A Projection Hestenes–Stiefel Method with Spectral Parameter for Nonlinear Monotone Equations and Signal Processing
Abstract
:1. Introduction
2. Proposed Algorithm for Monotone Equations and Its Convergence Analysis
- (i)
- monotone if
- (ii)
- Lipschitzian continuous if there exists such that
Algorithm 1: Modified Hestene–Stiefel with spectral parameter (HSS). |
Input: Given , Set .
|
- (i)
- and are bounded and exists.
- (ii)
- The sequence of the search direction is bounded.
- (iii)
- and are bounded.
- (iv)
- (v)
- (i)
- (ii)
- the sequence converges to a point which satisfies
3. Experiment on Monotone Equations and Application in Signal Processing
3.1. First Experiment on Monotone Equations
3.2. Second Experiment on Signal Processing
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. List of Test Problems
References
- Iusem, N.A.; Solodov, V.M. Newton-type methods with generalized distances for constrained optimization. Optimization 1997, 41, 257–278. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Q.; Hu, Q. Non-smooth equations based methods for l1-norm problems with applications to compressed sensing. Nonlinear Anal. Theory Methods Appl. 2011, 74, 3570–3577. [Google Scholar] [CrossRef]
- Ghaddar, B.; Marecek, J.; Mevissen, M. Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 2016, 31, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Yuan, Y.X. Optimization Theory and Methods: Nonlinear Programming; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer Science: New York, NY, USA, 2006. [Google Scholar]
- La Cruz, W.; Martínez, J.; Raydan, M. Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 2006, 75, 1429–1448. [Google Scholar] [CrossRef] [Green Version]
- Leong, W.J.; Hassan, M.A.; Yusuf, M.W. A matrix-free quasi-Newton method for solving large-scale nonlinear systems. Comput. Math. Appl. 2011, 62, 2354–2363. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Chen, Y.; Huang, S.; Feng, D. A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations. Optim. Lett. 2014, 8, 1845–1860. [Google Scholar] [CrossRef]
- Mohammad, H.; Waziri, M.Y. On Broyden-like update via some quadratures for solving nonlinear systems of equations. Turk. J. Math. 2015, 39, 335–345. [Google Scholar] [CrossRef]
- Mohammad, H. Barzilai–Borwein-Like Method for Solving Large-Scale Nonlinear Systems of Equations. J. Niger. Math. Soc. 2017, 36, 71–83. [Google Scholar]
- Bellavia, S.; Macconi, M.; Morini, B. An affine scaling trust-region approach to bound-constrained nonlinear systems. Appl. Numer. Math. 2003, 44, 257–280. [Google Scholar] [CrossRef]
- Zhu, D. An affine scaling trust-region algorithm with interior backtracking technique for solving bound-constrained nonlinear systems. J. Comput. Appl. Math. 2005, 184, 343–361. [Google Scholar] [CrossRef] [Green Version]
- Ahookhosh, M.; Esmaeili, H.; Kimiaei, M. An effective trust-region-based approach for symmetric nonlinear systems. Int. J. Comput. Math. 2013, 90, 671–690. [Google Scholar] [CrossRef]
- Yuan, Y.-X. Recent advances in trust region algorithms. Math. Program. 2015, 151, 249–281. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 2013, 405, 310–319. [Google Scholar] [CrossRef]
- Hager, W.W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 2005, 16, 170–192. [Google Scholar] [CrossRef] [Green Version]
- Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations. In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods; Springer: Boston, MA, USA, 1998; pp. 355–369. [Google Scholar]
- Livieris, I.E.; Pintelas, P. Globally convergent modified Perry’s conjugate gradient method. Appl. Math. Comput. 2012, 218, 9197–9207. [Google Scholar] [CrossRef]
- Dai, Z.; Chen, X.; Wen, F. A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 2015, 270, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, D.H. A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 2011, 31, 1625–1635. [Google Scholar] [CrossRef]
- Yan, Q.-R.; Peng, X.-Z.; Li, D.-H. A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 2010, 234, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; He, C.; Liu, Y. An adaptive family of projection methods for constrained monotone nonlinear equations with applications. Appl. Math. Comput. 2019, 359, 1–16. [Google Scholar] [CrossRef]
- Muhammed, A.A.; Kumam, P.; Abubakar, A.B.; Wakili, A.; Pakkaranang, N. A new hybrid spectral gradient projection method for monotone system of nonlinear equations with convex constraints. Thai J. Math. 2018. Available online: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/3376 (accessed on 21 April 2020).
- Liu, J.K.; Li, S.J. A projection method for convex constrained monotone nonlinear equations with applications. Comput. Math. Appl. 2015, 70, 2442–2453. [Google Scholar] [CrossRef]
- Abubakar, A.B.; Kumam, P.; Mohammad, H.; Awwal, A.M.; Sitthithakerngkiet, K. A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications. Mathematics 2019, 7, 745. [Google Scholar] [CrossRef] [Green Version]
- Awwal, A.M.; Kumam, P.; Abubakar, A.B. Spectral modified Polak–Ribiére–Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations. Appl. Math. Comput. 2019, 362, 124514. [Google Scholar] [CrossRef]
- Abubakar, A.B.; Kumam, P.; Awwal, A.M. An inexact conjugate gradient method for symmetric nonlinear equations. Comput. Math. Methods 2019, 6, e1065. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, H.; Abubakar, A.B. A descent derivative-free algorithm for nonlinear monotone equations with convex constraints. RAIRO Oper. Res. 2020, 54, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.-H.; Huang, Y.; Liu, X.-W. A family of spectral gradient methods for optimization. Comput. Optim. Appl. 2019, 74, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wan, Z. A new nonmonotone spectral residual method for nonsmooth nonlinear equations. J. Comput. Appl. Math. 2017, 313, 82–101. [Google Scholar] [CrossRef]
- Zheng, L.; Yang, L.; Liang, Y. A conjugate gradient projection method for solving equations with convex constraints. J. Comput. Appl. Math. 2020, 375, 112781. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y. A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algorithms 2019, 82, 245–262. [Google Scholar] [CrossRef]
- Amini, K.; Faramarzi, P.; Pirfalah, N. A modified Hestenes–Stiefel conjugate gradient method with an optimal property. Optim. Methods Softw. 2019, 34, 770–782. [Google Scholar] [CrossRef]
- Narushima, Y.; Yabe, H.; Ford, J.A. A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 2011, 21, 212–230. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.-H.; Kou, C.-X. A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim. 2013, 23, 296–320. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W. A PRP type method for systems of monotone equations. Math. Comput. Model. 2009, 50, 15–20. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, W. Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 2006, 196, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. Ser. 2002, 91, 201–213. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; Mol, C.D. An efficient thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 2004, 57, 1413–1457. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.A.T.; Nowak, R. An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 2003, 12, 906–916. [Google Scholar] [CrossRef] [Green Version]
- Mol, C.D.; Defrise, M. A note on wavelet-based inversion algorithms. Contemp. Math. 2002, 313, 85–96. [Google Scholar]
- Hale, E.T.; Yin, W.; Zhang, Y. A Fixed-Point Continuation Method for ell1-Regularized Minimization with Applications to Compressed Sensing; CAAM Technical Report TR07-07 for Rice University: Houston, TX, USA, 2007. [Google Scholar]
- Yang, J.; Yin, W.; Zhang, Y.; Wang, Y. A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2009, 2, 569–592. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Yin, W. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 2009, 31, 2842–2865. [Google Scholar] [CrossRef]
- Xiao, Y.-H.; Jin, Z.-F. An alternating direction method for linear-constrained matrix nuclear norm minimization. Numer. Linear Algebra Appl. 2012, 19, 541–554. [Google Scholar] [CrossRef]
- Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Toh, K.-C. A coordinate gradient descent method for ℓ1-regularized convex minimization. Comput. Optim. Appl. 2011, 48, 273–307. [Google Scholar] [CrossRef]
- Loris, I.; Bertero, M.; Mol, D.C.; Zanella, R.; Zanni, L. Accelerating gradient projection methods for ℓ1-constrained signal recovery by steplength selection rules. Appl. Comput. Harmon. Anal. 2009, 27, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.S. Inexact Newton methods for the nonlinear complementarity problem. Math. Program. 1986, 36, 54–71. [Google Scholar] [CrossRef]
- Abubakar, A.B.; Kumam, P.; Awwal, A.M.; Thounthong, P. A Modified Self-Adaptive Conjugate Gradient Method for Solving Convex Constrained Monotone Nonlinear Equations for Signal Recovery Problems. Mathematics 2019, 7, 693. [Google Scholar] [CrossRef] [Green Version]
- Awwal, A.M.; Kumam, P.; Abubakar, A.B. A modified conjugate gradient method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 2019, 145, 507–520. [Google Scholar] [CrossRef]
- Gao, P.; He, C. An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints. Calcolo 2018, 55, 53. [Google Scholar] [CrossRef]
- Abubakar, A.B.; Kumam, P.; Awwal, A.M. A descent Dai–Liao projection method for convex constrained nonlinear monotone equations with applications. Thai J. Math. 2018. Available online: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/3372 (accessed on 21 April 2020).
Problem 1 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 5 | 12 | 0.4454 | 1.2 × | 41 | 84 | 0.029665 | 9.97 × | 36 | 74 | 0.0291 | 3.49 × | 47 | 96 | 0.049823 | 4.58 × |
x2 | 25 | 51 | 0.030772 | 9.12 × | 57 | 116 | 0.020445 | 8.17 × | 42 | 85 | 0.015079 | 8.84 × | 65 | 131 | 0.054894 | 9.19 × | |
x3 | 8 | 17 | 0.005867 | 9.42 × | 50 | 102 | 0.011775 | 8.56 × | 46 | 94 | 0.017204 | 2.21 × | 40 | 82 | 0.032647 | 5.07 × | |
x4 | 24 | 50 | 0.010883 | 7.2 × | 58 | 118 | 0.015481 | 9.51 × | 40 | 82 | 0.018437 | 3.16 × | 44 | 90 | 0.037726 | 5.45 × | |
x5 | 7 | 15 | 0.00825 | 1.49 × | 51 | 104 | 0.012897 | 8.46 × | 51 | 104 | 0.019256 | 9.89 × | 64 | 130 | 0.072206 | 7.35 × | |
x6 | 7 | 15 | 0.021386 | 2.37 × | 41 | 84 | 0.011211 | 8.86 × | 46 | 94 | 0.018799 | 7.01 × | 80 | 162 | 0.072448 | 6.36 × | |
5000 | x1 | 5 | 11 | 0.024934 | 1.79 × | 40 | 82 | 0.040348 | 8.34 × | 27 | 56 | 0.034997 | 1.3 × | 35 | 72 | 0.19811 | 6.59 × |
x2 | 25 | 51 | 0.043535 | 9.12 × | 57 | 116 | 0.04253 | 8.17 × | 42 | 85 | 0.08315 | 8.84 × | 65 | 131 | 0.2973 | 9.19 × | |
x3 | 7 | 16 | 0.063339 | 2.09 × | 48 | 98 | 0.05612 | 8.76 × | 28 | 58 | 0.067063 | 4.05 × | 51 | 104 | 0.19957 | 5.68 × | |
x4 | 24 | 50 | 0.045037 | 7.2 × | 58 | 118 | 0.083654 | 9.51 × | 36 | 74 | 0.066975 | 3.44 × | 57 | 116 | 0.2415 | 6.8 × | |
x5 | 7 | 15 | 0.016824 | 3.17 × | 49 | 100 | 0.069098 | 8.61 × | 51 | 104 | 0.093807 | 7.98 × | 51 | 104 | 0.42878 | 6.81 × | |
x6 | 7 | 15 | 0.013023 | 3.37 × | 38 | 78 | 0.061728 | 8.02 × | 49 | 99 | 0.083743 | 8.02 × | 88 | 178 | 0.79169 | 6.7 × | |
10000 | x1 | 5 | 11 | 0.025322 | 1.82 × | 39 | 80 | 0.087834 | 8.97 × | 29 | 60 | 0.10988 | 2.14 × | 37 | 76 | 0.3135 | 3.44 × |
x2 | 25 | 51 | 0.092561 | 9.12 × | 57 | 116 | 0.13838 | 8.17 × | 42 | 85 | 0.13059 | 8.84 × | 65 | 131 | 0.58046 | 9.19 × | |
x3 | 7 | 16 | 0.021996 | 2.96 × | 47 | 96 | 0.10667 | 9.17 × | 31 | 64 | 0.11367 | 1.18 × | 93 | 188 | 1.4396 | 2.81 × | |
x4 | 24 | 50 | 0.077032 | 7.2 × | 58 | 118 | 0.14476 | 9.51 × | 41 | 84 | 0.15532 | 1.1 × | 48 | 98 | 0.38582 | 8.67 × | |
x5 | 7 | 15 | 0.020935 | 4.45 × | 48 | 98 | 0.10544 | 8.97 × | 47 | 95 | 0.16012 | 5.62 × | 97 | 196 | 2.8134 | 9.86 × | |
x6 | 7 | 15 | 0.02372 | 4.53 × | 42 | 86 | 0.090851 | 8.97 × | 54 | 109 | 0.27744 | 5.59 × | 114 | 230 | 3.2143 | 2.62 × | |
50000 | x1 | 5 | 11 | 0.12861 | 3.17 × | 38 | 78 | 0.33746 | 8.43 × | 28 | 58 | 0.44472 | 8.48 × | 47 | 96 | 1.8109 | 3.45 × |
x2 | 25 | 51 | 0.40895 | 9.12 × | 57 | 116 | 0.4312 | 8.17 × | 42 | 85 | 0.58467 | 8.84 × | 65 | 131 | 2.2362 | 9.19 × | |
x3 | 7 | 16 | 0.089772 | 6.61 × | 45 | 92 | 0.38008 | 9.78 × | 44 | 90 | 0.76263 | 2.61 × | 49 | 100 | 3.709 | 6.73 × | |
x4 | 24 | 50 | 0.49831 | 7.2 × | 58 | 118 | 0.49767 | 9.51 × | 45 | 92 | 0.64548 | 2.84 × | 51 | 104 | 1.6105 | 8.18 × | |
x5 | 7 | 15 | 0.08695 | 9.9 × | 46 | 94 | 0.40103 | 9.31 × | 51 | 104 | 0.72555 | 6.27 × | 203 | 408 | 27.1911 | 9.8 × | |
x6 | 7 | 15 | 0.081075 | 9.63 × | 41 | 84 | 0.37714 | 9.08 × | 44 | 90 | 0.63276 | 6.26 × | 173 | 348 | 17.3745 | 6.02 × | |
100000 | x1 | 5 | 11 | 0.1897 | 4.34 × | 38 | 78 | 0.68124 | 7.72 × | 21 | 44 | 0.78409 | 7.7 × | 40 | 82 | 2.3871 | 7.69 × |
x2 | 25 | 51 | 1.1264 | 9.12 × | 57 | 116 | 1.092 | 8.17 × | 42 | 85 | 1.2409 | 8.84 × | 65 | 131 | 3.7292 | 9.19 × | |
x3 | 7 | 16 | 0.19532 | 9.34 × | 45 | 92 | 0.76874 | 8.38 × | 37 | 76 | 1.5389 | 4.43 × | 107 | 216 | 16.1536 | 9.91 × | |
x4 | 24 | 50 | 0.69604 | 7.2 × | 58 | 118 | 1.1008 | 9.51 × | 32 | 66 | 1.0387 | 7.38 × | 54 | 110 | 3.0635 | 7.87 × | |
x5 | 7 | 15 | 0.13571 | 1.4 × | 45 | 92 | 0.81993 | 9.9 × | 51 | 104 | 3.0136 | 7.08 × | 451 | 904 | 155.5752 | 8.9 × | |
x6 | 7 | 15 | 0.15849 | 1.38 × | 41 | 84 | 0.83232 | 9.94 × | 49 | 100 | 2.741 | 7.08 × | 182 | 366 | 53.9013 | 5.58 × |
Problem 2 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 4 | 10 | 0.065511 | 4.79 × | 54 | 110 | 0.051537 | 8.99 × | 2 | 6 | 0.004049 | 5.17 × | 2 | 6 | 0.00428 | 5.17 × |
x2 | 7 | 16 | 0.004944 | 3.08 × | 55 | 112 | 0.020758 | 8.77 × | 18 | 38 | 0.014524 | 4.14 × | 60 | 122 | 0.030779 | 8.53 × | |
x3 | 8 | 18 | 0.007408 | 5.76 × | 80 | 162 | 0.024411 | 8.64 × | 5 | 12 | 0.005914 | 1.74 × | 5 | 12 | 0.002481 | 1.74 × | |
x4 | 8 | 18 | 0.004786 | 5.33 × | 60 | 122 | 0.030894 | 9.09 × | 20 | 42 | 0.014378 | 8.06 × | 86 | 174 | 0.041737 | 6.46 × | |
x5 | 8 | 18 | 0.006147 | 2.74 × | 71 | 144 | 0.032592 | 8.41 × | 27 | 56 | 0.025985 | 1.81 × | 96 | 194 | 0.044708 | 2.04 × | |
x6 | 8 | 18 | 0.007174 | 2.78 × | 71 | 144 | 0.033933 | 8.54 × | 25 | 52 | 0.048252 | 2.21 × | 89 | 180 | 0.051754 | 8.75 × | |
5000 | x1 | 4 | 10 | 0.013144 | 1.06 × | 58 | 118 | 0.08423 | 8.02 × | 2 | 6 | 0.011378 | 1.75 × | 2 | 6 | 0.00446 | 1.75 × |
x2 | 7 | 16 | 0.018096 | 3.13 × | 55 | 112 | 0.10769 | 8.7 × | 30 | 62 | 0.19022 | 1.54 × | 73 | 148 | 0.15676 | 6.86 × | |
x3 | 8 | 18 | 0.018438 | 1.28 × | 83 | 168 | 0.12004 | 9.71 × | 5 | 12 | 0.011973 | 2.36 × | 5 | 12 | 0.009605 | 2.36 × | |
x4 | 8 | 18 | 0.022149 | 5.4 × | 60 | 122 | 0.12048 | 9 × | 18 | 38 | 0.094073 | 5.88 × | 61 | 124 | 0.13065 | 8.76 × | |
x5 | 8 | 18 | 0.034873 | 9.51 × | 74 | 150 | 0.12629 | 9.49 × | 22 | 46 | 0.046554 | 8.16 × | 77 | 156 | 0.20059 | 1.08 × | |
x6 | 8 | 18 | 0.035623 | 9.55 × | 74 | 150 | 0.13564 | 9.58 × | 22 | 46 | 0.079387 | 7.45 × | 87 | 176 | 0.2346 | 4.59 × | |
10000 | x1 | 4 | 10 | 0.015467 | 1.5 × | 59 | 120 | 0.15681 | 9.04 × | 2 | 6 | 0.012605 | 1.21 × | 2 | 6 | 0.015088 | 1.21 × |
x2 | 7 | 16 | 0.030136 | 3.13 × | 55 | 112 | 0.15155 | 8.69 × | 28 | 58 | 0.52817 | 1.05 × | 72 | 146 | 0.33387 | 9.65 × | |
x3 | 8 | 18 | 0.030859 | 1.82 × | 85 | 172 | 0.52762 | 8.77 × | 5 | 12 | 0.10838 | 3.62 × | 5 | 12 | 0.018115 | 1.24 × | |
x4 | 8 | 18 | 0.062129 | 5.41 × | 60 | 122 | 0.36479 | 8.99 × | 15 | 32 | 0.052187 | 5.56 × | 78 | 158 | 0.3405 | 1.51 × | |
x5 | 9 | 20 | 0.064209 | 1.33 × | 76 | 154 | 0.20614 | 8.58 × | 25 | 52 | 0.089306 | 9 × | 101 | 204 | 0.53394 | 5.47 × | |
x6 | 9 | 20 | 0.067411 | 1.33 × | 76 | 154 | 0.3443 | 8.58 × | 31 | 64 | 0.12864 | 8.79 × | 73 | 148 | 0.44865 | 6.23 × | |
50000 | x1 | 4 | 10 | 0.068733 | 3.34 × | 63 | 128 | 0.7666 | 8.26 × | 2 | 6 | 0.03321 | 6.32 × | 2 | 6 | 0.031681 | 6.32 × |
x2 | 7 | 16 | 0.20861 | 3.14 × | 55 | 112 | 1.2994 | 8.68 × | 21 | 44 | 0.30953 | 6.18 × | 49 | 100 | 0.99731 | 2.56 × | |
x3 | 8 | 18 | 0.24123 | 4.06 × | 89 | 180 | 1.1196 | 8.02 × | 6 | 14 | 0.25741 | 9.31 × | 5 | 12 | 0.061125 | 4.01 × | |
x4 | 8 | 18 | 0.40721 | 5.42 × | 60 | 122 | 1.6253 | 8.98 × | 15 | 32 | 0.42982 | 2.59 × | 61 | 124 | 1.2389 | 7.49 × | |
x5 | 9 | 20 | 0.25666 | 2.98 × | 79 | 160 | 1.2268 | 9.81 × | 23 | 48 | 0.34981 | 1.82 × | 108 | 218 | 1.9382 | 7.03 × | |
x6 | 9 | 20 | 0.1428 | 2.98 × | 79 | 160 | 1.9121 | 9.81 × | 24 | 50 | 0.40973 | 7.86 × | 111 | 224 | 2.3737 | 7.48 × | |
100000 | x1 | 4 | 10 | 0.14432 | 4.73 × | 64 | 130 | 2.8646 | 9.34 × | 2 | 6 | 0.061232 | 5.4 × | 2 | 6 | 0.058923 | 5.4 × |
x2 | 7 | 16 | 0.18563 | 3.14 × | 55 | 112 | 1.6057 | 8.68 × | 29 | 60 | 0.86796 | 6.52 × | 71 | 144 | 2.482 | 9.83 × | |
x3 | 8 | 18 | 0.26077 | 5.74 × | 90 | 182 | 2.6208 | 9.07 × | 7 | 16 | 0.29491 | 1.1 × | 5 | 12 | 0.11839 | 2.71 × | |
x4 | 8 | 18 | 0.30728 | 5.42 × | 60 | 122 | 1.8968 | 8.98 × | 15 | 32 | 0.64725 | 2.34 × | 61 | 124 | 2.7544 | 4.46 × | |
x5 | 9 | 20 | 0.29364 | 4.22 × | 81 | 164 | 2.4882 | 8.87 × | 20 | 42 | 0.95254 | 3.99 × | 86 | 174 | 3.8181 | 8.38 × | |
x6 | 9 | 20 | 0.30376 | 4.21 × | 81 | 164 | 2.1676 | 8.87 × | 21 | 44 | 0.67373 | 7.01 × | 130 | 262 | 4.741 | 5.23 × |
Problem 3 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 4 | 10 | 0.02031 | 1.97 × | 67 | 136 | 0.033374 | 9.14 × | 21 | 44 | 0.016594 | 7.52 × | 6 | 14 | 0.003308 | 2.51 × |
x2 | 4 | 10 | 0.004364 | 3.86 × | 59 | 120 | 0.014332 | 9.74 × | 19 | 40 | 0.020992 | 5.27 × | 56 | 114 | 0.028785 | 1.95 × | |
x3 | 5 | 12 | 0.009166 | 4.62 × | 79 | 160 | 0.020838 | 9.14 × | 24 | 50 | 0.028946 | 8.19 × | 7 | 16 | 0.003857 | 5.28 × | |
x4 | 4 | 10 | 0.003387 | 4.2 × | 63 | 128 | 0.015309 | 8.43 × | 20 | 42 | 0.023507 | 5.35 × | 59 | 119 | 0.034386 | 9.47 × | |
x5 | 5 | 12 | 0.007451 | 4.72 × | 75 | 152 | 0.018522 | 8.3 × | 23 | 48 | 0.028748 | 9.58 × | 62 | 126 | 0.036143 | 2.58 × | |
x6 | 5 | 12 | 0.003156 | 4.83 × | 75 | 152 | 0.018401 | 8.24 × | 23 | 48 | 0.01997 | 9.53 × | 85 | 172 | 0.041196 | 2.93 × | |
5000 | x1 | 4 | 10 | 0.00634 | 4.4 × | 71 | 144 | 0.056879 | 8.37 × | 22 | 46 | 0.032142 | 2.34 × | 6 | 14 | 0.013685 | 6.96 × |
x2 | 4 | 10 | 0.007762 | 3.86 × | 59 | 120 | 0.064447 | 9.74 × | 19 | 40 | 0.045592 | 5.27 × | 56 | 114 | 0.1389 | 1.95 × | |
x3 | 6 | 14 | 0.036929 | 1.02 × | 83 | 168 | 0.097078 | 8.37 × | 26 | 54 | 0.043952 | 9.45 × | 8 | 18 | 0.017421 | 0 | |
x4 | 4 | 10 | 0.013407 | 4.21 × | 63 | 128 | 0.066394 | 8.43 × | 20 | 42 | 0.051169 | 5.35 × | 47 | 96 | 0.14942 | 4.76 × | |
x5 | 5 | 12 | 0.010295 | 1.06 × | 78 | 158 | 0.11486 | 9.51 × | 25 | 52 | 0.050411 | 5.36 × | 84 | 170 | 0.23801 | 5.46 × | |
x6 | 5 | 12 | 0.016684 | 1.07 × | 78 | 158 | 0.15325 | 9.49 × | 25 | 52 | 0.037297 | 5.39 × | 58 | 117 | 0.22868 | 5.38 × | |
10000 | x1 | 4 | 10 | 0.022699 | 6.23 × | 72 | 146 | 0.16795 | 9.47 × | 22 | 46 | 0.060396 | 3.31 × | 6 | 14 | 0.020364 | 7.28 × |
x2 | 4 | 10 | 0.014139 | 3.86 × | 59 | 120 | 0.14901 | 9.74 × | 19 | 40 | 0.18271 | 5.27 × | 56 | 114 | 0.3439 | 1.95 × | |
x3 | 6 | 14 | 0.019224 | 1.45 × | 84 | 170 | 0.69638 | 9.47 × | 27 | 56 | 0.65826 | 6.68 × | 8 | 18 | 0.030973 | 3.47 × | |
x4 | 4 | 10 | 0.011995 | 4.21 × | 63 | 128 | 0.33074 | 8.43 × | 20 | 42 | 0.076416 | 5.35 × | 36 | 74 | 0.25376 | 3.81 × | |
x5 | 5 | 12 | 0.015141 | 1.49 × | 80 | 162 | 0.4328 | 8.61 × | 25 | 52 | 0.10034 | 7.58 × | 72 | 146 | 0.50642 | 2.51 × | |
x6 | 5 | 12 | 0.022858 | 1.49 × | 80 | 162 | 0.22692 | 8.63 × | 25 | 52 | 0.16107 | 7.59 × | 77 | 156 | 0.49567 | 1.88 × | |
50000 | x1 | 4 | 10 | 0.052651 | 1.39 × | 76 | 154 | 1.2123 | 8.67 × | 24 | 50 | 1.1795 | 6.65 × | 7 | 16 | 0.17603 | 8.43 × |
x2 | 4 | 10 | 0.057156 | 3.86 × | 59 | 120 | 1.0414 | 9.74 × | 19 | 40 | 0.35856 | 5.27 × | 56 | 114 | 1.395 | 1.95 × | |
x3 | 6 | 14 | 0.063795 | 3.24 × | 88 | 178 | 1.5448 | 8.67 × | 27 | 56 | 0.41163 | 2.37 × | 7 | 16 | 0.10883 | 4.33 × | |
x4 | 4 | 10 | 0.04699 | 4.21 × | 63 | 128 | 0.80096 | 8.43 × | 20 | 42 | 0.2929 | 5.35 × | 42 | 86 | 1.0935 | 9.35 × | |
x5 | 5 | 12 | 0.17235 | 3.34 × | 83 | 168 | 1.0549 | 9.86 × | 26 | 54 | 0.46606 | 8.48 × | 83 | 168 | 2.0317 | 3.14 × | |
x6 | 5 | 12 | 0.061083 | 3.34 × | 83 | 168 | 1.3178 | 9.87 × | 26 | 54 | 0.88305 | 1.54 × | 86 | 174 | 2.0782 | 4.3 × | |
100000 | x1 | 4 | 10 | 0.13629 | 1.97 × | 77 | 156 | 1.507 | 9.81 × | 19 | 40 | 0.84867 | 3.35 × | 7 | 16 | 0.18 | 3.11 × |
x2 | 4 | 10 | 0.11002 | 3.86 × | 59 | 120 | 1.1762 | 9.74 × | 19 | 40 | 0.49061 | 5.27 × | 56 | 114 | 2.3847 | 1.95 × | |
x3 | 6 | 14 | 0.17107 | 4.58 × | 89 | 180 | 2.3631 | 9.81 × | 34 | 70 | 1.5875 | 5.62 × | 7 | 16 | 0.20417 | 5.04 × | |
x4 | 4 | 10 | 0.17033 | 4.21 × | 63 | 128 | 2.0171 | 8.43 × | 20 | 42 | 0.45278 | 5.35 × | 53 | 108 | 2.3837 | 2.24 × | |
x5 | 5 | 12 | 0.27433 | 4.73 × | 85 | 172 | 2.4078 | 8.92 × | 27 | 56 | 0.78559 | 9.24 × | 80 | 162 | 3.2927 | 3.65 × | |
x6 | 5 | 12 | 0.42743 | 4.72 × | 85 | 172 | 2.1616 | 8.94 × | 29 | 60 | 0.69763 | 5.07 × | 86 | 174 | 3.0691 | 2.38 × |
Problem 4 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 1 | 3 | 0.022489 | 0 | 1 | 3 | 0.047719 | 0 | 1 | 3 | 0.007245 | 0 | 1 | 3 | 0.000932 | 0 |
x2 | 1 | 3 | 0.002172 | 0 | 1 | 3 | 0.002429 | 0 | 1 | 3 | 0.003757 | 0 | 109 | 219 | 0.029483 | 9.28 × | |
x3 | 1 | 3 | 0.001634 | 0 | 1 | 3 | 0.00262 | 0 | 1 | 3 | 0.002875 | 0 | 1 | 3 | 0.002245 | 0 | |
x4 | 3 | 8 | 0.005628 | 4.47 × | 1 | 3 | 0.00244 | 0 | 5 | 12 | 0.007667 | 7.88 × | 1 | 3 | 0.00235 | 0 | |
x5 | 5 | 12 | 0.004021 | 6.49 × | 1 | 3 | 0.003671 | 0 | 29 | 59 | 0.019814 | 9.22 × | 1 | 3 | 0.001477 | 0 | |
x6 | 5 | 12 | 0.012438 | 7.19 × | 1 | 3 | 0.001087 | 0 | 24 | 49 | 0.012885 | 7.25 × | 1 | 3 | 0.00134 | 0 | |
5000 | x1 | 1 | 3 | 0.005965 | 0 | 1 | 3 | 0.003018 | 0 | 1 | 3 | 0.002284 | 0 | 1 | 3 | 0.002272 | 0 |
x2 | 1 | 3 | 0.004459 | 0 | 1 | 3 | 0.002205 | 0 | 1 | 3 | 0.003033 | 0 | 109 | 219 | 0.13851 | 9.28 × | |
x3 | 1 | 3 | 0.002232 | 0 | 1 | 3 | 0.006697 | 0 | 1 | 3 | 0.003255 | 0 | 1 | 3 | 0.007835 | 0 | |
x4 | 3 | 8 | 0.007485 | 4.15 × | 1 | 3 | 0.002504 | 0 | 5 | 12 | 0.008525 | 6.9 × | 1 | 3 | 0.003338 | 0 | |
x5 | 6 | 14 | 0.015053 | 1.46 × | 1 | 3 | 0.002627 | 0 | 25 | 52 | 0.02548 | 6.94 × | 1 | 3 | 0.003799 | 0 | |
x6 | 6 | 14 | 0.010208 | 1.48 × | 1 | 3 | 0.002331 | 0 | 26 | 53 | 0.032945 | 6.87 × | 1 | 3 | 0.004136 | 0 | |
10000 | x1 | 1 | 3 | 0.004832 | 0 | 1 | 3 | 0.013794 | 0 | 1 | 3 | 0.003671 | 0 | 1 | 3 | 0.00363 | 0 |
x2 | 1 | 3 | 0.003793 | 0 | 1 | 3 | 0.00365 | 0 | 1 | 3 | 0.004001 | 0 | 109 | 219 | 0.36648 | 9.28 × | |
x3 | 1 | 3 | 0.004974 | 0 | 1 | 3 | 0.004041 | 0 | 1 | 3 | 0.005493 | 0 | 1 | 3 | 0.01389 | 0 | |
x4 | 3 | 8 | 0.010592 | 4.11 × | 1 | 3 | 0.009375 | 0 | 5 | 12 | 0.026602 | 6.79 × | 1 | 3 | 0.008508 | 0 | |
x5 | 6 | 14 | 0.021774 | 2.07 × | 1 | 3 | 0.009331 | 0 | 27 | 55 | 0.05058 | 6.22 × | 1 | 3 | 0.006177 | 0 | |
x6 | 6 | 14 | 0.013876 | 2.05 × | 1 | 3 | 0.006686 | 0 | 23 | 48 | 0.048102 | 8.31 × | 1 | 3 | 0.00721 | 0 | |
50000 | x1 | 1 | 3 | 0.021524 | 0 | 1 | 3 | 0.017893 | 0 | 1 | 3 | 0.021182 | 0 | 1 | 3 | 0.013617 | 0 |
x2 | 1 | 3 | 0.05473 | 0 | 1 | 3 | 0.021253 | 0 | 1 | 3 | 0.010713 | 0 | 109 | 219 | 1.148 | 9.28 × | |
x3 | 1 | 3 | 0.021119 | 0 | 1 | 3 | 0.013569 | 0 | 1 | 3 | 0.018747 | 0 | 1 | 3 | 0.04227 | 0 | |
x4 | 3 | 8 | 0.073359 | 4.07 × | 1 | 3 | 0.009532 | 0 | 5 | 12 | 0.06247 | 6.69 × | 1 | 3 | 0.017147 | 0 | |
x5 | 6 | 14 | 0.063864 | 4.64 × | 1 | 3 | 0.011356 | 0 | 1 | 3 | 0.026335 | 0 | 1 | 3 | 0.020316 | 0 | |
x6 | 6 | 14 | 0.10304 | 4.7 × | 1 | 3 | 0.008921 | 0 | 1 | 3 | 0.02759 | 0 | 1 | 3 | 0.022485 | 0 | |
100000 | x1 | 1 | 3 | 0.035424 | 0 | 1 | 3 | 0.016441 | 0 | 1 | 3 | 0.034987 | 0 | 1 | 3 | 0.024402 | 0 |
x2 | 1 | 3 | 0.027929 | 0 | 1 | 3 | 0.03353 | 0 | 1 | 3 | 0.036914 | 0 | 109 | 219 | 2.2239 | 9.28 × | |
x3 | 1 | 3 | 0.039706 | 0 | 1 | 3 | 0.017034 | 0 | 1 | 3 | 0.11907 | 0 | 1 | 3 | 0.082234 | 0 | |
x4 | 3 | 8 | 0.083596 | 4.07 × | 1 | 3 | 0.017529 | 0 | 5 | 12 | 0.083531 | 6.68 × | 1 | 3 | 0.04628 | 0 | |
x5 | 6 | 14 | 0.25359 | 6.57 × | 1 | 3 | 0.016306 | 0 | 1 | 3 | 0.033998 | 0 | 1 | 3 | 0.039002 | 0 | |
x6 | 6 | 14 | 0.1416 | 6.95 × | 1 | 3 | 0.031449 | 0 | 1 | 3 | 0.024931 | 0 | 1 | 3 | 0.041211 | 0 |
Problem 5 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 4 | 10 | 0.059751 | 3.96 × | 82 | 166 | 0.049837 | 8.42 × | 26 | 54 | 0.023436 | 6.16 × | 68 | 138 | 0.077811 | 3.54 × |
x2 | 4 | 10 | 0.004665 | 4.11 × | 82 | 166 | 0.036694 | 8.73 × | 26 | 54 | 0.018791 | 6.39 × | 74 | 150 | 0.062604 | 4.38 × | |
x3 | 4 | 10 | 0.003302 | 1.09 × | 76 | 154 | 0.058903 | 8.81 × | 24 | 50 | 0.014953 | 6.76 × | 64 | 130 | 0.05319 | 5.6 × | |
x4 | 4 | 10 | 0.004825 | 4.1 × | 82 | 166 | 0.036868 | 8.71 × | 26 | 54 | 0.013522 | 6.38 × | 78 | 158 | 0.060024 | 5.4 × | |
x5 | 4 | 10 | 0.003849 | 3.39 × | 81 | 164 | 0.031956 | 8.99 × | 26 | 54 | 0.018961 | 5.26 × | 75 | 152 | 0.067381 | 9.61 × | |
x6 | 4 | 10 | 0.00315 | 3.39 × | 81 | 164 | 0.077436 | 9.01 × | 26 | 54 | 0.014281 | 5.27 × | 54 | 110 | 0.060038 | 7.5 × | |
5000 | x1 | 4 | 10 | 0.012654 | 8.89 × | 85 | 172 | 0.15576 | 9.65 × | 27 | 56 | 0.081796 | 6.9 × | 54 | 110 | 0.24452 | 8.65 × |
x2 | 4 | 10 | 0.011453 | 9.23 × | 86 | 174 | 0.4407 | 8.01 × | 27 | 56 | 0.068774 | 7.16 × | 58 | 118 | 0.35362 | 8.98 × | |
x3 | 4 | 10 | 0.011682 | 2.44 × | 80 | 162 | 0.33484 | 8.08 × | 25 | 52 | 0.067068 | 7.57 × | 43 | 88 | 0.25534 | 7.14 × | |
x4 | 4 | 10 | 0.013908 | 9.23 × | 86 | 174 | 0.24378 | 8.01 × | 27 | 56 | 0.088127 | 7.16 × | 63 | 128 | 0.30915 | 7.22 × | |
x5 | 4 | 10 | 0.011849 | 7.6 × | 85 | 172 | 0.15641 | 8.24 × | 27 | 56 | 0.083818 | 5.89 × | 55 | 112 | 0.28214 | 7.38 × | |
x6 | 4 | 10 | 0.013519 | 7.61 × | 85 | 172 | 0.21864 | 8.24 × | 27 | 56 | 0.17961 | 5.9 × | 87 | 176 | 0.33912 | 9.84 × | |
10000 | x1 | 5 | 12 | 0.049344 | 6.35 × | 87 | 176 | 0.32399 | 8.73 × | 28 | 58 | 0.33859 | 7.32 × | 51 | 104 | 0.62071 | 7.26 × |
x2 | 5 | 12 | 0.054254 | 6.59 × | 87 | 176 | 0.56731 | 9.06 × | 29 | 60 | 0.28634 | 5.7 × | 49 | 100 | 0.49179 | 8.68 × | |
x3 | 4 | 10 | 0.025027 | 3.45 × | 81 | 164 | 0.81926 | 9.14 × | 26 | 54 | 0.13539 | 5.35 × | 58 | 118 | 0.53457 | 9.29 × | |
x4 | 5 | 12 | 0.037107 | 6.59 × | 87 | 176 | 0.33429 | 9.06 × | 29 | 60 | 0.18407 | 5.69 × | 48 | 98 | 0.58512 | 8.06 × | |
x5 | 5 | 12 | 0.029731 | 5.43 × | 86 | 174 | 0.31597 | 9.33 × | 28 | 58 | 0.18179 | 6.25 × | 78 | 158 | 0.7064 | 6.91 × | |
x6 | 5 | 12 | 0.030679 | 5.41 × | 86 | 174 | 0.34123 | 9.33 × | 28 | 58 | 0.13266 | 6.26 × | 59 | 120 | 0.60942 | 5.85 × | |
50000 | x1 | 6 | 14 | 0.13438 | 7.17 × | 90 | 182 | 1.9581 | 1 × | 32 | 66 | 1.3355 | 0 | 62 | 126 | 2.0853 | 6.8 × |
x2 | 6 | 14 | 0.14676 | 7.45 × | 91 | 184 | 1.4814 | 8.3 × | 33 | 68 | 0.71451 | 0 | 59 | 120 | 1.9564 | 9.73 × | |
x3 | 4 | 10 | 0.083175 | 7.72 × | 85 | 172 | 1.5701 | 8.37 × | 26 | 54 | 0.69494 | 0 | 43 | 88 | 1.5166 | 4.88 × | |
x4 | 6 | 14 | 0.14168 | 7.45 × | 91 | 184 | 1.8901 | 8.3 × | 33 | 68 | 1.1252 | 0 | 46 | 94 | 1.7868 | 4.16 × | |
x5 | 6 | 14 | 0.20631 | 6.13 × | 90 | 182 | 1.2432 | 8.54 × | 31 | 64 | 0.60108 | 0 | 67 | 136 | 1.7509 | 6.22 × | |
x6 | 6 | 14 | 0.15371 | 6.13 × | 90 | 182 | 2.031 | 8.54 × | 31 | 64 | 0.96708 | 0 | 48 | 98 | 1.4123 | 7.24 × | |
100000 | x1 | 7 | 16 | 0.36536 | 5.12 × | 92 | 186 | 3.4223 | 9.05 × | 34 | 70 | 2.0212 | 0 | 37 | 76 | 2.2322 | 8.4 × |
x2 | 7 | 16 | 0.41608 | 5.32 × | 92 | 186 | 3.4177 | 9.39 × | 35 | 72 | 2.3869 | 0 | 66 | 134 | 4.3938 | 9.15 × | |
x3 | 5 | 12 | 0.26751 | 5.51 × | 86 | 174 | 3.1756 | 9.47 × | 26 | 54 | 1.3934 | 0 | 34 | 70 | 2.8543 | 7.66 × | |
x4 | 7 | 16 | 0.36165 | 5.32 × | 92 | 186 | 2.9337 | 9.39 × | 35 | 72 | 1.998 | 0 | 57 | 116 | 2.9496 | 9.55 × | |
x5 | 6 | 14 | 0.41128 | 8.67 × | 91 | 184 | 2.3545 | 9.66 × | 33 | 68 | 2.1747 | 0 | 71 | 144 | 3.5477 | 6.17 × | |
x6 | 6 | 14 | 0.27328 | 8.67 × | 91 | 184 | 2.3414 | 9.66 × | 33 | 68 | 2.2056 | 0 | 59 | 120 | 3.2639 | 6.57 × |
Problem 6 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 5 | 12 | 0.030248 | 3.21 × | 36 | 74 | 0.032352 | 9.48 × | 6 | 14 | 0.006658 | 2.09 × | 3 | 8 | 0.00372 | 3.24 × |
x2 | 6 | 14 | 0.004253 | 4.69 × | 37 | 76 | 0.010311 | 7.65 × | 34 | 70 | 0.018938 | 6.1 × | 86 | 174 | 0.068292 | 7.13 × | |
x3 | 5 | 12 | 0.004081 | 2.21 × | 36 | 74 | 0.010483 | 9.07 × | 6 | 14 | 0.005091 | 6.55 × | 4 | 10 | 0.004645 | 6.55 × | |
x4 | 10 | 22 | 0.014077 | 1.03 × | 37 | 76 | 0.010188 | 7.56 × | 33 | 68 | 0.013095 | 5.47 × | 63 | 128 | 0.0778 | 8.47 × | |
x5 | 6 | 14 | 0.006538 | 2.76 × | 36 | 74 | 0.010269 | 6.45 × | 48 | 98 | 0.018494 | 8.73 × | 80 | 162 | 0.10296 | 3.08 × | |
x6 | 6 | 14 | 0.005977 | 2.91 × | 36 | 74 | 0.012178 | 6.54 × | 52 | 106 | 0.02832 | 3.6 × | 88 | 178 | 0.12078 | 8.96 × | |
5000 | x1 | 5 | 12 | 0.024024 | 7.18 × | 38 | 78 | 0.044492 | 8.3 × | 6 | 14 | 0.014241 | 4.68 × | 3 | 8 | 0.018603 | 7.25 × |
x2 | 6 | 14 | 0.018634 | 6.56 × | 39 | 80 | 0.059781 | 6.7 × | 35 | 72 | 0.084409 | 5.59 × | 69 | 140 | 0.39768 | 6.38 × | |
x3 | 5 | 12 | 0.017453 | 4.95 × | 38 | 78 | 0.06979 | 7.94 × | 7 | 16 | 0.02862 | 9.35 × | 4 | 10 | 0.017763 | 1.46 × | |
x4 | 8 | 18 | 0.026507 | 5.07 × | 39 | 80 | 0.053907 | 6.68 × | 36 | 74 | 0.15347 | 6.96 × | 71 | 144 | 0.47127 | 9.1 × | |
x5 | 6 | 14 | 0.019105 | 6.22 × | 37 | 76 | 0.063182 | 9.02 × | 34 | 70 | 0.13452 | 7.37 × | 85 | 172 | 0.66379 | 3.47 × | |
x6 | 6 | 14 | 0.014968 | 6.44 × | 37 | 76 | 0.051971 | 9.06 × | 48 | 98 | 0.22496 | 9.43 × | 83 | 168 | 0.55329 | 9.71 × | |
10000 | x1 | 5 | 12 | 0.023248 | 1.02 × | 39 | 80 | 0.098655 | 7.34 × | 6 | 14 | 0.0289 | 6.62 × | 4 | 10 | 0.044346 | 5.12 × |
x2 | 6 | 14 | 0.027323 | 7.49 × | 39 | 80 | 0.10691 | 9.48 × | 16 | 34 | 0.058902 | 8.16 × | 48 | 98 | 0.55498 | 7.33 × | |
x3 | 5 | 12 | 0.02135 | 7 × | 39 | 80 | 0.10212 | 7.02 × | 7 | 16 | 0.029555 | 1.36 × | 4 | 10 | 0.035127 | 2.07 × | |
x4 | 8 | 18 | 0.030169 | 4.59 × | 39 | 80 | 0.22112 | 9.46 × | 35 | 72 | 0.1597 | 5.62 × | 83 | 168 | 0.87343 | 6.35 × | |
x5 | 6 | 14 | 0.028248 | 8.8 × | 38 | 78 | 0.32903 | 7.98 × | 40 | 82 | 0.13693 | 6.2 × | 83 | 168 | 0.80412 | 7.74 × | |
x6 | 6 | 14 | 0.026041 | 7.92 × | 38 | 78 | 0.2385 | 8.04 × | 42 | 86 | 0.2604 | 7.67 × | 79 | 160 | 0.89436 | 7.84 × | |
50000 | x1 | 5 | 12 | 0.15962 | 2.27 × | 41 | 84 | 0.41018 | 6.42 × | 7 | 16 | 0.16754 | 9.46 × | 4 | 10 | 0.14045 | 1.15 × |
x2 | 6 | 14 | 0.12 | 9.08 × | 41 | 84 | 0.48069 | 8.3 × | 28 | 58 | 0.67966 | 7.57 × | 84 | 170 | 2.9466 | 2.31 × | |
x3 | 6 | 14 | 0.25283 | 8.32 × | 40 | 82 | 0.55524 | 9.82 × | 8 | 18 | 0.1135 | 2.69 × | 4 | 10 | 0.13051 | 4.63 × | |
x4 | 8 | 18 | 0.11363 | 4.12 × | 41 | 84 | 0.73687 | 8.29 × | 26 | 54 | 0.34848 | 1.44 × | 105 | 212 | 3.7842 | 6.72 × | |
x5 | 7 | 16 | 0.1164 | 1.05 × | 40 | 82 | 0.41344 | 6.98 × | 37 | 76 | 0.53249 | 7.23 × | 86 | 174 | 3.0183 | 5.09 × | |
x6 | 7 | 16 | 0.11197 | 1.04 × | 40 | 82 | 0.47039 | 6.99 × | 50 | 102 | 1.4389 | 7.13 × | 88 | 178 | 2.9197 | 3.2 × | |
100000 | x1 | 5 | 12 | 0.3068 | 3.21 × | 41 | 84 | 1.417 | 9.08 × | 7 | 16 | 0.18772 | 8.58 × | 4 | 10 | 0.21746 | 1.62 × |
x2 | 6 | 14 | 0.56886 | 9.63 × | 42 | 86 | 0.81291 | 7.34 × | 35 | 72 | 1.0428 | 7.61 × | - | - | - | - | |
x3 | 6 | 14 | 0.1754 | 1.18 × | 41 | 84 | 0.88265 | 8.69 × | 8 | 18 | 0.36603 | 3.81 × | 4 | 10 | 0.18537 | 6.55 × | |
x4 | 8 | 18 | 0.2628 | 4.34 × | 42 | 86 | 1.285 | 7.34 × | 29 | 60 | 1.0324 | 5.25 × | 92 | 186 | 5.9597 | 7.9 × | |
x5 | 7 | 16 | 0.21732 | 1.48 × | 40 | 82 | 0.69398 | 9.87 × | 35 | 72 | 1.1286 | 4.43 × | 116 | 234 | 6.096 | 9.91 × | |
x6 | 7 | 16 | 0.28834 | 1.52 × | 40 | 82 | 1.4087 | 9.87 × | 50 | 102 | 1.9037 | 6.08 × | 87 | 176 | 4.7662 | 9.35 × |
Problem 7 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 4 | 10 | 0.012183 | 1.68 × | 151 | 304 | 0.18691 | 9.17 × | 16 | 34 | 0.014957 | 8.17 × | 6 | 14 | 0.012322 | 9.16 × |
x2 | 5 | 11 | 0.004785 | 1.65 × | 133 | 268 | 0.056032 | 9.21 × | 15 | 31 | 0.011109 | 7.97 × | 39 | 79 | 0.065169 | 8.34 × | |
x3 | 1 | 3 | 0.001547 | 0 | 2 | 5 | 0.004122 | 0 | 18 | 38 | 0.013079 | 8.51 × | 1 | 3 | 0.002491 | 0 | |
x4 | 7 | 15 | 0.004476 | 7.97 × | 140 | 282 | 0.046527 | 9.19 × | 17 | 36 | 0.011909 | 4.98 × | 273 | 547 | 6.0835 | 2.24 × | |
x5 | 10 | 21 | 0.012394 | 2.24 × | 164 | 330 | 0.056094 | 9.22 × | 19 | 40 | 0.018864 | 4.77 × | - | - | - | - | |
x6 | 10 | 21 | 0.010066 | 6.38 × | 164 | 330 | 0.067306 | 9.42 × | 19 | 40 | 0.014743 | 4.64 × | 358 | 717 | 4.6658 | 7.11 × | |
5000 | x1 | 4 | 10 | 0.11789 | 3.76 × | 158 | 318 | 0.21518 | 9.8 × | 17 | 36 | 0.073395 | 6.85 × | 6 | 14 | 0.042878 | 2.05 × |
x2 | 5 | 11 | 0.015099 | 1.65 × | 133 | 268 | 0.17588 | 9.21 × | 15 | 31 | 0.039081 | 7.97 × | 39 | 79 | 0.25795 | 8.34 × | |
x3 | 6 | 14 | 0.037396 | 1.09 × | 2 | 5 | 0.00964 | 0 | 20 | 42 | 0.060058 | 8.59 × | 1 | 3 | 0.006658 | 0 | |
x4 | 7 | 15 | 0.032192 | 7.96 × | 140 | 282 | 0.59813 | 9.19 × | 17 | 36 | 0.068599 | 4.99 × | 229 | 459 | 82.1077 | 0 | |
x5 | 10 | 21 | 0.020827 | 7.11 × | 171 | 344 | 0.46259 | 9.87 × | 20 | 42 | 0.068094 | 4.02 × | 172 | 345 | 21.112 | 0 | |
x6 | 12 | 25 | 0.028397 | 8.18 × | 171 | 344 | 0.24954 | 9.82 × | 20 | 42 | 0.11606 | 4.01 × | 211 | 423 | 92.8425 | 0 | |
10000 | x1 | 4 | 10 | 0.017055 | 5.32 × | 162 | 326 | 0.45674 | 9.1 × | 17 | 36 | 0.19021 | 9.69 × | 6 | 14 | 0.11361 | 2.9 × |
x2 | 5 | 11 | 0.01981 | 1.65 × | 133 | 268 | 0.56473 | 9.21 × | 15 | 31 | 0.16351 | 7.97 × | 39 | 79 | 0.54726 | 8.34 × | |
x3 | 6 | 14 | 0.064627 | 1.55 × | 2 | 5 | 0.016405 | 0 | 21 | 44 | 0.22851 | 4.56 × | 1 | 3 | 0.016089 | 0 | |
x4 | 7 | 15 | 0.025851 | 7.96 × | 140 | 282 | 0.8344 | 9.19 × | 17 | 36 | 0.085903 | 4.99 × | 850 | 1701 | 193.6507 | 0 | |
x5 | 11 | 23 | 0.32958 | 6.94 × | 175 | 352 | 0.49858 | 9.16 × | 20 | 42 | 0.10045 | 5.69 × | - | - | - | - | |
x6 | 10 | 21 | 0.076488 | 3.74 × | 175 | 352 | 0.5223 | 9.16 × | 20 | 42 | 0.10389 | 5.68 × | 82 | 165 | 6.8805 | 0 | |
50000 | x1 | 4 | 10 | 0.078496 | 1.19 × | 169 | 340 | 2.5024 | 9.73 × | 18 | 38 | 0.6056 | 8.13 × | 6 | 14 | 0.37763 | 6.48 × |
x2 | 5 | 11 | 0.099397 | 1.65 × | 133 | 268 | 2.1159 | 9.21 × | 15 | 31 | 0.68363 | 7.97 × | 39 | 79 | 2.5718 | 8.34 × | |
x3 | 6 | 14 | 0.15118 | 3.46 × | 2 | 5 | 0.026231 | 0 | 23 | 48 | 0.61079 | 9.93 × | 1 | 3 | 0.058223 | 0 | |
x4 | 7 | 15 | 0.10366 | 7.96 × | 140 | 282 | 2.1722 | 9.19 × | 17 | 36 | 0.39142 | 4.99 × | 47 | 95 | 17.9721 | 5.55 × | |
x5 | 11 | 23 | 0.35229 | 3.92 × | 182 | 366 | 2.3322 | 9.79 × | 20 | 42 | 0.62861 | 7.76 × | - | - | - | - | |
x6 | 12 | 25 | 0.18608 | 1.01 × | 182 | 366 | 2.4855 | 9.81 × | 20 | 42 | 0.92 | 7.75 × | - | - | - | - | |
100000 | x1 | 4 | 10 | 0.20729 | 1.68 × | 173 | 348 | 4.6402 | 9.03 × | 19 | 40 | 0.75335 | 4.31 × | - | - | - | - |
x2 | 5 | 11 | 0.14682 | 1.65 × | 133 | 268 | 2.9435 | 9.21 × | 15 | 31 | 0.8933 | 7.97 × | - | - | - | - | |
x3 | 6 | 14 | 0.19741 | 4.89 × | 2 | 5 | 0.045153 | 0 | 27 | 56 | 1.7879 | 4.72 × | - | - | - | - | |
x4 | 7 | 15 | 0.20939 | 7.96 × | 140 | 282 | 3.452 | 9.19 × | 17 | 36 | 0.92705 | 4.99 × | - | - | - | - | |
x5 | 12 | 25 | 0.60932 | 6.89 × | 186 | 374 | 5.0285 | 9.09 × | 21 | 44 | 1.23 | 4.11 × | - | - | - | - | |
x6 | 13 | 27 | 0.3519 | 1.84 × | 186 | 374 | 4.6665 | 9.08 × | 21 | 44 | 0.93468 | 4.11 × | - | - | - | - |
Problem 8 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 66 | 134 | 0.24751 | 9.78 × | - | - | - | - | - | - | - | - | - | - | - | - |
x2 | 27 | 56 | 0.034158 | 9.5 × | 808 | 1618 | 0.31885 | 9.99 × | - | - | - | - | - | - | - | - | |
x3 | 1 | 2 | 0.003785 | 0 | 2 | 5 | 0.001531 | 0 | 1 | 2 | 0.001223 | 0 | 1 | 2 | 0.006734 | 0 | |
x4 | 67 | 136 | 0.049339 | 9.88 × | - | - | - | - | - | - | - | - | 67 | 135 | 0.035797 | 5.66 × | |
x5 | 73 | 148 | 0.0461 | 9.68 × | - | - | - | - | - | - | - | - | 64 | 129 | 0.065585 | 9.67 × | |
x6 | 72 | 146 | 0.04761 | 9.93 × | - | - | - | - | - | - | - | - | 63 | 127 | 0.035655 | 9.71 × | |
5000 | x1 | 94 | 190 | 0.54224 | 9.91 × | - | - | - | - | - | - | - | - | - | - | - | - |
x2 | 27 | 56 | 0.062239 | 9.5 × | 808 | 1618 | 1.2269 | 9.99 × | - | - | - | - | - | - | - | - | |
x3 | 1 | 2 | 0.002594 | 0 | 2 | 5 | 0.012859 | 0 | 1 | 2 | 0.005997 | 0 | 1 | 2 | 0.00257 | 0 | |
x4 | 80 | 162 | 0.38038 | 9.91 × | - | - | - | - | - | - | - | - | 73 | 147 | 0.18682 | 9.29 × | |
x5 | 101 | 204 | 0.43745 | 9.83 × | - | - | - | - | - | - | - | - | 108 | 217 | 0.30825 | 9.98 × | |
x6 | 101 | 204 | 0.31897 | 9.88 × | - | - | - | - | - | - | - | - | 108 | 217 | 0.28176 | 9.91 × | |
10000 | x1 | 110 | 222 | 0.75291 | 9.94 × | - | - | - | - | - | - | - | - | - | - | - | - |
x2 | 27 | 56 | 0.1057 | 9.5 × | 808 | 1618 | 3.0397 | 9.99 × | - | - | - | - | - | - | - | - | |
x3 | 1 | 2 | 0.003731 | 0 | 2 | 5 | 0.009001 | 0 | 1 | 2 | 0.007766 | 0 | 1 | 2 | 0.003949 | 0 | |
x4 | 83 | 168 | 0.4733 | 9.88 × | - | - | - | - | - | - | - | - | 74 | 149 | 0.4244 | 9.69 × | |
x5 | 117 | 236 | 0.76712 | 9.86 × | - | - | - | - | - | - | - | - | 152 | 305 | 0.70872 | 9.97 × | |
x6 | 117 | 236 | 0.82138 | 9.85 × | - | - | - | - | - | - | - | - | 153 | 307 | 0.702 | 9.95 × | |
50000 | x1 | 160 | 322 | 4.4256 | 9.95 × | - | - | - | - | - | - | - | - | - | - | - | - |
x2 | 27 | 56 | 0.52296 | 9.5 × | 808 | 1618 | 9.7793 | 9.99 × | - | - | - | - | - | - | - | - | |
x3 | 1 | 2 | 0.016082 | 0 | 2 | 5 | 0.069327 | 0 | 1 | 2 | 0.019848 | 0 | 1 | 2 | 0.010272 | 0 | |
x4 | 84 | 170 | 2.3099 | 9.99 × | - | - | - | - | - | - | - | - | 75 | 151 | 1.7006 | 9.31 × | |
x5 | 166 | 334 | 4.1716 | 9.99 × | - | - | - | - | - | - | - | - | 396 | 793 | 8.1566 | 9.99 × | |
x6 | 166 | 334 | 4.2682 | 9.99 × | - | - | - | - | - | - | - | - | 396 | 793 | 6.9611 | 9.99 × | |
100000 | x1 | 189 | 380 | 8.5193 | 9.9 × | - | - | - | - | - | - | - | - | - | - | - | - |
x2 | 27 | 56 | 0.84001 | 9.5 × | 808 | 1618 | 17.381 | 9.99 × | - | - | - | - | - | - | - | - | |
x3 | 1 | 2 | 0.033166 | 0 | 2 | 5 | 0.12617 | 0 | 1 | 2 | 0.01928 | 0 | 1 | 2 | 0.029227 | 0 | |
x4 | 85 | 172 | 6.6857 | 9.79 × | - | - | - | - | - | - | - | - | 75 | 151 | 3.7352 | 9.32 × | |
x5 | 195 | 392 | 11.7601 | 9.93 × | - | - | - | - | - | - | - | - | 623 | 1247 | 21.2654 | 1 × | |
x6 | 195 | 392 | 7.9429 | 9.93 × | - | - | - | - | - | - | - | - | 624 | 1249 | 21.5608 | 9.99 × |
Problem 9 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 61 | 124 | 0.066702 | 9.54 × | 67 | 136 | 0.099921 | 7.96 × | 139 | 280 | 0.076923 | 9.73 × | 317 | 636 | 0.71829 | 9.8 × |
x2 | 31 | 64 | 0.018303 | 8.25 × | 35 | 72 | 0.043891 | 8.99 × | 187 | 376 | 0.09677 | 8.84 × | 245 | 492 | 0.52225 | 9.87 × | |
x3 | 52 | 106 | 0.029299 | 7.74 × | 92 | 186 | 0.10058 | 9.64 × | 227 | 456 | 0.12142 | 9.23 × | 291 | 584 | 0.6824 | 9.91 × | |
x4 | 36 | 74 | 0.017934 | 9.87 × | 51 | 104 | 0.018526 | 8.96 × | 218 | 438 | 0.11408 | 9.53 × | 282 | 566 | 0.94291 | 9.88 × | |
x5 | 49 | 100 | 0.023288 | 9.36 × | 98 | 198 | 0.038489 | 9.43 × | 233 | 468 | 0.22177 | 9.99 × | 320 | 642 | 1.3394 | 9.96 × | |
x6 | 52 | 106 | 0.029525 | 8.02 × | 139 | 280 | 0.080835 | 9.97 × | 188 | 378 | 0.11787 | 9.81 × | - | - | - | - | |
5000 | x1 | 63 | 128 | 0.32998 | 8.55 × | 69 | 140 | 0.089325 | 9.55 × | 188 | 378 | 0.57537 | 8.86 × | 295 | 592 | 3.8478 | 9.96 × |
x2 | 31 | 64 | 0.18052 | 8.25 × | 35 | 72 | 0.059832 | 8.99 × | 187 | 376 | 1.2573 | 8.84 × | 245 | 492 | 2.4301 | 9.87 × | |
x3 | 66 | 134 | 0.26308 | 8.96 × | 84 | 170 | 0.13572 | 9.76 × | 277 | 556 | 0.8517 | 9.68 × | 306 | 614 | 3.3586 | 9.83 × | |
x4 | 36 | 74 | 0.1387 | 9.89 × | 51 | 104 | 0.09048 | 8.94 × | 218 | 438 | 1.1212 | 9.56 × | 282 | 566 | 2.8587 | 9.88 × | |
x5 | 60 | 122 | 0.35995 | 7.44 × | 87 | 176 | 0.5147 | 8.48 × | 181 | 364 | 0.76997 | 9.64 × | 385 | 771 | 4.8374 | 9.86 × | |
x6 | 54 | 110 | 0.22668 | 8.29 × | 115 | 232 | 0.48916 | 8.87 × | 199 | 400 | 0.66965 | 9.62 × | - | - | - | - | |
10000 | x1 | 65 | 132 | 0.57593 | 9.3 × | 71 | 144 | 0.2565 | 9.49 × | 193 | 388 | 2.0299 | 9.37 × | 291 | 584 | 6.5063 | 9.97 × |
x2 | 31 | 64 | 0.19486 | 8.25 × | 35 | 72 | 0.11428 | 8.99 × | 187 | 376 | 1.1546 | 8.84 × | 245 | 492 | 5.7929 | 9.87 × | |
x3 | 71 | 144 | 0.58288 | 7.63 × | 83 | 168 | 0.30524 | 9.96 × | 220 | 442 | 2.048 | 9.39 × | 313 | 628 | 9.0926 | 9.72 × | |
x4 | 36 | 74 | 0.25617 | 9.89 × | 51 | 104 | 0.18279 | 8.94 × | 218 | 438 | 2.1529 | 9.56 × | 282 | 566 | 7.5672 | 9.88 × | |
x5 | 64 | 130 | 0.44209 | 8.52 × | 88 | 178 | 0.6975 | 8.93 × | 232 | 466 | 1.4547 | 9.66 × | 385 | 771 | 13.336 | 9.98 × | |
x6 | 55 | 112 | 0.31903 | 8.87 × | 121 | 244 | 0.69565 | 9.14 × | 202 | 406 | 1.9326 | 9.15 × | - | - | - | - | |
50000 | x1 | 56 | 114 | 1.443 | 9.12 × | 75 | 152 | 1.0305 | 9.7 × | 190 | 382 | 4.94 | 9.44 × | 292 | 586 | 22.2723 | 9.85 × |
x2 | 31 | 64 | 0.6458 | 8.25 × | 35 | 72 | 0.77561 | 8.99 × | 187 | 376 | 4.2758 | 8.84 × | 245 | 492 | 18.3378 | 9.87 × | |
x3 | 77 | 156 | 2.3404 | 9.2 × | 83 | 168 | 1.4405 | 9.09 × | 233 | 468 | 6.0204 | 9.9 × | 313 | 628 | 31.4896 | 9.86 × | |
x4 | 36 | 74 | 0.76958 | 9.89 × | 51 | 104 | 0.9568 | 8.94 × | 218 | 438 | 5.508 | 9.56 × | 282 | 566 | 21.0092 | 9.88 × | |
x5 | 77 | 156 | 1.839 | 7.95 × | 81 | 164 | 1.4263 | 8.13 × | 238 | 478 | 6.0323 | 9.93 × | 477 | 956 | 66.1866 | 3.76 × | |
x6 | 59 | 120 | 1.4313 | 6.21 × | 130 | 262 | 2.69 | 9.73 × | 207 | 416 | 5.3511 | 9.34 × | - | - | - | - | |
100000 | x1 | 56 | 114 | 2.7481 | 9.28 × | 77 | 156 | 2.7769 | 8.94 × | 197 | 396 | 9.2178 | 9.98 × | 290 | 582 | 44.5019 | 9.93 × |
x2 | 31 | 64 | 1.4145 | 8.25 × | 35 | 72 | 0.97134 | 8.99 × | 187 | 376 | 8.4259 | 8.84 × | 245 | 492 | 36.7053 | 9.87 × | |
x3 | 92 | 186 | 5.4545 | 8.29 × | 85 | 172 | 3.0767 | 9.13 × | 184 | 370 | 8.5041 | 9.73 × | 357 | 716 | 118.6675 | 9.98 × | |
x4 | 36 | 74 | 1.654 | 9.89 × | 51 | 104 | 2.0814 | 8.94 × | 218 | 438 | 10.4207 | 9.56 × | 282 | 566 | 43.7452 | 9.88 × | |
x5 | 69 | 140 | 4.4259 | 8.51 × | 83 | 168 | 2.9639 | 8.07 × | 257 | 516 | 12.9142 | 9.96 × | 331 | 664 | 111.4667 | 9.84 × | |
x6 | 59 | 120 | 2.7119 | 8.79 × | 141 | 284 | 5.8394 | 8.87 × | 206 | 414 | 10.0669 | 9.33 × | - | - | - | - |
Problem 11 | HSS | CGD | PDY | MFRM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIM | SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
1000 | x1 | 72 | 146 | 0.046063 | 9.69 × | 38 | 78 | 0.13552 | 5.47 × | 225 | 452 | 0.09038 | 9.68 × | 41 | 84 | 0.063262 | 8.97 × |
x2 | 69 | 140 | 0.026 | 9.32 × | 37 | 76 | 0.024512 | 6.72 × | 205 | 412 | 0.080801 | 9.84 × | 46 | 94 | 0.064366 | 8.96 × | |
x3 | 77 | 156 | 0.027549 | 9.89 × | 40 | 82 | 0.012066 | 8.38 × | 152 | 306 | 0.060964 | 9.82 × | 47 | 96 | 0.065376 | 7.43 × | |
x4 | 63 | 128 | 0.02025 | 9.03 × | 42 | 86 | 0.013116 | 6.97 × | 226 | 454 | 0.089011 | 9.59 × | 39 | 80 | 0.05465 | 8.98 × | |
x5 | 73 | 148 | 0.024453 | 9.01 × | 37 | 76 | 0.016001 | 9.83 × | 204 | 410 | 0.082852 | 9.77 × | 38 | 78 | 0.054682 | 6.94 × | |
x6 | 93 | 188 | 0.029533 | 9.47 × | 45 | 92 | 0.037255 | 9.99 × | 328 | 658 | 0.14417 | 9.93 × | 47 | 96 | 0.1194 | 8.09 × | |
5000 | x1 | 69 | 140 | 0.18051 | 8.25 × | 37 | 76 | 0.072643 | 7.15 × | 208 | 418 | 0.38838 | 9.98 × | 37 | 76 | 0.2563 | 7.23 × |
x2 | 75 | 152 | 0.13023 | 8.3 × | 37 | 76 | 0.044212 | 4.24 × | 208 | 418 | 0.65663 | 9.66 × | 38 | 78 | 0.2476 | 9 × | |
x3 | 83 | 168 | 0.12786 | 9.58 × | 46 | 94 | 0.079937 | 8.06 × | 157 | 316 | 0.84669 | 9.77 × | 44 | 90 | 0.29073 | 9.45 × | |
x4 | 66 | 134 | 0.14343 | 8.4 × | 31 | 64 | 0.027742 | 5.17 × | 202 | 406 | 0.41872 | 9.74 × | 43 | 88 | 0.30094 | 4.26 × | |
x5 | 76 | 154 | 0.11437 | 9.54 × | 41 | 84 | 0.058961 | 4.94 × | 205 | 412 | 0.39337 | 9.48 × | 47 | 96 | 0.50356 | 8.33 × | |
x6 | 98 | 198 | 0.16855 | 8.42 × | 50 | 102 | 0.070835 | 7.33 × | 351 | 704 | 1.3398 | 9.62 × | 50 | 102 | 0.43595 | 3.95 × | |
10000 | x1 | 74 | 150 | 0.31335 | 8.07 × | 41 | 84 | 0.11908 | 3.11 × | 219 | 440 | 1.3276 | 9.71 × | 41 | 84 | 0.85407 | 4.69 × |
x2 | 77 | 156 | 0.33062 | 9.84 × | 42 | 86 | 0.14335 | 7.17 × | 200 | 402 | 1.8449 | 9.98 × | 47 | 96 | 0.98298 | 6.67 × | |
x3 | 73 | 148 | 0.2738 | 9.79 × | 39 | 80 | 0.12366 | 6.46 × | 148 | 298 | 0.71134 | 9.58 × | 45 | 92 | 0.89528 | 8.1 × | |
x4 | 77 | 156 | 0.28779 | 9.88 × | 39 | 80 | 0.12037 | 4.26 × | 222 | 446 | 1.9026 | 9.6 × | 41 | 84 | 1.0111 | 9.98 × | |
x5 | 79 | 160 | 0.30745 | 9.61 × | 35 | 72 | 0.10851 | 9.48 × | 197 | 396 | 0.93803 | 9.86 × | 36 | 74 | 0.78185 | 9.23 × | |
x6 | 101 | 204 | 0.44826 | 9.82 × | 51 | 104 | 0.14368 | 6.93 × | 348 | 698 | 2.515 | 9.97 × | 42 | 86 | 0.88774 | 5.76 × | |
50000 | x1 | 80 | 162 | 1.7087 | 7.83 × | 41 | 84 | 0.49621 | 4.59 × | 204 | 410 | 5.1793 | 9.76 × | 40 | 82 | 3.1302 | 4.85 × |
x2 | 81 | 164 | 2.2268 | 9.19 × | 41 | 84 | 0.46078 | 2.73 × | 201 | 404 | 4.2643 | 9.87 × | 46 | 94 | 3.4281 | 6.69 × | |
x3 | 76 | 154 | 1.742 | 9.9 × | 42 | 86 | 0.56419 | 9.12 × | 152 | 306 | 2.9933 | 9.9 × | 49 | 100 | 3.3687 | 7.99 × | |
x4 | 83 | 168 | 1.3065 | 7.66 × | 37 | 76 | 0.57785 | 6.02 × | 198 | 398 | 4.3892 | 9.96 × | 40 | 82 | 2.4788 | 4.09 × | |
x5 | 81 | 164 | 1.4513 | 8.87 × | 40 | 82 | 0.54615 | 9.17 × | 196 | 394 | 3.7983 | 9.62 × | 50 | 102 | 3.0168 | 8.14 × | |
x6 | 106 | 214 | 2.0765 | 9.35 × | 50 | 102 | 0.6377 | 7.26 × | 364 | 730 | 7.3788 | 9.52 × | 49 | 100 | 2.9609 | 6.42 × | |
100000 | x1 | 80 | 162 | 3.7128 | 9.06 × | 36 | 74 | 1.2562 | 6.72 × | 210 | 422 | 8.4059 | 9.9 × | 47 | 96 | 6.3303 | 4.09 × |
x2 | 81 | 164 | 2.8053 | 9.51 × | 42 | 86 | 1.3892 | 5.03 × | 215 | 432 | 7.851 | 1 × | 40 | 82 | 5.602 | 6.53 × | |
x3 | 85 | 172 | 3.2804 | 9.1 × | 46 | 94 | 1.406 | 3.58 × | 155 | 312 | 6.2393 | 9.74 × | 48 | 98 | 6.8649 | 7.43 × | |
x4 | 83 | 168 | 3.2079 | 9.94 × | 43 | 88 | 1.207 | 9.09 × | 211 | 424 | 8.7274 | 9.6 × | 58 | 118 | 7.2979 | 6.17 × | |
x5 | 81 | 164 | 3.1215 | 8.28 × | 42 | 86 | 1.1724 | 4.39 × | 212 | 426 | 8.7216 | 9.92 × | 49 | 100 | 6.5793 | 9.17 × | |
x6 | 109 | 220 | 3.7274 | 9.75 × | 54 | 110 | 1.4392 | 7 × | 373 | 748 | 13.9937 | 9.54 × | 50 | 102 | 6.8552 | 4.66 × |
Problem 11 | HSS | CGD | PDY | MFRM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SP | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM | ITER | FVAL | TIME | NORM |
x1 | 69 | 139 | 0.071482 | 9.81 × | 243 | 487 | 0.060688 | 9.56 × | 57 | 115 | 0.033502 | 8.4 × | 48 | 97 | 0.059039 | 8.64 × |
x2 | 63 | 127 | 0.009891 | 9.41 × | 228 | 457 | 0.025727 | 9.77 × | 52 | 105 | 0.018045 | 8.24 × | 57 | 115 | 0.054443 | 8.39 × |
x3 | 70 | 141 | 0.011627 | 9.32 × | 246 | 493 | 0.028826 | 9.75 × | 59 | 119 | 0.014909 | 8.08 × | 51 | 103 | 0.04544 | 7.37 × |
x4 | 68 | 137 | 0.010198 | 9.27 × | 235 | 471 | 0.02545 | 9.49 × | 57 | 115 | 0.015413 | 8.21 × | 61 | 123 | 0.052551 | 9.35 × |
x5 | 42 | 85 | 0.007375 | 7.69 × | 193 | 387 | 0.021762 | 9.83 × | 39 | 79 | 0.013396 | 9.28 × | 50 | 101 | 0.047834 | 9.42 × |
x6 | 68 | 137 | 0.008927 | 8.96 × | 250 | 501 | 0.026878 | 9.68 × | 56 | 113 | 0.014667 | 8.47 × | 61 | 123 | 0.050977 | 7.61 × |
HSS | MSCG | |||||
---|---|---|---|---|---|---|
S/No. | MSE | ITER | CPU | MSE | ITER | CPU |
1 | 2.23 | 79 | 178.11 | 4.61 | 143 | 309.23 |
2 | 3.44 | 82 | 198.38 | 6.46 | 150 | 359.03 |
3 | 2.84 | 71 | 175.06 | 7.43 | 163 | 386.78 |
4 | 4.71 | 72 | 160.22 | 1.49 | 139 | 305.39 |
5 | 1.99 | 76 | 184.17 | 4.07 | 144 | 341.41 |
6 | 1.68 | 83 | 197.36 | 3.12 | 148 | 342.94 |
7 | 3.92 | 65 | 158.09 | 6.43 | 162 | 396.00 |
8 | 2.23 | 79 | 173.63 | 4.43 | 145 | 314.28 |
9 | 1.59 | 71 | 170.02 | 3.94 | 152 | 365.58 |
10 | 5.72 | 65 | 124.77 | 9.63 | 160 | 311.38 |
11 | 3.71 | 67 | 152.91 | 4.44 | 141 | 306.33 |
12 | 2.09 | 70 | 148.05 | 3.58 | 145 | 307.59 |
13 | 2.39 | 72 | 155.38 | 4.93 | 146 | 287.72 |
14 | 1.96 | 72 | 148.69 | 5.41 | 151 | 308.14 |
15 | 2.36 | 79 | 177.47 | 4.61 | 143 | 318.89 |
Average | 2.86 | 73.53 | 166.82 | 5.87 | 148.80 | 330.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awwal, A.M.; Wang, L.; Kumam, P.; Mohammad, H.; Watthayu, W. A Projection Hestenes–Stiefel Method with Spectral Parameter for Nonlinear Monotone Equations and Signal Processing. Math. Comput. Appl. 2020, 25, 27. https://doi.org/10.3390/mca25020027
Awwal AM, Wang L, Kumam P, Mohammad H, Watthayu W. A Projection Hestenes–Stiefel Method with Spectral Parameter for Nonlinear Monotone Equations and Signal Processing. Mathematical and Computational Applications. 2020; 25(2):27. https://doi.org/10.3390/mca25020027
Chicago/Turabian StyleAwwal, Aliyu Muhammed, Lin Wang, Poom Kumam, Hassan Mohammad, and Wiboonsak Watthayu. 2020. "A Projection Hestenes–Stiefel Method with Spectral Parameter for Nonlinear Monotone Equations and Signal Processing" Mathematical and Computational Applications 25, no. 2: 27. https://doi.org/10.3390/mca25020027
APA StyleAwwal, A. M., Wang, L., Kumam, P., Mohammad, H., & Watthayu, W. (2020). A Projection Hestenes–Stiefel Method with Spectral Parameter for Nonlinear Monotone Equations and Signal Processing. Mathematical and Computational Applications, 25(2), 27. https://doi.org/10.3390/mca25020027