However,
the speed under the proposed PPABC owns a smaller overshoot than that under PI. In addition, it can
be found that the steady fluctuation of the speed under the proposed method is smaller than PI,
which validates the better static and dynamic performance of the proposed control strategy.
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Figure 11. Speed tracking curve.
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Figure 12. Speed tracking error curve.

6. Conclusions

In this paper, a PPABC strategy has been designed for WS-PWLSM, and the simulation and
experiment results have proven that the controller can achieve precise velocity control of WS-PWLSM
with parameter variation and external disturbances.

Firstly, a mathematical model of WS-PWLSM has been provided with the control strategy that
drives two sections with the same current. Secondly, prescribed performance has been introduced
to traditional backstepping control to ensure that the compensated error can converge within a
predetermined range. The command filter has been also introduced to backstepping control to address
the problem of differential expansion in the traditional backstepping algorithm. To address filter error,
a compensation algorithm has also been introduced. Then, the PPABC has been designed according to
Lyapunov stability theory and an adaptive law has been introduced to handle uncertain parameters
and external disturbances. Finally, the simulation and experiment results prove that the proposed
PPABC owns better static and dynamic performance with quicker response, faster convergence rate,
and better robustness than ABC and PI.
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