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Abstract: In the present work, we study a one-dimensional laminated Timoshenko beam with a
single nonlinear structural damping due to interfacial slip. We use the multiplier method and some
properties of convex functions to establish an explicit and general decay result. Interestingly, the result
is established without any additional internal or boundary damping term and without imposing any
restrictive growth assumption on the nonlinear term, provided the wave speeds of the first equations
of the system are equal.
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1. Introduction

In the late 1990s, a model for structure of two identical beams with uniform thickness was
developed by Hansen and Spies [1]. This model is called a laminated Timoshenko beam and is
given by

ρwtt + G(ψ− wx)x = 0,

Iρ(3stt − ψtt)− D(3sxx − ψxx)− G(ψ− wx) = 0,

3Iρstt − 3Dsxx + 3G(ψ− wx) + 4γs + 4βst = 0,

(1)

where the terms w, ψ, s represent the transverse displacement, the rotation angle, and the amount of slip
along the interface, respectively. The positive parameters ρ, G, Iρ, D, γ, and β are known as the density,
shear stiffness, mass moment of inertia, flexural rigidity, adhesive stiffness, and adhesive (structural)
damping at the interface, respectively. It is very close to the well-known classical Timoshenko system
because the equations of motion modeling the system are derived under the assumption of the
Timoshenko beam theory. In addition, the third equation (which contains the structural damping st) is
coupled with the first two describing the dynamic of the interfacial slip. These structures are highly
important and have gained massive popularity in engineering fields.

Stabilization of the system with various internal or boundary damping mechanisms has been the
subject of research over the years. Specifically, an increasing interest has been developed to determine
the asymptotic behavior of the system which are paramount in classifying the empirical observations
of the engineers.

Let us start with the boundary stabilization. To the best of our knowledge, the first known
result in this case was established by Wang et al. [2]. They considered (1) together with some
mixed homogeneous boundary conditions, introduced a change of variable ξ = 3s− ψ, and thereby

established an exponential decay result provided
√

ρ
G 6=

√
Iρ

D . Tatar [3] established the same
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exponential result of [2] provided ρG < Iρ. Mustafa [4] also obtained a similar result under the
condition of equality between velocities of wave propagation, that is

ρ

G
=

Iρ

D
. (2)

We refer the reader to [5–8] and the references cited therein for some other results on
boundary stabilization.

For viscoelastic damping (memory term), we mention the work of Lo and Tatar [9].

They considered system (1) with viscoelastic damping of the form
∫ t

0
g(t− r)(3sxx − ψxx)(r)dr on the

second equation and proved that the resulting system is exponentially stable provided the relaxation
function g decays exponentially and (2) is satisfied, in addition to some conditions on the parameter G.
Mustafa [10] improved the result in [9] by adopting minimal and general conditions on g. Consequently,
he established explicit energy decay result. Some other results can be found in [11–15] and the
references cited therein.

The thermal effect (classical or second sound) is another way of stabilizing the laminated beams.
Apalara in [16] proved that the heat effect is sufficiently strong enough to stabilize laminated beams
exponentially without any other damping term, provided (2) holds. A similar result was obtained by
Apalara [17] for the second sound in the presence of a structural damping term.

For frictional damping on the three equations, we mention the work of Raposo [18]. Recently,
Alves et al. [19] established an exponential decay for the laminated system with only structural
damping, provided the wave velocities are equal. It is imperative to mention that when s ≡ 0,
then the laminated beams reduced to the standard Timoshenko system, see [17,18]. We refer the reader
to [19–24] for some other varios forms of damping mechanisms

In this paper, we consider a laminated Timoshenko beam with only a single source of dissipation
in the form of a nonlinear interfacial slip

ρwtt + G(ψ− wx)x = 0 in (0, 1) × (0, ∞),

Iρ(3stt − ψtt)− D(3sxx − ψxx)− G(ψ− wx) = 0 in (0, 1) × (0, ∞),

3Iρstt − 3Dsxx + 3G(ψ− wx) + 4γs + 4βh(st) = 0 in (0, 1) × (0, ∞),

w(x, 0) = w0, wt(x, 0) = w1, ψ(x, 0) = ψ0, ψt(x, 0) = ψ1, in (0, 1),

s(x, 0) = s0, st(x, 0) = s1, in (0, 1),

wx(0, t) = ψ(0, t) = s(0, t) = w(1, t) = ψx(1, t) = sx(1, t) = 0, in (0, ∞)

(3)

and discuss the general decay of the energy of the system under suitable assumption on the nonlinear
term and coefficients of wave propagation speed. On the nonlinear term h, we assume, as in Lasiecka
and Tataru [25], that it satisfies the following hypotheses:

(A1) h : R→ R is a non-decreasing C0-function such that there exist positive constants c1, c2, ε, and a
strictly increasing function H ∈ C1([0,+∞)), with H(0) = 0, and H is linear or strictly convex
C2-function on (0, ε] such that{

y2 + h2(y) ≤ H−1(yh(y)) for all |y| ≤ ε,

c1|y| ≤ |h(y)| ≤ c2|y| for all |y| ≥ ε.

Remark 1.

1. Hypothesis (A1) implies that yh(y) > 0, for all y 6= 0.
2. Lasiecka and Tataru in [25] used the monotonicity and continuity of h to establish the existence of H as

defined in (A1).
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For completeness purpose, we introduce the following spaces

H1
a = {ψ : ψ ∈ H1(0, 1) : ψ(0) = 0}, H1

b = {ψ : ψ ∈ H1(0, 1) : ψ(1) = 0},
H2

b?(0, 1) = {ψ ∈ H2(0, 1) : ψx(0) = 0}, H2
a?(0, 1) = {ψ ∈ H2(0, 1) : ψx(1) = 0}

and state, without proof, the following existence and regularity result:

Proposition 1. For Φ = (w, u, z, v, s, y)T ; u = wt, z = 3s− ψ, v = zt, y = st, and assume that (A1) is
satisfied. Then for all Φ0 ∈ H1

b (0, 1)× L2(0, 1)×
[
H1

a (0, 1)× L2(0, 1)
]2 , the system (1) has a unique global

(weak) solution

w ∈ C(R+; H1
b (0, 1)) ∩ C1(R+; L2(0, 1)), z, s ∈ C(R+; H1

a (0, 1)) ∩ C1(R+; L2(0, 1)).

Moreover, if

Φ0 ∈ H2
b?(0, 1) ∩ H1

b (0, 1)× H1
b (0, 1)×

[
H2

a?(0, 1) ∩ H1
a (0, 1)× H1

a (0, 1)
]2

,

then the solution satisfies

w ∈ L∞(R+; H2
b?(0, 1) ∩ H1

b (0, 1)) ∩W1,∞(R+; H1
b (0, 1)) ∩W2,∞(R+; L2(0, 1))

z, s ∈ L∞(R+; H2
a?(0, 1) ∩ H1

a (0, 1)) ∩W1,∞(R+; H1
a (0, 1)) ∩W2,∞(R+; L2(0, 1)).

Remark 2. This result can be proved using standard arguments such as nonlinear semi-group method (see [26])
or the Faedo–Galerkin method (see [27]).

The rest of the paper is organized as follows. In Section 2, we state and prove some essential
technical lemmas. We give our stability result in Sections 3. We use c throughout this paper to denote a
generic positive constant, which may be different from line to line (even in the same line). Our work
gives an adequate answer to the possibility of stabilizing a Timoshenko Laminated beam with single
non-linear damping present only in the third equation with some appropriate conditions.

2. Technical Lemmas

This section is devoted to the statements and proofs of some essential technical lemmas, which
are highly influential in proving our main result.

Lemma 1. Let (w, ψ, s) be the solution of system (3) and assume (A1) holds. Then the energy functional
defined by

E(t) =
1
2

∫ 1

0

[
ρw2

t + Iρ(3st − ψt)
2 + D(3sx − ψx)

2 + G(ψ− wx)
2 + 3Iρs2

t + 3Ds2
x + 4γs2

]
dx (4)

satisfies

E′(t) = −4β
∫ 1

0
sth(st)dx ≤ 0. (5)
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Proof. By multiplying (3)1 by wt, (3)2 by (3st − ψt), and (3)3 by st, then integrating over (0, 1), using
integration by parts and the boundary conditions, we obtain

ρ

2
d
dt

∫ 1

0
w2

t dx = G
∫ 1

0
(ψ− wx)wtxdx, (6)

Iρ

2
d
dt

∫ 1

0
(3st − ψt)

2dx +
D
2

d
dt

∫ 1

0
(3sx − ψx)

2dx = G
∫ 1

0
(ψ− wx)(3st − ψt)dx, (7)

3ρ

2
d
dt

∫ 1

0
s2

t dx +
3ρ

2
d
dt

∫ 1

0
s2

xdx + 2
d
dt

∫ 1

0
s2dx = −3G

∫ 1

0
st(ψ− wx)dx− 4β

∫ 1

0
sth(st)dx. (8)

The combination of (6) to (8) bearing in mind (4) and the fact that

G
2

d
dt

∫ 1

0
(ψ− wx)

2dx = G
∫ 1

0
ψt(ψ− wx)dx− G

∫ 1

0
wtx(ψ− wx)dx

gives (5).

Lemma 2. Let (w, ψ, s) be the solution of system (3). Then the functional

F1(t) := 3Iρ

∫ 1

0
sstdx− 3ρ

∫ 1

0
s
∫ x

0
wt(y)dydx

satisfies, for any ε1 > 0, the estimate

F′1(t) ≤ −3D
∫ 1

0
s2

xdx− 3γ
∫ 1

0
s2dx + ε1

∫ 1

0
w2

t dx + c
∫ 1

0

[(
1 +

1
ε1

)
s2

t +
1
ε1

h2(st)

]
dx. (9)

Proof. Using the first and third equations in (3), we obtain

F′1(t) := −3D
∫ 1

0
s2

xdx− 4γ
∫ 1

0
s2dx + 3Iρ

∫ 1

0
s2

t dx− 4β
∫ 1

0
sh(st)dx− 3ρ

∫ 1

0
st

∫ x

0
wt(y)dydx. (10)

Using Young’s and Cauchy–Schwarz inequalities, the last two terms in (10), gives

−4β
∫ 1

0
sh(st)dx ≤ γ

∫ 1

0
s2dx +

4β2

γ

∫ 1

0
g2(st)dx, (11)

−3ρ
∫ 1

0
st

∫ x

0
wt(y)dydx ≤ ε1

∫ 1

0
w2

t dx +
9ρ2

4ε1

∫ 1

0
s2

t dx. (12)

The substitution of (11) and (12) into (10), gives (6).

Lemma 3. Let (w, ψ, s) be the solution of system (3) and assume that G
ρ = D

Iρ
. Then the functional

F2(t) := −3ρD
∫ 1

0
wtsxdx + 3IρG

∫ 1

0
(ψ− wx)stdx

satisfies, for any ε2 > 0, the estimate

F′2(t) ≤ −G2
∫ 1

0
(ψ− wx)

2dx + ε2

∫ 1

0
(3st − ψt)

2dx + c
∫ 1

0

[
s2

x +

(
1 +

1
ε2

)
s2

t + h2(st)

]
dx. (13)



Math. Comput. Appl. 2020, 25, 35 5 of 11

Proof. Direct computations and the fact that ψt = −(3st − ψt) + 3st, yield

F′2(t) = −3G2
∫ 1

0
(ψ− wx)

2dx− 4γG
∫ 1

0
(ψ− wx)sdx + 9IρG

∫ 1

0
s2

t dx

− 3IρG
∫ 1

0
(3st − ψt)stdx− 4βG

∫ 1

0
(ψ− wx)h(st)dx.

(14)

Using Young’s and Poincaré’s inequalities, we obtain

−4γG
∫ 1

0
(ψ− wx)sdx ≤G2

∫ 1

0
(ψ− wx)

2dx + 4γ2
∫ 1

0
s2

xdx (15)

−4βG
∫ 1

0
(ψ− wx)h(st)dx ≤G2

∫ 1

0
(ψ− wx)

2dx + 4β2
∫ 1

0
g2(st)dx (16)

−3IρG
∫ 1

0
(3st − ψt)stdx ≤ε2

∫ 1

0
(3st − st)

2dx +
9I2

ρ G2

4ε2

∫ 1

0
s2

t dx. (17)

By substituting (15)–(17) into (14), we end up with (13).

Lemma 4. Let (w, ψ, s) be the solution of system (3) and assume that G
ρ = D

Iρ
. Then the functional

F3(t) := −ρD
∫ 1

0
(3sx − ψx)wtdx + 3IρG

∫ 1

0
(3s− ψ)stdx− IρG

∫ 1

0
(3st − ψt)wxdx

satisfies, for any ε2 > 0, the estimate

F′3(t) ≤ −
DG

2

∫ 1

0
(3sx − ψx)

2dx + ε2

∫ 1

0
(3st − ψt)

2dx + c
∫ 1

0
s2

xdx + c
∫ 1

0
(ψ− wx)

2dx

+ c
∫ 1

0

(
1 +

1
ε2

)
s2

t dx + c
∫ 1

0
h2(st)dx.

(18)

Proof. Exploiting (3) and integrating by parts, we obtain

F′3(t) = −DG
∫ 1

0
(3sx − ψx)

2dx + 3IρG
∫ 1

0
(3st − ψt)stdx− 3G2

∫ 1

0
(3s− ψ)(ψ− wx)dx

− 4γG
∫ 1

0
(3s− ψ)sdx− 4βG

∫ 1

0
(3s− ψ)h(st)dx− G2

∫ 1

0
(ψ− wx)wxdx.

Using the fact that wx = −(ψ− wx)− (3s− ψ) + 3s, we end up with

F′3(t) = −DG
∫ 1

0
(3sx − ψx)

2dx + 3IρG
∫ 1

0
st(3st − ψt)dx− 2G2

∫ 1

0
(3s− ψ)(ψ− wx)dx

− 4γG
∫ 1

0
s(3s− ψ)dx− 4βG

∫ 1

0
st(3s− ψ)dx + G2

∫ 1

0
(ψ− wx)

2dx− 3G2
∫ 1

0
s(ψ− wx)dx.

The use of Young’s and Poincaré inequalities, similar to (15)–(17), yields estimate (18).

Lemma 5. Let (w, ψ, s) be the solution of system (3). Then the functional

F4(t) := −3ρ
∫ 1

0
wtwdx− 3Iρ

∫ 1

0
stψdx

satisfies

F′4(t) ≤ −3ρ
∫ 1

0
w2

t dx +
Iρ

4

∫ 1

0
(3st − ψt)

2dx + c
∫ 1

0

[
(3sx − ψx)

2 + (ψ− wx)
2 + s2

x + s2
t + h2(st)

]
dx. (19)
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Proof. Using (3) and the substitution of ψ = −(3s − ψ) + 3s along with its appropriate
derivatives, gives

F′4(t) = −3ρ
∫ 1

0
w2

t dx + 3G
∫ 1

0
(ψ− wx)

2dx + 3Iρ

∫ 1

0
(3st − ψt)stdx + 9D

∫ 1

0
s2

xdx− 4γ
∫ 1

0
(3s− ψ)sdx

+ 12β
∫ 1

0
sh(st)dx + 12γ

∫ 1

0
s2dx− 4β

∫ 1

0
(3s− ψ)h(st)dx− 3D

∫ 1

0
(3sx − ψx)sxdx.

(20)

As in the previous lemmas, (19) follows thanks to Young’s and Poincaré’s inequalities.

Lemma 6. Let (w, ψ, s) be the solution of system (3). Then the functional

F5(t) := −Iρ

∫ 1

0
(3s− ψ)(3st − ψt)dx

satisfies

F′5(t) ≤ −Iρ

∫ 1

0
(3st − ψt)

2dx + c
∫ 1

0

[
(3sx − ψx)

2 + (ψ− wx)
2
]

dx. (21)

Proof. Estimate (21) quickly follows thanks to system (3), integration by parts, Young’s,
and Poincaré inequalities.

Lemma 7. Let (w, ψ, s) be the solution of system (3). Then, for N, Ni(i = 1 · · · 3) > 0 sufficiently large, the
Lyapunov functional defined by

F (t) := NE(t) + N1F1(t) + N2F2(t) + N3F3(t) + F4(t) + F5(t) (22)

satisfies, for some positive constant k,

F ′(t) ≤ −kE(t) + c
∫ 1

0
(s2

t + h2(st))dx, ∀t ≥ 0. (23)

Proof. Direct computations using (5), (9), (13), (18), (19), (21), and let

ε1 =
2ρ

N1
, ε2 =

Iρ

4(N2 + N3)
,

give

F ′(t) ≤ −
[

3DN1 − cN2 − cN3 − c
] ∫ 1

0
s2

xdx− 3γN1

∫ 1

0
s2dx−

[
G2N2 − cN3 − c

] ∫ 1

0
(ψ− wx)

2dx

− ρ
∫ 1

0
w2

t dx−
[

DG
2

N3 − c
] ∫ 1

0
(3sx − ψx)

2dx + c
[

N2
1 + N2 + N3 + 1

] ∫ 1

0
h2(st)dx

−
Iρ

2

∫ 1

0
(3st − ψt)

2dx + c
[

N1 (1 + N1) +
(

N2 + (N2 + N3)
2
)
+ 1
] ∫ 1

0
s2

t dx.

(24)

We now carefully choose the rest of the constants. First, we choose N3 large so that

DG
2

N3 − c > 0.

Next, we pick N2 large so that
G2N2 − cN3 − c > 0.

Finally, we select N1 large so that

3DN1 − cN2 − cN3 − c > 0.



Math. Comput. Appl. 2020, 25, 35 7 of 11

Thus, we end up with

F ′(t) ≤ −α
∫ 1

0

[
s2

x + s2 + (ψ− wx)
2 + w2

t + (3sx − ψx)
2 + (3st − ψt)

2
]

dx + c
∫ 1

0

[
s2

t + h2(st)
]

dx

for some α > 0. Using the energy functional defined by (4), we obtain (23), for some k > 0.

Remark 3. Choosing N large, it can easily be shown that F ∼ E in the sense that there exist two positive
constants a and b such that

aE(t) ≤ F (t) ≤ bE(t), ∀t ≥ 0. (25)

3. Stability Result

This section concerns the proof of our stability result, and it states as follows

Theorem 1. Let (w, ψ, s) be the solution of system (3) and assume (A1) holds. Then there exist positive
constants k1, k2, k3, and ε0 such that the solution of (1) satisfies

E(t) ≤ k1H−1
1 (k2t + k3) , t ≥ 0, (26)

where

H1(t) =
∫ 1

t

1
H0(y)

dy and H0(t) = tH′(ε0t).

Proof. Using (23), we consider two cases:

Case I: H is linear. In this case, from (A1), we have

c′1|y| ≤ |h(y)| ≤ c′2|y| ∀y ∈ R,

so,

h2(y) ≤ c′2yh(y) ∀y ∈ R. (27)

Thus, using (5), (23), and (27), we conclude that

F ′(t) ≤ −kE(t) + c
∫ 1

0
h(st)stdx. = −kE(t)− cE′(t) ∀t ∈ R+.

So, by exploiting (25), it follows that

F0(t) := F (t) + cE(t) ∼ E(t). (28)

satisfies, for some positive constant λ1

F ′0(t) ≤ −λ1F0(t), ∀t ≥ 0.

Simple integration and using (28), yield

E(t) ≤ E(0)e−λ1t. (29)

Case II: H is nonlinear on [0, ε]. In this case, as in [25], we choose 0 < ε1 ≤ ε such that

yh(y) ≤ min {ε, H(ε)} , ∀|y| ≤ ε1.
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Using (A1) and the continuity of h along the fact that |h(y)| > 0, for s 6= 0, we deduce that{
y2 + h2(y) ≤ H−1(yh(y)), ∀|y| ≤ ε1,

c1|y| ≤ |h(y)| ≤ c2|y|, ∀|y| ≥ ε1.
(30)

We now shift our attention to the last integral in (23):

∫ 1

0
(s2

t + h2(st))dx.

To estimate this integral, we consider, as in [28], the following partition:

I1 = {x ∈ (0, 1) : |st| ≤ ε1} , I2 = {x ∈ (0, 1) : |st| > ε1} .

Thus, with I(t) defined by

I(t) =
∫

I1

sth(st)dx,

we obtain, thanks to Jensen inequality and the fact that H−1 is concave

H−1(I(t)) ≥ c
∫

I1

H−1 (sth(st)) dx. (31)

Hence, using (30) and (31), we end up with

∫ 1

0

(
s2

t + h2(st)
)

dx =
∫

I1

(
s2

t + h2(st)
)

dx +
∫

I2

(
s2

t + h2(st)
)

dx

≤
∫

I1

H−1 (sth(st)) dx + c
∫

I2

sth(st)dx (32)

≤cH−1(I(t))− cE′(t).

The substitution of (32) into (23) and using (28), we have

F0(t) ≤ −kE(t) + cH−1(I(t)) ∀t ∈ R+. (33)

Now, for ε0 < ε and δ0 > 0, using (33) and the following properties of E and H:

E′ ≤ 0, H′ > 0, H′′ > 0 on (0, ε],

we deduce that the functional F1, defined by

F1(t) := H′
(

ε0
E(t)
E(0)

)
F0(t) + δ0E(t),

satisfies, for some c1, c2 > 0,
c1F1(t) ≤ E(t) ≤ c2F1(t) (34)

and

F1(t) :=ε0
E′(t)
E(0)

H′′
(

ε0
E(t)
E(0)

)
F0(t) + H′

(
ε0

E(t)
E(0)

)
F ′(t) + δ0E′(t)

≤− kE(t)H′
(

ε0
E(t)
E(0)

)
+ cH′

(
ε0

E(t)
E(0)

)
H−1 (I(t))︸ ︷︷ ︸

T

+δ0E′(t). (35)
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In order to estimate T in (35), we let H∗ be the convex conjugate of H defined by

H∗(y) = y(H′)−1(y)− H[(H′)−1(y)] ≤ y(H′)−1(y), if y ∈ (0, H′(ε)], (36)

then, using the general Young’s inequality

AB ≤ H∗(A) + H(B), if A ∈ (0, H′(ε)], B ∈ (0, ε]

for A = H′
(

ε0
E(t)
E(0)

)
and B = H−1 (I(t)) , we obtain

cH′
(

ε0
E(t)
E(0)

)
H−1 (I(t)) ≤cH∗

(
H′
(

ε0
E(t)
E(0)

))
+ cI(t).

By using the energy functional (4) and (36), we end up with

cH′
(

ε0
E(t)
E(0)

)
H−1 (I(t)) ≤cε0

E(t)
E(0)

H′
(

ε0
E(t)
E(0)

)
− cE′(t). (37)

Combining (35) and (37), we obtain

F1(t) ≤− kE(t)H′
(

ε0
E(t)
E(0)

)
+ cε0β

E(t)
E(0)

H′
(

ε0
E(t)
E(0)

)
− cE′(t) + δ0E′(t)

≤− (kE(0)− cε0)
E(t)
E(0)

H′
(

ε0
E(t)
E(0)

)
+ (δ0 − c)E′(t).

Letting ε0 = k
2c E(0), δ0 = 2c, and using the fact that E′(t) ≤ 0, we get

F1(t) ≤− a1
E(t)
E(0)

H′
(

ε0
E(t)
E(0)

)
= −a1H0

(
E(t)
E(0)

)
, (38)

where a1 > 0 and H0(t) = tH′(ε0t).
So, using the fact that H is strictly convex on (0, ε], we find that H0(t), H′0(t) > 0 on (0, 1]. Hence,

with F̃ (t) = c1F1(t)
E(0) and using (34) and (38), we have

F̃ (t) ∼ E(t) (39)

and, for some k2 > 0,
F̃ ′(t) ≤ −k2H0

(
F̃ (t)

)
. (40)

Inequality (40) implies that
[

H1

(
F̃ (t)

)]′
≥ k2, where

H1(t) =
∫ 1

t

1
H0(y)

dy.

Thus, by integrating over [0, t], bearing in mind the properties of H0, and the fact that H1 is strictly
decreasing on (0, 1] we obtain, for some k3 > 0,

F̃ (t) ≤ H−1
1 (k2t + k3) ∀t ∈ R+. (41)

We complete the proof of Theorem 1 by using (39) and (41).
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4. Concluding Remarks

In this work, as in [19], we show (see (29)) that the structural damping is strong enough to
exponentially stabilize the laminated Timoshenko beam system provided the wave speeds of the first
two equations of the system are equal. A similar result was recently obtained in [29] when frictional
damping is acting on the second equation. For the nonlinear case, the result is more general. For this
case (nonlinear), it is an interesting open problem to investigate the case when the wave speeds of the
first two equations of the system are not equal.
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