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Abstract: In this paper, we use a numerical method that involves hybrid and block-pulse functions to
approximate solutions of systems of a class of Fredholm and Volterra integro-differential equations.
The key point is to derive a new approximation for the derivatives of the solutions and then reduce
the integro-differential equation to a system of algebraic equations that can be solved using classical
methods. Some numerical examples are dedicated for showing the efficiency and validity of the
method that we introduce.
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1. Introduction

It is well-known that integral equations reign over many mathematical models of various
phenomena in mathematics, physics, economy, biology, engineering and other fields. Several
explanatory examples of such models can be found in the literature and several mathematical physics,
applied mathematics, and engineering problems are reduced to Volterra–Fredholm integral equations.
More precisely, scientific researchers have explored the topic of integro-differential equations through
their work in various fields of science such as physics [1], biology [2] and engineering [3,4] and in
numerous applications such as heat transfer, neurosciences [5], diffusion process, neutron diffusion,
biological species [6,7], biomechanics, economics, electrical engineering, electrodynamics, electrostatics,
filtration theory, fluid dynamics, game theory, oscillation theory, queuing theory [8], airfoil theory [9],
elastic contact problems [10,11], fracture mechanics [12], combined infrared radiation, molecular
conduction [13] and so on.

In recent years, many different basic functions have been used to estimate the solution of integral
equations, such as orthogonal functions and wavelets. Three families of the orthogonal functions are
classified: piecewise constant orthogonal functions (e.g., Walsh, Haar, block-pulse, etc.), orthogonal
polynomials (e.g., Legendre, Laguerre, Chebyshev, etc.) and sine–cosine functions in the Fourier series.
For instance, many authors investigated the general k-th order integro-differential equation

y(k)(t) + l(t)y(t) +
∫ b

a
g(t, s)y(m)(s)ds = f (t), (1)

with initial conditions
y(a) = a0, . . . , y(n−1)(a) = an−1,
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where a0, . . . , an−1 are real constants, k, m are positive integers and m < k, the functions l, f , g are given
and y(t) is the solution to be determined. In [14], the authors applied the homotopy perturbation
method to solve Equation (1), while in [15,16], the authors changed the equation to an ordinary
integro-differential equation and applied the variational iteration method to solve it so that the
Lagrange multipliers can be effectively identified. Using the operational matrix of derivatives of
hybrid functions, a numerical method has been presented in [17] to solve Equation (1). In [18], Hemeda
used the iterative method introduced in [19] to solve the more general equation

y(k)(t) + l(t)y(t) +
∫ b

a
g(t, s)y(n)(s)y(m)(s)ds = f (t), (2)

where n ≤ m < q.
In this paper, we use block-pulse and hybrid functions to approximate solutions y(t) of the

Fredholm integro-differential system given by
y(t) + λ

∫ 1
0 k(t, s)y(m)(s)y(n)(s)ds = f (t),

y(0) = a0, . . . , y(l)(0) = al ,
(3)

and solutions y(t) of the Volterra integro-differential system given by
y(t) + β

∫ t
0 g(t, s)y(m)(s)y(n)(s)ds = f (t),

y(0) = a0, . . . , y(l)(0) = al .
(4)

Here m, n are positive integers, l = max(m, n)− 1, a0, . . . , al are initial conditions, the parameters
β, λ and the functions k(t, s), g(t, s) and f (t) are known and belong to L2[0, 1). The function y(t),
as well as its derivatives y(n) and y(m), are unknown. We point out that System (3) is a particular case
of Equation (2).

Hybrid functions have been applied extensively for solving differential systems and proved to be
a useful mathematical tool. The pioneering work via hybrid functions was led by the authors in [20,21],
who first derived an operational matrix for the integral of the hybrid function vector, and paved
the way for the hybrid function analysis of the dynamic systems. Since then, the hybrid functions’
approach has been improved and used to approximate differential equations or systems (see [22–28]
and the references therein).

The novelty and the key point in solving Systems (3) and (4) are to use some useful properties of
hybrid functions to derive a new approximation Y(n) of the derivative y(n)(t) of order n of the solution
y(t) (see Lemma 1). Hence, Systems (3) and (4) can be converted into reduced algebraic systems.

For arbitrary positive integers q and r, the set {bkm(t)}, k = 1, 2, . . . , q, m = 0, 1, . . . , r− 1 of hybrid
functions will be used to approximate the solution yr−1(t) of the given system of integro-differential
equations. This approximate solution will involve Legnedre polynomials of degree r− 1 defined on q
subintervals of [0, 1].

This paper is organized as follows: in Section 2, we introduce hybrid functions and its properties.
In Section 3, we describe the method for approximating solutions of the Fredholm and Volterra
integro-differential Systems (3) and (4). An upper bound of the error is given in Section 4, and finally
numerical results are reported in Section 5.

2. Preliminaries

In this section, we define the Legendre polynomials pm(t), as well as block-pulse and hybrid
functions. We also recall functions’ approximation in the Hilbert space L2[−1, 1].
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The Legendre polynomials pm(t) are polynomials of degree m defined on the interval [−1, 1] by

pm(t) =
M

∑
k=0

(−1)k(2m− 2k)!
2mk!(m− k)!(m− 2k)!

tm−2k, m ∈ N,

where M =


m
2 , if m is even,

m−1
2 , if m is odd.

Equivalently, the Legendre polynomials are given by the recursive formula (see [6,23,29,30])

p0(t) = 1, p1(t) = t,

pm+1(t) = 2m+1
m+1 tpm(t)− m

m+1 pm−1(t), m = 1, 2, 3, . . . .

The set {pm(t); t = 0, 1, . . . } is a complete orthogonal system in L2[−1, 1].

Definition 1. [6,23,29] For an arbitrary positive integer q, let {bk(t)}
q
k=1 be the finite set of block-pulse

functions on the interval [0, 1) defined by

bk(t) =


1, if k−1

q ≤ t < k
q ,

0, elsewhere.

The block-pulse functions are disjoint and have the property of orthogonality on [0, 1), since for
i, j = 1, 2, . . . , q, we have:

bi(t)bj(t) =


0, if i 6= j,

bi(t), if i = j,

and

〈bi(t), bj(t)〉 =


0, if i 6= j,

1
q , if i = j,

where 〈., .〉 is the scalar product given by 〈 f , g〉 =
∫ 1

0 f (t)g(t)dt, for any functions f , g ∈ L2[0, 1).

Definition 2. [6,23,29,30] Let r be an arbitrary positive integer. The set of hybrid functions {bkm(t)}, k =

1, 2, . . . , q, m = 0, 1, . . . , r − 1, where k is the order for block-pulse functions, m is the order for Legendre
polynomials and t is the normalized time, is defined on the interval [0, 1) as

bkm(t) =


pm(2qt− 2k + 1), if k−1

q ≤ t < k
q ,

0, elsewhere.

Since bkm(t) is the combination of Legendre polynomials and block-pulse functions which are both
complete and orthogonal, then the set of hybrid functions is a complete orthogonal system in L2[0, 1).

We are now able to define the vector function B(t) of hybrid functions on [0, 1) by

B(t) =
(

BT
1 (t), . . . , BT

q (t)
)T

,
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where Bi(t) =
(

bi0(t), . . . , bi(r−1)(t)
)T

, for i = 1, 2, . . . , q, and VT denotes the transpose of a vector V.

Function approximation [6,23,29,30]: every function f (t) ∈ L2[0, 1) can be approximated as

f (t) '
q

∑
k=1

r−1

∑
m=0

fkmbkm(t),

where

fkm =
〈 f (t), bkm(t)〉
〈bkm(t), bkm(t)〉

, ∀ k = 1, . . . , q, ∀m = 0, . . . , r− 1.

Thus,

f (t) ' FT B(t) = BT(t)F, (5)

where F is the rq× 1 column vector having fkm as entries. In a similar way, any function g(t, s) ∈
L2([0, 1)× [0, 1)

)
can be approximated as

g(t, s) ' BT(t)GB(s), (6)

where G = (gij) is an rq× rq matrix given by

gij =
〈B(i)(t), 〈g(t, s), B(j)(s)〉〉

〈B(i)(t), B(i)(t)〉〈B(j)(s), B(j)(s)〉
, i, j = 1, 2, . . . , rq,

and B(i)(t)
(
resp. B(j)(s)

)
denotes the ith component

(
resp. the jth component

)
of B(t)

(
resp. B(s)

)
.

Operational matrix of integration [6,23,29,30]: The integration of the vector function B(t) may be
approximated by

∫ t
0 B(t′)dt′ ' PB(t), where P is an rq× rq matrix known as the operational matrix of

integration and given by

P =


E H H ... H
0 E H ... H
0 0 E ... ...
. . . ... H
0 0 0 ... E


where H and E are r× r matrices defined by

H =
1
q


1 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
. . . ... 0
0 0 0 ... 0


and

E =
1
2q



1 1 0 0 ... 0 0 0
− 1

3 0 1
3 0 ... 0 0 0

0 − 1
5 0 1

5 ... 0 0 0
.. .. .. .. ... .. .. ..
0 0 0 0 ... − 1

2r−3 0 1
2r−3

0 0 0 0 ... 0 − 1
2r−1 0


.
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The integration of two hybrid functions [6,23,29,30]: the integration of the cross product of
two hybrid function vectors is given by L =

∫ 1
0 B(t)BT(t)dt, where L is the rq× rq diagonal matrix

defined by

L =



D 0 0 0 ... 0 0 0
0 D 0 0 ... 0 0 0
.. .. .. .. ... .. .. ..
.. .. .. .. ... D .. ..
0 0 0 0 ... 0 D 0
0 0 0 0 ... 0 0 D


where D is the r× r matrix given by

D =
1
q


1 0 0 0 ... 0 0 0
0 1

3 0 0 ... 0 0 0
.. .. .. .. ... .. .. ..
0 0 0 0 ... 0 0 1

2r−1

 .

The matrix C̃ associated to a vector C [6,22,23,30]: for any rq× 1 vector C, we define the rq× rq
matrix C̃ such that

B(t)BT(t)C = C̃B(t).

C̃ is called the coefficient matrix. In [22], Hsiao computed the matrix C̃ for r = 2 and q = 8, while the
authors in [6] considered the case of r = 4 and q = 3.

The vector Ŝ associated to a matrix S: for any rq × rq matrix S, we define the 1 × rq row
vector Ŝ such that BT(t)SB(t) = ŜB(t). For instance, let S be a 12 × 12 matrix with coefficients
s11, s12, . . . , s(12)(11), s(12)(12). After developing and comparing the two sides of the equation
BT(t)SB(t) = ŜB(t), we deduce that the 1× 12 row vector Ŝ is given by:

Ŝ =



s11 +
1
3 s22 +

1
5 s33

s12 + s21 +
2
5 s23 +

2
5 s32

s13 + s31 +
2
3 s22 +

2
7 s33

s44 +
1
3 s55 +

1
5 s66

s45 + s54 +
2
5 s56 +

2
5 s65

s46 + s64 +
2
3 s55 +

2
7 s66

s77 +
1
3 s88 +

1
5 s99

s78 + s87 +
2
5 s89 +

2
5 s98

s79 + s97 +
2
3 s88 +

2
7 s99

s(10)(10) +
1
3 s(11)(11) +

1
5 s(12)(12)

s(10)(11) + s(11)(10) +
2
5 s(11)(12) +

2
5 s(12)(11)

s(10)(12) + s(12)(10) +
2
3 s(11)(11) +

2
7 s(12)(12)



.

3. Main Results

In this section, we approximate solutions y(t) of Systems (3) and (4). For this, we need the
approximation of y(n)(t).

Lemma 1. Let y(t) be a function and consider its approximation yr−1(t) = YT B(t) = BT(t)Y. If Y(n) denotes
the approximation of y(n)(t), then for any n ≥ 1, we have:

Y(n) = JnY−
n

∑
k=1

JkY(n−k)
0 ,
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where J = (PT)−1 and Y(i)
0 are the approximations of the initial conditions y(i)0 , for i = 0, . . . , n − 1.

Proof. By the Fundamental Theorem of Calculus, we have

y(t) =
∫ t

0
y′(s)ds + y(0).

Approximating y(t), y′(t) and y0(t), we get

YT B(t) '
∫ t

0
(Y(1))T B(s)ds + YT

0 B(t)

' (Y(1))T
∫ t

0
B(s)ds + YT

0 B(t)

' (Y(1))T PB(t) + YT
0 B(t)

'
(
(Y(1)T P + YT

0
)

B(t).

Thus, YT = (Y(1))T P + YT
0 and so Y = PTY(1) + Y0, giving that Y(1) = J(Y−Y0) and the result is

true for n = 1.
By induction, assume that the result is true for n and prove it for n + 1. We have

Y(n+1) = J
(
Y(n) −Y(n)

0
)
= J
(

JnY−
n

∑
k=1

JkY(n−k)
0 −Y(n)

0
)

= Jn+1Y−
n

∑
k=1

Jk+1Y(n−k)
0 − JY(n)

0 = Jn+1Y−
n

∑
k=0

Jk+1Y(n−k)
0

= Jn+1Y−
n+1

∑
k=1

JkY(n+1−k)
0 ,

which is the desired result.

We are now ready to approximate solutions of Systems (3) and (4).

3.1. Approximated Solution of the Fredholm Integro-Differential System (3)

Using the approximations (5) and (6) of functions of one and two variables, System (3) can be
approximated as

BT(t)Y + λ
∫ 1

0
BT(t)KB(s)BT(s)Y(m)BT(s)Y(n)ds = BT(t)F

=⇒ Y + λK
∫ 1

0
B(s)BT(s)Y(m)BT(s)Y(n)ds = F

=⇒ Y + λK
∫ 1

0

︷ ︸
Y(m) B(s)BT(s)Y(n)ds = F

=⇒ Y + λK
︷ ︸
Y(m)

( ∫ 1

0
B(s)BT(s)ds

)
Y(n) = F

=⇒ Y + λK
︷ ︸
Y(m) LY(n) = F.

Using Lemma 1, the last equation becomes

Y + λK
[ ︷ ︸

JmY−
m

∑
k=1

JkY(m−k)
0

]
L
[

JnY−
n

∑
k=1

JkY(n−k)
0

]
= F. (7)
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This is a nonlinear system of rq equations in rq variables which can be solved by any
iterative method.

3.2. Approximated Solution of the Volterra Integro-Differential System (4)

Using the approximations (5) and (6), System (4) can be approximated as:

YT B(t) + β
∫ t

0
BT(t)GB(s)BT(s)Y(m)BT(s)Y(n)ds = FT B(t)

=⇒ YT B(t) + βBT(t)G
∫ t

0
B(s)BT(s)Y(m)BT(s)Y(n)ds = FT B(t)

=⇒ YT B(t) + βBT(t)G
︷ ︸
Y(m)

∫ t

0
B(s)BT(s)Y(n)ds = FT B(t)

=⇒ YT B(t) + βBT(t)G
︷ ︸
Y(m)

︷ ︸
Y(n)

∫ t

0
B(s)ds = FT B(t)

=⇒ YT B(t) + βBT(t)G
︷ ︸
Y(m)

︷ ︸
Y(n) PB(t) = FT B(t).

Consider the matrix S := G
︷ ︸
Y(m)

︷ ︸
Y(n) P. We obtain

YT B(t) + βBT(t)SB(t) = FT B(t)

=⇒ YT B(t) + βŜB(t) = FT B(t).

Hence,
YT + βŜ = FT . (8)

Finally, using Lemma 1 for Y(m) and Y(n), we get a nonlinear system which can be solved by any
iterative method. We use Wolfram Mathematica commands “Solve” and “NSolve” to find the solution
of such a nonlinear system. These commands use a suitable iterative method to solve the problem.
“For systems of algebraic equations, NSolve computes a numerical Gröbner basis using an efficient
monomial ordering, then uses eigensystem methods to extract numerical roots” [31].

4. Error Analysis

We assume that the function y(t) is sufficiently smooth on the interval [0, 1]. Suppose that
t0, t1, · · · , tµ are the roots of µ + 1 degree shifted Chebyshev polynomial Pµ(t) in [0, 1] that interpolates
y(t) at the nodes ti, 0 ≤ i ≤ µ. The error in the interpolation is given in [32] by

y(t)− Pµ(t) =
dµ+1

dtµ+1 (y(δ))
Πµ

i=0(t− ti)

(µ + 1)!
, (9)

for some δ ∈ [0, 1]. This shows that

|y(t)− Pµ(t)| ≤
M

22µ+1(µ + 1)!
, (10)

where M = maxt∈[0,1]
∣∣ dµ+1

dtµ+1 (y(t))
∣∣.

We recall here that the L2 norm of a function y : [0, 1] −→ R is given by ‖y‖2 =
( ∫ 1

0 y2(t)dt
) 1

2
.
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Theorem 1. If yµ(t) = BT(t)Y is the best approximation of the solution y(t) obtained using Legendre
polynomials then

‖y(t)− yµ(t)‖2 ≤
M

22µ+1(µ + 1)!
, (11)

for some constant M > 0.

Proof. Let Xµ be the space of all polynomials of degree less than or equal to µ. Since yµ is the best
approximation to y, ‖y− yµ‖2 ≤ ‖y− g‖2, for any arbitrary polynomial g in Xµ. Therefore by using (9),
we get

‖y− yµ‖2
2 =

∫ 1

0

(
y(t)− yµ(t)

)2 dt

≤
∫ 1

0

(
y(t)− Pµ(t)

)2 dt

≤
(

M
22µ+1(µ + 1)!

)2 ∫ 1

0
dt =

(
M

22µ+1(µ + 1)!

)2
.

The result is obtained by taking square-root on both sides.

5. Numerical Examples

In this section, we apply the methods described in Section 3 to some numerical examples to solve
Systems (3) and (4).

Example 1. Consider the following Fredholm integro-differential system
y(t) +

∫ 1
0 et−sy(s)y

′
(s)ds = et+1,

y(0) = 1.
(12)

Comparing with the standard form of System (3), we get λ = 1, k(t, s) = et−s, m = 0, n = 1,
f (t) = et+1, l = 0 and a0 = 1.

Case 1: First, we consider r = 2 and q = 1. It can be verified that B(t) = (1, 2t− 1)T and

K =

(
e + 1

e − 2 3(e + 3
e − 4)

3(−e + 4− 3
e ) 9(6− e− 9

e )

)
.

The matrix approximations F of the function f (t) = et+1 and Y0 of y(0) are respectively given by

F =

(
e2 − e
−3e2 + 9e

)

and

Y0 =

(
1
0

)
.

From Equation (7), we deduce

Y =

(
e− 1
−3e + 9

)
.
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Using the approximation y1(t) = YT B(t) = BT(t)Y, we get y1(t) = 4e − 10 + (18 − 6e)t.
In Figure 1, we compare this approximate solution y1(t) with the exact solution et. The absolute
errors at various values of t are shown in Table 1.

0.2 0.4 0.6 0.8 1.0
t

1.0

1.5

2.0

2.5

y(t)

y1(t)

et

Figure 1. Comparison of approximate and exact solutions of System (12) for the case r = 2 and q = 1.

Table 1. Absolute errors in solution of System (12) with r = 2 and q = 1.

t Error t Error

0.0 0.120825 0.5 0.08146
0.1 0.05579 0.6 0.07827
0.2 0.00182 0.7 0.05683
0.3 0.03992 0.8 0.01525
0.4 0.06816 0.9 0.04861

This is a degree 1 approximation, therefore µ = 1. Further, M = max[0,1] y′(t) = e. The error
estimate is obtained by using (11) is M/24 u 0.169893. It can be checked from Table 1 that our
computed values are less than this error bound.

Case 2: Now, we consider r = 3 and q = 4. A 12× 12 matrix K is given by:

K =



1.0052 −0.1255 0.0052 0.7829 −0.0978 0.0041
0.1255 −0.0157 0.0007 0.0978 −0.0122 0.0005
0.0052 −0.0007 0.0 0.00401 −0.0005 0.0
1.2907 −0.1612 0.0067 1.0052 −0.1255 0.0052
0.1612 −0.0202 0.0008 0.1255 −0.0157 0.0007
0.0067 −0.0008 0.0 0.0052 −0.0007 0.0
1.6573 −0.2070 0.0086 1.2907 −0.1612 0.0067
0.2070 −0.0258 0.0011 0.1612 −0.0201 0.0008
0.0086 −0.0011 0.0 0.0067 −0.0008 0.0
2.1281 −0.2658 0.0111 1.6573 −0.2070 0.0086
0.2657 −0.0332 0.0014 0.2070 −0.0258 0.0011
0.0111 −0.0014 0.0 0.0086 −0.0011 0.0
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0.6097 −0.0761 0.0032 0.4748 −0.0593 0.0025
0.0761 −0.0095 0.0003 0.0593 −0.0074 0.0003
0.0032 −0.0004 0.0 0.0025 −0.0003 0.0
0.7829 −0.0978 0.0040 0.6097 −0.0761 0.0032
0.0978 −0.0122 0.0005 0.0761 −0.0095 0.0004
0.0041 −0.0005 0.0 0.0032 −0.0004 0.0
1.0052 −0.1255 0.0052 0.7829 −0.0978 0.00401
0.1255 −0.0157 0.0007 0.0978 −0.0122 0.0005
0.0052 −0.0007 0.0 0.0041 −0.0005 0.0
1.2907 −0.1612 0.0067 1.0052 −0.1255 0.0052
0.1612 −0.0201 0.0008 0.1255 −0.0157 0.0007
0.0067 −0.0008 0.0 0.0052 −0.0007 0.0


Other approximations in this case are as below:

B(t) =
(

χ[0,1/4), (−1 + 8t)χ[0,1/4), (1− 24t + 96t2)χ[0,1/4), χ[1/4,1/2),

(−3 + 8t)χ[1/4,1/2), (13− 72t + 96t2)χ[1/4,1/2), χ[1/2,3/4), (−5 + 8t)χ[1/2,3/4),

(37− 120t + 96t2)χ[1/2,3/4), χ[3/4,1), (−7 + 8t)χ[3/4,1), (73− 168t + 96t2)χ[3/4,1)

)
,

(where χA is the characteristic function of a set A)

F = (3.08824, 0.385629, 0.0160607, 3.96538, 0.495157, 0.0206224,

5.09165, 0.635795, 0.0264796, 6.53781, 0.816377, 0.0340005)T ,

Y0 = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)T ,

and

Y = (1.1361, 0.141865, 0.00590841, 1.45878, 0.182158, 0.00758655,

1.87312, 0.233896, 0.00974132, 2.40513, 0.300328, 0.0125081)T .

The approximate solution of (12) is given by

y2(t) = 1.1361χ[0,1/4) + 1.45878χ[1/4,1/2) + 1.87312χ[1/2,3/4) + 2.40513χ[3/4,1)

+0.3(−7 + 8t)χ[3/4,1) + 0.233896(−5 + 8t)χ[1/2,3/4)

+0.182158(−3 + 8t)χ[1/4,1/2) + 0.14187(−1 + 8t)χ[0,1/4)

+0.0125(73− 168t + 96t2)χ[3/4,1) + 0.0097(37− 120t + 96t2)χ[1/2,3/4)

+0.00759(13− 72t + 96t2)χ[1/4,1/2) + 0.00591(1− 24t + 96t2)χ[0,1/4).

Figure 2 shows the graphs of the approximate solution y2(t) and the exact solution et. The absolute
errors at various values of t are given in Table 2. It can be observed that, in this case, the approximate
solution is well in agreement with the exact solution. Further, using (11), the error bound is 0.01416.
Table 2 shows that our computed maximum value is 0.000145961.
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Figure 2. Comparison of approximate and exact solutions of System (12) for the case r = 3 and q = 4.

Table 2. Absolute errors in solution of System (12) with r = 3 and q = 4.

t Error t Error

0.0 0.000145961 0.5 0.000240649
0.1 0.0000409679 0.6 0.0000675446
0.2 0.0000553281 0.7 0.0000912206
0.3 0.0000656897 0.8 0.000108304
0.4 0.0000536172 0.9 0.0000883998

Example 2. Consider the following Volterra integro-differential system
y(t) +

∫ t
0 sin(t− s)y(s)y

′
(s)ds = 2t3 + t2 − 12t + 12 sin(t),

y(0) = 0.
(13)

Comparing with the standard form of System (4), we get β = 1, g(t, s) = sin(t− s), m = 0, n = 1,
f (t) = 2t3 + t2 − 12t + 12 sin(t), l = 0 and a0 = 0. We take r = 3 and q = 4. Following the procedure
described in Section 2, we get

F = (0.0208496, 0.0312848, 0.0104457, 0.146854, 0.0951443, 0.0109877,

0.406543, 0.166108, 0.0129514, 0.824576, 0.255306, 0.0171862)T ,

G =



0 −0.1245 0 −0.2461 −0.1206 0.0013
0.1245 0 −0.0006 0.1206 −0.0039 −0.0006

0 0.0006 0 0.0013 0.0006 0
0.2461 −0.1206 −0.0013 0 −0.1245 0
0.1206 0.0039 −0.0006 0.1245 0 −0.0006
−0.0013 0.0006 0 0 0.0006 0
0.4769 −0.1092 −0.0025 0.2461 −0.1206 −0.0013
0.1092 0.0075 −0.0006 0.1206 0.0039 −0.0006
−0.0025 0.0006 0 −0.0013 0.0006 0
0.6781 −0.0911 −0.0035 0.4769 −0.1092 −0.0025
0.0911 0.0106 −0.0005 0.1092 0.0075 −0.0006
−0.0035 0.0005 0 −0.0025 0.0006 0
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−0.4769 −0.1092 0.0025 −0.6781 −0.0911 0.0035
0.1092 −0.0075 −0.0006 0.0912 −0.0106 −0.0005
0.0025 0.0006 0 0.0035 0.0005 0
−0.2461 −0.1206 0.0013 −0.4769 −0.1092 0.0025
0.1206 −0.0039 −0.0006 0.1092 −0.0075 −0.0006
0.0013 0.0006 0 0.0025 0.0006 0

0 −0.1245 0 −0.2461 −0.1206 0.0013
0.1245 0 −0.0006 0.1206 −0.0039 −0.0006

0 0.0006 0 0.0013 0.0006 0
0.2461 −0.1206 −0.00128 0 −0.1245 0
0.1206 0.0039 −0.0006 0.1245 0 −0.0006
−0.0013 0.0006 0 0 0.0006 0



,

Y0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

and B(t) is same as given in the previous example. Using Equation (8), we get

Y = (0.0208333, 0.0312487, 0.0104375, 0.145833, 0.0937492, 0.0104781,

0.395833, 0.15625, 0.0105145, 0.770834, 0.218753, 0.010543)T .

The approximate solution of System (13) is given by

y2(t) = 0.0208333χ[0,1/4) + 0.145833χ[1/4,1/2)

+0.395833χ[1/2,3/4) + 0.770834χ[3/4,1)

+0.218753(−7 + 8t)χ[3/4,1) + 0.15625(−5 + 8t)χ[1/2,3/4)

+0.0937492(−3 + 8t)χ[1/4,1/2) + 0.0312487(−1 + 8t)χ[0,1/4)

+0.010543(73− 168t + 96t2)χ[3/4,1) + 0.0105145(37− 120t + 96t2)χ[1/2,3/4)

+0.0104781(13− 72t + 96t2)χ[1/4,1/2) + 0.0104375(1− 24t + 96t2)χ[0,1/4).

The approximate solution y2(t) is compared with the exact solution t2 in Figure 3. Table 3 shows
the absolute error in the solution at different values of t.

Using (11), the error-bound for this example is approximately 0.0104167 and our value from
Table 3 is 0.0000271471.

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

y(t)

y2(t)

t2

Figure 3. Comparison of approximate and exact solutions of System (13) for the case r = 3 and q = 4.
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Table 3. Absolute errors in solution of System (13) with r = 3 and q = 4.

t Error t Error

0.0 0.0000221689 0.5 0.0000975226
0.1 8.9 × 10−6 0.6 0.0000429716
0.2 4.99 × 10−8 0.7 4.32 × 10−6

0.3 3 × 10−6 0.8 3.76 × 10−6

0.4 0.0000271471 0.9 0.0000547743

Comparison with Other Methods

In this section, we compare our results with the existing methods viz. Daftardar–Gejji–Jafari (DGJ)
method [33], Adomian decomposition method (ADM) [34] and quadrature methods [35,36].

The DGJ algorithm for the solution of Equation (12) is y0 = et+1 and yn+1 = y0 −∫ 1
0 et−syn(s)y

′
n(s)ds, n = 0, 1, 2, · · · . The k-term approximate solution is given by yk−1. Therefore,

the three-term solution is y(t) = e(1+t)(1− (−1 + e)e(1 + e− e2)2).
The ADM algorithm for the solution of Equation (12) is y0 = et+1 and yn+1 = −

∫ 1
0 et−s 1

2
dAn(s)

ds ds,
n = 0, 1, 2, · · · , where An(s) are the Adomian polynomials [34] of the function y2(s). The k-term
approximate solution using ADM is given by ∑k−1

n=0 yn. Therefore, the three-term solution is y(t) =
e(1+t) (1 + e + e2 − 4e3 + 2e4).

The comparison of these solutions with the exact solution in Figure 4 shows that these methods
diverge for this example.

0.1 0.2 0.3 0.4 0.5
t

-300

-200

-100

100

200

y(t)

Exact

DGJ

ADM

Figure 4. Comparison of DGJ, ADM and exact solutions of System (12).

Let us divide the interval [0, 1] into n equal sub-intervals of length h. The approximation of the
function y at the node jh is denoted by yj. We take n as an even natural number. The Simpson’s
quadrature numerical algorithm [36] applied to Equation (12) provides the following expression:

yj =
1
2
(e + 1)ejh − h

6

(
ejhy2

0 + 4
n/2

∑
k=1

e(j−2k+1)hy2
2k−1 + 2

n/2−1

∑
k=1

e(j−2k)hy2
2k + e(j−n)hy2

n

)
, (14)

where y0 = 1 and j = 1, 2, · · · , n. This algorithm provides the solution which is in agreement with the
exact solution. We compare the absolute errors at various points with h = 0.05 and n = 20 in Table 4.
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Table 4. Absolute errors in the solution of System (12) with quadrature method and h = 0.05, n = 20.

t Error t Error

0.0 0 0.5 0.0214405
0.1 0.014372 0.6 0.0236955
0.2 0.0158835 0.7 0.0261875
0.3 0.017554 0.8 0.0289417
0.4 0.0194002 0.9 0.0319855

It can be observed from Tables 2 and 4 that our method has less error as compared with
quadrature method.

Similarly, we compare our results of Equation (13) with DGJ, ADM and trapezium quadrature rule.
The 2-term approximate solutions of this example using DGJ and ADM provide the same

expression given by y(t) = −312− 2160t+ 157t2 + 336t3− 10t4− 12t5 + 3(104− 15t+ t2 + 2t3) cos(t)+
(2157− 3t + 27t2 − 2t3 − 3t4) sin(t) + 24 sin(2t).

As in Equation (12), we divide the interval [0, 1] into n equal intervals, where n is a natural number.
The trapezium quadrature formula to compute the solution of Equation (13) is

yj = uj −
h
4

(
y2

j + cos(jh)y2
0 + 2

j−1

∑
k=1

cos((j− k)h)y2
k

)
,

where uj = 2(jh)3 + (jh)2 − 12jh + 12 sin(jh) and y0 = 0. We take h = 0.05 and n = 20.
It is observed that all these methods provide the solutions which are matching with the exact

solution. We compare the absolute errors in these solutions at various points in Table 5.
It is observed that the error in our method is smaller at most of the points.

Table 5. Absolute errors in solutions of System (13) obtained by using DGJ/ADM and
quadrature method.

t DGJ/ADM Error Quadrature Rule Error t DGJ/ADM Error Quadrature Rule Error

0.0 0 0 0.5 0.0000486807 0.0000509481
0.1 1.24837×10−10 4.06185×10−7 0.6 0.000209306 0.0000867569
0.2 3.19707×10−8 3.30782×10−6 0.7 0.000718813 0.000134977
0.3 8.18704×10−7 0.0000111665 0.8 0.00209495 0.000196122
0.4 8.17149×10−6 0.0000263365 0.9 0.00538832 0.000269884

6. Conclusions

In this work, we have discussed an efficient method for solving a class of Fredholm and Volterra
integro-differential equations. Our method is based on a new approximation for the derivatives of the
equations’ solutions using hybrid and block-pulse functions. The absolute errors reported in tables
show that the approximate solution is in a good agreement with the exact solution. It is verified in
each example that the practical error in our method is less than the theoretical error-bound. In fact,
this method is highly efficient, very easy and a powerful mathematical tool for finding the numerical
solution of some class of Fredholm and Volterra integro-differential equations. The approximate
solutions are found by using the computer code written in Wolfram Mathematica. The method
is computationally attractive, and applications are demonstrated through illustrative examples.
For future research works, we can use this method to solve various kinds of problems such as
higher dimensional problems, stochastic integro-differential equations and partial integro-differential
equations of fractional order with additional work. The comparison with other methods viz. DGJ,
ADM and quadrature rules shows that our method works equally well for Fredholm as well as Volterra
equations and produce the results with a smaller error.
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