

  mca-25-00039




mca-25-00039







Math. Comput. Appl. 2020, 25(3), 39; doi:10.3390/mca25030039




Article



Windowing as a Sub-Sampling Method for Distributed Data Mining



David Martínez-Galicia 1,*, Alejandro Guerra-Hernández 1[image: Orcid], Nicandro Cruz-Ramírez 1[image: Orcid], Xavier Limón 2 and Francisco Grimaldo 3[image: Orcid]





1



Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho No 5, Xalapa, Veracruz, Mexico 91000, Mexico






2



Facultad de Estadística e Informática, Universidad Veracruzana, Av. Xalapa s/n, Xalapa, Veracruz, Mexico 91000, Mexico






3



Departament d’Informàtica, Universitat de València, Avinguda de la Universitat, s/n, Burjassot-València, 46100 València, Spain









*



Correspondence: davidgalicia@outlook.es







Received: 31 May 2020 / Accepted: 29 June 2020 / Published: 30 June 2020



Abstract

:

Windowing is a sub-sampling method, originally proposed to cope with large datasets when inducing decision trees with the ID3 and C4.5 algorithms. The method exhibits a strong negative correlation between the accuracy of the learned models and the number of examples used to induce them, i.e., the higher the accuracy of the obtained model, the fewer examples used to induce it. This paper contributes to a better understanding of this behavior in order to promote windowing as a sub-sampling method for Distributed Data Mining. For this, the generalization of the behavior of windowing beyond decision trees is established, by corroborating the observed negative correlation when adopting inductive algorithms of different nature. Then, focusing on decision trees, the windows (samples) and the obtained models are analyzed in terms of Minimum Description Length (MDL), Area Under the ROC Curve (AUC), Kulllback–Leibler divergence, and the similitude metric Sim1; and compared to those obtained when using traditional methods: random, balanced, and stratified samplings. It is shown that the aggressive sampling performed by windowing, up to 3% of the original dataset, induces models that are significantly more accurate than those obtained from the traditional sampling methods, among which only the balanced sampling is comparable in terms of AUC. Although the considered informational properties did not correlate with the obtained accuracy, they provide clues about the behavior of windowing and suggest further experiments to enhance such understanding and the performance of the method, i.e., studying the evolution of the windows over time.
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1. Introduction


Windowing is a sub-sampling method that enabled the decision tree inductive algorithms ID3 [1,2,3] and C4.5 [4,5] to cope with large datasets, i.e., those whose size precludes loading them in memory. Algorithm 1 defines the method: First, a window is created by extracting a small random sample of the available examples in the full dataset. The main step consists of inducing a model with that window and of testing it on the remaining examples, such that all misclassified examples are moved to the window. This step iterates until a stop condition is reached, e.g., all the available examples are correctly classified or a desired level of accuracy is reached.






	Algorithm 1 Windowing.



	Require:     E x a m p l e s   {The original training set}

Ensure:     M o d e l   {The induced model}

	1:

	
  W i n d o w ← s a m p l e ( E x a m p l e s )  




	2:

	
  E x a m p l e s ← E x a m p l e s − W i n d o w  




	3:

	
repeat




	4:

	
     s t o p C o n d ← t r u e  




	5:

	
     m o d e l ← i n d u c e ( W i n d o w )  




	6:

	
   for    e x a m p l e ∈ E x a m p l e s    do




	7:

	
     if    c l a s s i f y ( m o d e l , e x a m p l e ) ≠ c l a s s ( e x a m p l e )   then




	8:

	
         W i n d o w ← W i n d o w ∪ { e x a m p l e }  




	9:

	
         E x a m p l e s ← E x a m p l e s − { e x a m p l e }  




	10:

	
         s t o p C o n d ← f a l s e  




	11:

	
    end if




	12:

	
  end for




	13:

	
until    s t o p   C o n d  




	14:

	
return    m o d e l  














Despite Wirth and Catlett [6] publishing an early critic about the computational cost of windowing and its inability to deal with noisy domains, Fürnkranz [7] argues that this method still offers three advantages: (a) it copes well with memory limitations, reducing considerably the number of examples required to induce a model of acceptable accuracy; (b) it offers an efficiency gain by reducing the time of convergence, specially when using a separate-and-conquer inductive algorithm, as Foil [8], instead of the divide-and-conquer algorithms such as ID3 and C4.5., and; (c) it offers an accuracy gain, specially in noiseless datasets, possibly explained by the fact that learning from a subset of examples may often result in a less over-fitting theory.



Even when the lack of memory is not usually an issue nowadays, similar concerns arise when mining big and/or distributed data, i.e., the impossibility or inconvenience of using all the available examples to induce models. Windowing has been used as the core of a set of strategies for Distributed Data Mining (DDM) [9] obtaining good accuracy results, consistent with the expected achievable accuracy and number of examples required by the method. On the contrary, efficiency suffers for large datasets as the cost of testing the models in the remaining examples is not negligible (i.e., the for loop in Algorithm 1, line 6), although it can be alleviated by using GPUs [10]. More relevant for this paper is the fact that these Windowing-based strategies based on J48, the Weka [11] implementation of C4.5, show a strong correlation (  − 0.8175845  ) between the accuracy of the learned decision trees and the number of examples used to induce them, i.e., the higher the accuracy obtained, the fewer the number of examples used to induce the model. The windows in this method can be seen as samples and reducing the size of the training sets, even up to a 95% of the available training data, still enables accuracy values above 95%.



These promising results encourage the adoption of windowing as a sub-sampling method for Distributed Data Mining. However, they suggest some issues that must be solved for such adoption. The first one is the generalization of windowing beyond decision trees. Does windowing behave similarly when using different models and inductive algorithms? The first contribution of this paper is to corroborate the correlation between accuracy and the size of the window, i.e., the number of examples used to induce the model, when using inductive algorithms of different nature, showing that the advantages of windowing as a sub-sampling method can be generalized beyond decision trees. The second issue is the need of a deeper understanding of the behavior of windowing. How is that such a big reduction in the number of training examples, maintains acceptable levels of accuracy? This is particularly interesting as we have pointed out that high levels of accuracy correlate with smaller windows. The second contribution of the paper is thus to approach such a question in terms of the informational properties of both the windows and the models obtained by the method. These properties do not unfortunately correlate with the obtained accuracy of windowing and suggest the study of the evolution of the windows over as future work. Finally, a comparison with traditional methods as random, stratified, and balanced samplings, provides a better understanding of windowing and evaluates its adoption as an alternative sampling method. Under equal conditions, i.e., same original full dataset and size of the sample, windowing shows to be significantly more accurate than the traditional samplings and comparable to balanced sampling in terms of AUC. The paper is organized as follows: Section 2 introduces the adopted materials and methods; Section 3 presents the obtained results; and Section 4 discusses conclusions and future work.




2. Materials and Methods


This section describes the implementation of windowing used in this work, as included in JaCa-DDM; the datasets used in experimentation; and the experiments themselves.



2.1. Windowing in JaCa-DDM


Because of our interest in Distributed Data Mining settings, JaCa-DDM (https://github.com/xl666/jaca-ddm) was adopted to run our experiments. This tool [9] defines a set of windowing-based strategies using J48, the Weka [11] implementation of C4.5, as inductive algorithm. Among them, the Counter strategy is the most similar to the original formulation of windowing, with the exception of:




	
The dataset may be distributed in different sites, instead of the traditional approach based on a single dataset in a single site.



	
The loop for collecting the misclassified examples to be added to the window is performed by a set of agents using copies of the model distributed among the available sites, in a round-robin fashion.



	
The initial window is a stratified sample, instead of a random one.



	
An auto-adjustable stop criteria is combined with a configurable maximum number of iterations.








The configuration of the strategy (Table 1) used for all the experiments reported in this paper, is adopted from the literature [10].




2.2. Datsets


Table 2 lists the datasets selected from the UCI [12] and MOA [13] repositories to conduct our experiments. They vary in the number of instances, attributes, and class’ values; as well as in the type of the attributes. Some of them are affected by missing values. The literature [10] reports experiments on larger datasets, up to   4.8 ×  10 6    instances, exploiting GPUs. However, datasets with higher dimensions are problematic, e.g., imdb-D with 1002 attributes does not converge using the Counter strategy.




2.3. Experiments


Two experiments were designed to cope with the issues approached by this work, i.e., the generalization of windowing beyond decision trees; a deeper understanding of its behavior in informational terms; and the comparison with traditional sampling methods. All of them were executed on a Intel Core i5-8300H at 2.3GHz, up to 3.9GHz with 8Gb DDR4. 8 distributed sites were simulated on this machine. JaCa-DDM also allows the adoption of real distributed sites over a network, but the aspects of windowing we study here, are not affected by simulating distribution.



2.3.1. On the Generalization of Windowing


The first experiment seeks to corroborate the correlation between the accuracy of the learned model and the amount of instances used to induce the model. It attempts to provide practical evidence about the generalization of windowing. For this, different Weka classifiers are adopted that replace J48. JaCa-DDM allows easy replacement and configuration of the new classifier artifacts of the system, namely:




	Naive Bayes.

	
A probabilistic classifier based on Bayes’ theorem with a strong assumption of independence among attributes [14].




	jRip. 

	
An inductive rule learner based on RIPPER that builds a set of rules while minimizing the amount of error [15].




	Multilayer-perceptron. 

	
A multi-layer perceptron trained by backpropagation with sigmoid nodes except for numeric classes, in which case the output nodes become unthresholded linear units [16].




	SMO. 

	
An implementation of John Platt’s sequential minimal optimization algorithm for training a support vector classifier [17].









All classifiers are induced by running a 10-fold stratified cross-validation on each dataset, then observing the average accuracy of the obtained models and the average percentage of the original dataset used to induce the model, i.e., 100% means the full original dataset was used to create the window.




2.3.2. On the Properties of Samples and Models Obtained by Windowing


The second experiment pursues a deeper understanding of the informational properties of the computed models, as well as those of the samples obtained by Windowing, i.e., the final windows. For this, given the positive results of the first experiment, we focus exclusively on decision trees (J48), for which different metrics to evaluate performance, complexity and data compression are well known. They include:




	
The model accuracy defined as the percentage of correctly classified instances.


   T P + T N   T P + F P + T N + F N   



(1)




where   T P  ,   T N  ,   F P   and   F N   respectively stand for the true positive, true negative, false positive, and false negative classifications using the test data.



	
The metric AUC defined as the probability of a random instance to be correctly classified [18].


  A U C =  1 2     T P   T P + F N   +   T N   T N + F P     



(2)







Even though this measure was conceived for binary classification problems. Foster Provost [19] proposes an implementation for multi-class problems based in the weighted average of AUC metrics for every class using a one-against-all approach, and the weight for every AUC is calculated as the class’ appearance frequency in the data   p (  c i  )  .


  A U  C  t o t a l   =  ∑   c i  ∈ C   A U C  (  c i  )  · p  (  c i  )   



(3)







	
The MDL principle states that the best model to infer from a dataset is the one which minimizes the sum of the length of the model   L ( H )  , and the length of the data when encoded using the theory as a predictor for the data   L ( D | H )   [20].


  M D L = L ( H ) + L ( D | H )  



(4)







For decision trees, Quinlan [21] proposes the next definition:



	
The number of bits needed to encode a tree is:


  L  ( H )  =  n  n o d e s   ∗  ( 1 + l n  (  n  a t t r i b u t e s   )  )  +  n  l e a v e s    ( 1 + l n  (  n  c 1 a s s e s   )  )   



(5)




where   n  n o d e s   ,   n  a t t r i b u t e s   ,   n  l e a v e s    and   n  c 1 a s s e s    stand for the number of nodes, attributes, leaves and classes. This encoding uses a recursive top-down, depth-first procedure, where a tree which is not a leaf is encoded by a sequence of 1, the attribute code at his root, and the respective encodings of the subtrees. If a tree or subtree is a leaf, its enconding is a sequence of 0, and the class code.



	
The number of bits needed to encode the data using the decision tree is:


  L  ( D | H )  =  ∑  l ∈ L e a v e s   l o  g 2   ( b + 1 )  + l o  g 2     n k     



(6)




where n is the number of instances, k is the number of positives instances for binary classification and b is a known a priori upper bound on k, typically   b = n  . For non-binary classification, Quinlan proposes a iterative approach where exceptions are sorted by their frequency, and then codified with the previous formula.






	
The Kullback–Leibler divergence (  D  K L   ) [22] is defined as:


   D  K L    ( P | | Q )  =  ∑  x ∈ X   P  ( x )  l o  g 2     P ( x )   Q ( x )     



(7)




where P and Q are probability distributions for the full dataset and the window, both are defined on the same probability space X, and x represents a class in the distribution. Instead of using a model to represent a conditional distribution of variables, as usual, we focus on the class distribution, computed as the marginal probability. Values closer to zero reflect higher similarity.



	
  S i  m 1    [23] is a similarity measure between datasets defined as:


  s i  m 1   (  D i  ,  D j  )  =    | I t e m   (  D i  )  ∩ I t e m  (  D j  )   |     | I t e m   (  D i  )  ∪ I t e m  (  D j  )   |     



(8)




where   D i   is the window and   D j   is the full dataset; and   I t e m ( D )   denotes the set of pairs attribute-value occurring in D. Values closer to one reflect higher similarity.








These metrics are used to compare the sample (the window) and the model computed by windowing, against those obtained as follows, once a random sample of the original data set is reserved as test set:




	
Without sampling, using all the available data to induce the model.



	
By Random sampling, where any instance has the same selection probability [24].



	
By Stratified random sampling, where the instances are subdivided by their class into subgroups, the number of selected instances per subgroup is defined as the division of the sample size by the number of instances [24].



	
By Balanced random sampling, as stratified random sampling, the instances are subdivided by their class into subgroups, but the number of selected instances per subgroup is defined as the division of the sample size by the number of subgroups, this allows the same number of instances per class [24].








Ten repetitions of 10-fold stratified cross-validation are run on each dataset. For a fair comparison, all the samples have the size of the window being compared. Statistical validity of the results is established following the method proposed by Demšar [25]. This approach enables the comparison of multiple algorithms on multiple data sets. It is based on the use of the Friedman test with a corresponding post-hoc test. Let   R i j   be the rank of the   j  t h    of k algorithms on the   i  t h    of N data sets. The Friedman test [26,27] compares the average ranks of algorithms,    R j  =  1 N   ∑ i   R i j   . Under the null-hypothesis, which states that all the algorithms are equivalent and so their ranks   R j   should be equal, the Friedman statistic:


   χ F 2  =   12 N   k ( k + 1 )     ∑ j   R  j  2  −   k   ( k + 1 )  2   4    



(9)




is distributed according to   χ F 2   with   k − 1   degrees of freedom, when N and k are big enough (  N > 10   and   k > 5  ). For a smaller number of algorithms and data sets, exact critical values have been computed [28]. Iman and Davenport [29] showed that Friedman’s   χ F 2   is undesirably conservative and derived an adjusted statistic:


   F f  =    ( N − 1 )  ×  χ F 2    N ×  ( k − 1 )  −  χ F 2     



(10)




which is distributed according to the F-distribution with   k − 1   and   ( k − 1 ) ( N − 1 )   degrees of freedom. If the null hypothesis of similar performances is rejected, then the Nemenyi post-hoc test is realized for pairwise comparisons. The performance of two classifiers is significantly different if their corresponding average ranks differ by at least the critical difference:


  C D =  q α     k ( k + 1 )   6 N     



(11)




where critical values   q α   are based on the Studentized range statistic divided by   2  .



For the comparison of multiple classifiers, the results of the post-hoc tests can be visually represented with a simple critical distance diagram. This type of visualization will be described in the Statistical Tests in Section 3.






3. Results


Results are organized accordingly to the following issues:




	
Generalization of the behavior of windowing, i.e., high accuracy correlating with fewer training examples used to induce the model, when other inductive algorithms, apart of J48, are adopted.



	
Informational properties of the samples obtained by different methods, based on the Kullback–Leibler divergence and the attribute-value similitude.



	
Properties of the models induced with the samples, in terms of their size, complexity, and data compression, which supplies information about their data fitting capacity.



	
Predictive performance of the induced models in terms of accuracy and the AUC.



	
Statistical tests about significant gains produced by windowing using the former metrics.








3.1. Windowing Generalization


Figure 1 shows a strong negative correlation between the number of training instances used to induce the models, expressed as a percentage with respect to the totality of available examples, and the accuracy of the induced model. Such correlation exists, independently of the adopted inductive algorithm. These results are consistent with the behavior of windowing when using J48, as reported in the literature [9] and corroborates that under windowing, in general, the models with higher accuracy use less examples to be induced.



However, accuracy is affected by the adopted inductive algorithm, e.g., Hypothyroid is approached very well by jRip (99.23 ± 0.48 of accuracy) requiring few examples (5% of the full dataset); while Multilayer-Perceptron is not quite successful in this case (92.26 ± 2.75 of accuracy) requiring more examples (24%). This behavior is also observed between SMO and jRip for Waveform5000. These observations motivated analyzing the properties of the samples and induced models, as described in the following subsections. Table 3 shows the accuracy results in detail and Table 4 shows the number of examples used to induce the models, best results are highlighted in gray. Appendix A shows the accuracy values for models without using windowing under a 10-fold cross-validation. Windowing accuracies are comparable to those obtained without using windowing. Table 7 also corroborate this this for the J48 classifier.



Large datasets such as as Adult, Letter, Poker-Lsn, Splice, and Waveform5000 did not finish on reasonable time when using jRip, Multilayer-Perceptron and SMO, with and without windowing. In such cases, results are reported as not available (na). This might be solved by running the experiments in a real cluster of 8 nodes, instead of simulating the sites in a single machine, as done here, but it is not relevant for the purposes of this work. In the following results, Poker-lsn dataset was excluded because the cross-validations runs do not finish on a reasonable time, this might be solved with more computational power. The results were kept this way because they illustrate that some classifiers exhibit a computational cost which precludes convergence.




3.2. Samples Properties


For each dataset considered in this work, Table 5 shows some properties of the samples obtained by the following methods: windowing, as described before; the Full-Dataset under a 10-folds cross-validation (90% of all available data); and the random, stratified, and balanced samplings. Properties include the size of the sample in terms of the number of instances; the standard deviation of the class distribution (  S t . D v . C . D .  ); and two measures of similarity between the samples and the original dataset: The Kullback–Leibler divergence and the metric   s i  m 1   . With the exception of Full-Dataset, the size of the rest of the samples is determined by the windowing method and its autostop method. For the sake of fairness, windowing is executed first and the size of the sample obtained in this way is adopted for the rest of the sampling methods. Reductions in the size of the training set are as big as 97% of the available data (Hypothyroid).



According to Kullback–Leibler Divergence, windowing is the method that skews more the original class distribution in non-balanced datasets. It is also observed that the class distribution on the windows is more balanced, and its effectiveness probably depends on the number of available examples for the minority classes. For instance, Full-Dataset shows an unbalanced class distribution (  S t . D v . C . D . = 0.449  ) in Hypothyroid, while windowing got a coefficient of   0.293  . Windowing can not completely balance the number of examples per class since the percentage of the available examples for the minority classes are around of 5%. The random sampling, the Full-Dataset, and the stratified sampling do not tend to modify the class distribution. However, it does not seem to be a correlation between this coefficient and the obtained accuracy.



Full-Dataset is, without surprise, the sample that gathers more attribute/values pairs from the original data, since it uses 90% of the available data. It is included in the results exclusively for comparison with the rest of the sampling methods. Table 5 also show that windowing tends to collect more information content in most of the datasets compared with all the sampling, this is probably result of the heuristic nature of windowing. There are some datasets, like Breast and German, where all the techniques have one as the measured value of   S i m 1  . Unfortunately, as in the previous case, this notion of similarity neither seems to correlate with the observed accuracy, for instance, as mentioned, for Breast and German all the sampling methods gathers all the original pairs attribute-value (  S i  m 1  = 1.0  ), but while the accuracy obtained for Breast is around 95%, when using German it is around 71%. In concordance with these results, the window for Breast uses 17% of the available examples, while German uses 64% (Table 5).




3.3. Model Complexity and Data Compression


Table 6 shows the results for the MDL, calculated using the test dataset. Respecting the number of bits required to encode a tree (  L ( H )  ), Windowing and Full-Dataset tend to induce more complex models, i.e, trees with more nodes. This is probably because windowing favors the search for more difficult patterns in the set of available instances, which require more complex models to be expressed. Respecting the number of bits required to encode the test data, given the induced decision tree, (  L ( D | H )  ) a better compression is achieved using windowing and Full-Dataset than when using the traditional samplings. Big differences in data compression using windowing are exhibit in datasets like Mushroom, Segment, and Waveform-5000. One possible explanation for this is that instances gathered by sampling techniques do not capture the data nature because of their random selection and the small number of instances in the sample.



The sum of the former metrics, the MDL, reports bigger models in most of the datasets when using windowing and Full-Dataset. This result does not represent an advantage, but properties such as the predictive performance also play an important role in model selection.




3.4. Predictive Performance


Table 7 shows the predictive performance in terms of accuracy and the AUC. Even though the random, stratified and balanced samplings usually induce simpler models, the decision trees do not seem to be more general than their windowing and Full-Dataset counterparts. In other words, the predictive ability of decision trees induced with the traditional samplings are, most of the time, lower than the models induced using windowing and Full-Dataset. Models induced with windowing have the same accuracy as those obtained by Full-Dataset and, sometimes, they even show a higher accuracy, e.g., waveform-500. In terms of AUC, windowing and Full-Dataset were the best samples, but the balanced sampling is pretty close to their performance.




3.5. Statistical Tests


The figures in this section visualize the results of the post-hoc Nemenyi test for the metrics previously shown in Table 5, Table 6 and Table 7. This compact, information-dense visualization, called as Critical Difference diagram, consists on a main axis where the average rank of each methods is plotted along with a line that represents the Critical Difference (CD). Methods separated by a distance shorter than the CD are statistically indistinguishable, i.e., the evidence is not sufficient to conclude whether they have a similar performance and are connected by a black line. In contrast, methods separated by a distance larger than the CD have a statistically significant difference in performance. The best performing methods are those with lower rank values shown on the left of the figure.



Figure 2 shows the results for the number of bits required to encode the induced models (  L ( H )  ) presented in Table 6. The groups of connected algorithms are not significantly different. In this case, the complexity of the models induced using windowing does not show significant differences with the complexity of the models induced using the Full-Dataset or balanced sampling.



Figure 3 shows the results in terms of data compression given the decision tree (  L ( D | H )  ). If the compressibility provided by the models is verified on a stratified sample of unseen data, windowing and Full-Dataset tend to compress significantly better compared to traditional sampling methods. However, windowing tends to generate more complex models probably because its heuristic behavior enables the seek for more difficult patterns in the data.



Figure 4 shows the results in terms of MDL in the test set. Windowing and Full-Dataset do not show significant differences, nor they are statistically different to the traditional sampling methods. That is, that the induced decision trees generally need the same number of bits to be represented.



Figure 5 shows the results for accuracy. Windowing performs very well, being almost as accurate as Full-Dataset without significant differences. Both methods are strictly better than the random, balanced, and stratified samplings. When considering the AUC in Figure 6, results are very similar but the balanced sampling does not show significant differences with windowing and the Full-Dataset. Recall that both, windowing and balanced sampling, tend to balance the class distribution of the instances.



In terms of class distribution (Figure 7), windowing is known to be the method that tends to skew the distribution the most, given that the counter examples added to the window in each iteration of this algorithm belong most probably to the current minority class. As expected, the balanced and the random sampling methods also skew the class distribution showing no significant differences with windowing. According to the percentage of attribute-value pairs given by   S i  m 1    (Figure 8), windowing and the traditional sampling methods cannot obtain the full set of attribute-value pairs included in the original dataset. Despite this, windowing is still very competent when it comes to prediction.





4. Conclusions


The generalization of the behavior of windowing beyond decision trees and the J48 algorithm has been corroborated. Independently of the inductive method used with windowing, high accuracies correlate with aggressive samplings up to 3% of the original datasets. This result motivates the study of the properties of the samples and models proposed in this work. Unfortunately, the Kullback–Leibler divergence and   s i  m 1    do not seem to correlate with accuracy, although the first one is indicative of the balancing effect performed by windowing. MDL provided useful information in the sense that, although all methods generate models of similar complexity, it is important to identify which component of the MDL is more relevant in each case. For example, less complex decision trees, as those induced by random, balanced and stratified samplings, are more general but less accurate. In contrast, decision trees with better data compression, such as those induced using windowing and Full-Dataset, tend to be larger but more accurate. The key factor that makes the difference is the significant reduction of instances for induction. Recall that determining the size of the samples is done automatically in windowing, based on the auto-stop condition of this method. When using traditional sampling methods the size must be figured out by the user of the technique. To the best of our knowledge, this is the first comparative study of windowing in this respect. This work suggests future lines of research on windowing, including:




	
Adopting metrics for detecting relevant, noisy, and redundant instances to enhance the quality and size of the obtained samples, in order to improve the performance of the obtained models. Maillo et al. [30] review multiple metrics to describe redundancy, complexity, and density of a problem and also propose two data big metrics. These kind of metrics may be helpful to select instances that provides quality information.



	
Studying the evolution of windows over time can offer more insights about the behavior of windowing. The main difficulty here is adapting some of the used metrics, e.g., MDL, to be used with models that are not decision trees.



	
Dealing with datasets of higher dimensions. Melgoza-Gutiérrez et al. [31] propose an agent & artifacts-based method to distribute vertical partitions of datasets and deal with the growing time complexity when datasets have a high number of attributes. It is expected that the achieved understanding on windowing contributes to combine these approaches.



	
Applying windowing to real problems. Limón et al. [10] applies windowing to the segmentation of colposcopic images presenting possible precancerous cervical lesions. Windowing is exploited here to distribute the computational cost of processing a dataset of   1.4 ×  10 6    instances and 30 attributes. The exploitation of windowing to cope with learning problems of distributed nature is to be explored.
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Appendix A. Results of Accuracy without Using Windowing
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Table A1. Average accuracy without using windowing under a 10-fold cross validation (na = not available).






Table A1. Average accuracy without using windowing under a 10-fold cross validation (na = not available).













	
	j48
	NB
	jRip
	MP
	SMO





	Adult
	85.98 ± 0.28
	83.24 ± 0.19
	84.65 ± 0.16
	na
	na



	Australian
	87.10 ± 0.65
	85.45 ± 1.57
	84.44 ± 1.78
	83.10 ± 1.28
	86.71 ± 1.43



	Breast
	96.16 ± 0.38
	97.84 ± 0.51
	95.03 ± 0.89
	96.84 ± 0.77
	96.67 ± 0.40



	Credit-g
	73.59 ± 2.11
	75.59 ± 1.04
	73.45 ± 1.96
	73.10 ± 0.72
	76.66 ± 2.87



	Diabetes
	72.95 ± 0.77
	75.83 ± 1.17
	78.27 ± 1.81
	74.51 ± 1.46
	78.02 ± 1.79



	Ecoli
	84.44 ± 1.32
	83.5 ± 1.64
	82.25 ± 3.11
	83.69 ± 1.44
	83.93 ± 1.31



	German
	73.89 ± 1.59
	76.94 ± 2.29
	70.06 ± 0.90
	70.26 ± 0.96
	74.55 ± 1.76



	Hypothyroid
	99.48 ± 0.20
	95.72 ± 0.68
	99.60 ± 0.15
	94.38 ± 0.25
	94.01 ± 0.48



	Kr-vs-kp
	99.31 ± 0.06
	87.68 ± 0.43
	99.37 ± 0.29
	99.06 ± 0.13
	96.67 ± 0.37



	Letter
	87.81 ± 0.10
	64.33 ± 0.28
	86.34 ± 0.22
	na
	na



	Mushroom
	100.0 ± 0.00
	95.9 ± 0.32
	100.0 ± 0.00
	100.0 ± 0.00
	100.0 ± 0.00



	Poker-lsn
	99.79 ± 0.00
	59.33 ± 0.03
	na
	na
	na



	Segment
	96.02 ± 0.29
	79.95 ± 0.69
	95.25 ± 0.52
	95.61 ± 0.91
	92.97 ± 0.36



	Sick
	98.88 ± 0.29
	93.13 ± 0.43
	98.19 ± 0.22
	95.81 ± 0.45
	93.70 ± 0.56



	Splice
	93.81 ± 0.39
	95.05 ± 0.36
	94.19 ± 0.27
	na
	93.46 ± 0.48



	Waveform5000
	75.58 ± 0.37
	80.25 ± 0.33
	79.54 ± 0.37
	na
	86.81 ± 0.21
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Figure 1. Correlation between accuracy and percentage of used training examples when windowing. J48   = − 0.98  , NB   = − 0.96  , jRip   = − 0.98  , MP   = − 0.98  , and SMO   = − 0.99  . In general, the models with higher accuracy use less examples to be induced. 
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Figure 2. Demšar test regarding the required bits to encode trees,   L ( H )  . 
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Figure 3. Demšar test regarding the required bits to encode the test data given the decision tree,   L ( D | H )  . 
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Figure 4. Demšar test regarding the MDL computed on the test dataset. 
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Figure 5. Demšar test regarding the accuracy over the test dataset. 
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Figure 6. Demšar test regarding the AUC over the test dataset. 
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Figure 7. Demšar test regarding the Kullback–Leibler Divergence. 
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Figure 8. Demšar test regarding Sim1. 
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Table 1. Configuration of the counter strategy. Adopted from Limón et al. [10].
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	Parameter
	Value





	Classifier
	J48



	Pruning
	True



	Number of nodes
	8



	Maximum number of rounds
	15



	Initial percentage for the window
	0.20



	Validation percentage for the test
	0.25



	Change step of accuracy every round
	0.35
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Table 2. Datasets, adopted from UCI and MOA.
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	Dataset
	Instances
	Attributes
	Attribute Type
	Missing Values
	Classes





	Adult
	48842
	15
	Mixed
	Yes
	2



	Australian
	690
	15
	Mixed
	No
	2



	Breast
	683
	10
	Numeric
	No
	2



	Diabetes
	768
	9
	Mixed
	No
	2



	Ecoli
	336
	8
	Numeric
	No
	8



	German
	1000
	21
	Mixed
	No
	2



	Hypothyroid
	3772
	30
	Mixed
	Yes
	4



	Kr-vs-kp
	3196
	37
	Numeric
	No
	2



	Letter
	20000
	17
	Mixed
	No
	26



	Mushroom
	8124
	23
	Nominal
	Yes
	2



	Poker-lsn
	829201
	11
	Mixed
	No
	10



	Segment
	2310
	20
	Numeric
	No
	7



	Sick
	3772
	30
	Mixed
	Yes
	2



	Splice
	3190
	61
	Nominal
	No
	3



	Waveform5000
	5000
	41
	Numeric
	No
	3
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Table 3. Average windowing accuracy under a 10-fold cross validation (na = not available).
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	J48
	NB
	jRip
	MP
	SMO





	Adult
	86.17 ± 0.55
	84.54 ± 0.62
	na
	na
	na



	Australian
	85.21 ± 4.77
	85.79 ± 4.25
	85.94 ± 3.93
	81.74 ± 6.31
	85.80 ± 4.77



	Breast
	94.42 ± 3.97
	97.21 ± 2.34
	95.31 ± 2.75
	95.45 ± 3.14
	96.33 ± 3.12



	Diabetes
	73.03 ± 3.99
	76.03 ± 4.33
	71.74 ± 7.67
	72.12 ± 4.00
	76.04 ± 3.51



	Ecoli
	82.72 ± 6.81
	83.93 ± 7.00
	81.22 ± 6.63
	82.12 ± 7.49
	84.53 ± 4.11



	German
	71.10 ± 5.40
	75.20 ± 2.82
	70.20 ± 3.85
	69.60 ± 4.84
	75.80 ± 3.12



	Hypothyroid
	99.46 ± 0.17
	95.36 ± 0.99
	99.23 ± 0.48
	92.26 ± 2.75
	94.30 ± 0.53



	Kr-vs-kp
	99.15 ± 0.66
	96.65 ± 0.84
	98.46 ± 0.95
	98.72 ± 0.54
	96.62 ± 0.75



	Letter
	85.79 ± 1.24
	69.28 ± 1.26
	85.31 ± 1.06
	na
	na



	Mushroom
	100.00 ± 0.00
	99.80 ± 0.16
	100.00 ± 0.00
	100.00 ± 0.00
	100.0 ± 0.00



	Poker-lsn
	99.75 ± 0.07
	60.02 ± 0.42
	na
	na
	na



	Segment
	96.53 ± 1.47
	84.24 ± 1.91
	95.54 ± 1.55
	96.10 ± 1.15
	92.42 ± 1.87



	Sick
	98.64 ± 0.53
	96.34 ± 1.44
	97.93 ± 0.95
	96.32 ± 1.04
	96.71 ± 0.77



	Splice
	94.04 ± 0.79
	95.32 ± 1.07
	92.75 ± 2.11
	na
	92.41 ± 1.34



	Waveform5000
	73.06 ± 2.55
	82.36 ± 1.64
	77.02 ± 1.59
	na
	85.94 ± 1.32
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Table 4. Average size of the final window (the sample) under a 10-fold cross validation, in terms of the percentage of the full dataset used for induction (na = not available).
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	J48
	NB
	jRip
	MP
	SMO





	Adult
	0.30 ± 0.01
	0.21 ± 0.00
	na
	na
	na



	Australian
	0.31 ± 0.02
	0.25 ± 0.01
	0.33 ± 0.02
	0.39 ± 0.04
	0.27 ± 0.01



	Breast
	0.17 ± 0.01
	0.06 ± 0.00
	0.14 ± 0.01
	0.11 ± 0.01
	0.09 ± 0.01



	Diabetes
	0.54 ± 0.05
	0.40 ± 0.02
	0.52 ± 0.04
	0.48 ± 0.03
	0.42 ± 0.02



	Ecoli
	0.38 ± 0.03
	0.27 ± 0.01
	0.40 ± 0.03
	0.31 ± 0.03
	0.29 ± 0.02



	German
	0.56 ± 0.04
	0.43 ± 0.01
	0.59 ± 0.02
	0.58 ± 0.02
	0.47 ± 0.02



	Hypothyroid
	0.05 ± 0.00
	0.12 ± 0.01
	0.05 ± 0.00
	0.24 ± 0.01
	0.12 ± 0.01



	Kr-vs-kp
	0.08 ± 0.01
	0.16 ± 0.01
	0.13 ± 0.00
	0.08 ± 0.00
	0.12 ± 0.00



	Letter
	0.35 ± 0.02
	0.38 ± 0.00
	0.39 ± 0.01
	na
	na



	Mushroom
	0.03 ± 0.00
	0.04 ± 0.00
	0.03 ± 0.00
	0.02 ± 0.00
	0.02 ± 0.00



	Poker-lsn
	0.05 ± 0.00
	0.59 ± 0.00
	na
	na
	na



	Segment
	0.16 ± 0.01
	0.22 ± 0.01
	0.19 ± 0.01
	0.14 ± 0.01
	0.18 ± 0.00



	Sick
	0.07 ± 0.00
	0.10 ± 0.01
	0.08 ± 0.00
	0.11 ± 0.01
	0.10 ± 0.00



	Splice
	0.26 ± 0.01
	0.11 ± 0.00
	0.25 ± 0.01
	na
	0.19 ± 0.00



	Waveform5000
	0.59 ± 0.02
	0.22 ± 0.01
	0.52 ± 0.00
	na
	0.26 ± 0.01
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Table 5. Samples properties.
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	Dataset
	Method
	Instances
	St. Dv. C.D.
	KL Div
	Sim1





	Adult
	Windowing
	14502.840 ± 574.266
	0.083 ± 0.004
	0.128 ± 0.004
	0.386 ± 0.012



	Adult
	Full-Dataset
	43957.800 ± 0.402
	0.369 ± 0.000
	0.000 ± 0.000
	0.935 ± 0.001



	Adult
	Random-sampling
	14502.840 ± 574.266
	0.374 ± 0.049
	0.005 ± 0.005
	0.418 ± 0.013



	Adult
	Stratified-sampling
	14502.840 ± 574.266
	0.369 ± 0.000
	0.000 ± 0.000
	0.418 ± 0.013



	Adult
	Balanced-sampling
	14502.840 ± 574.266
	0.000 ± 0.000
	0.206 ± 0.000
	0.400 ± 0.013



	Australian
	Windowing
	215.440 ± 14.363
	0.031 ± 0.020
	0.017 ± 0.008
	0.999 ± 0.006



	Australian
	Full-Dataset
	621.000 ± 0.000
	0.078 ± 0.001
	0.000 ± 0.000
	0.999 ± 0.005



	Australian
	Random-sampling
	215.440 ± 14.363
	0.080 ± 0.047
	0.004 ± 0.005
	0.986 ± 0.016



	Australian
	Stratified-sampling
	215.440 ± 14.363
	0.078 ± 0.004
	0.000 ± 0.000
	0.986 ± 0.016



	Australian
	Balanced-sampling
	215.440 ± 14.363
	0.001 ± 0.002
	0.009 ± 0.000
	0.987 ± 0.016



	Breast
	Windowing
	109.210 ± 14.732
	0.043 ± 0.030
	0.086 ± 0.031
	1.000 ± 0.000



	Breast
	Full-Dataset
	614.700 ± 0.461
	0.212 ± 0.000
	0.000 ± 0.000
	1.000 ± 0.000



	Breast
	Random-sampling
	109.210 ± 14.732
	0.224 ± 0.107
	0.019 ± 0.017
	1.000 ± 0.000



	Breast
	Stratified-sampling
	109.210 ± 14.732
	0.215 ± 0.007
	0.000 ± 0.000
	1.000 ± 0.000



	Breast
	Balanced-sampling
	109.210 ± 14.732
	0.003 ± 0.003
	0.066 ± 0.003
	1.000 ± 0.000



	Diabetes
	Windowing
	436.260 ± 27.768
	0.087 ± 0.022
	0.025 ± 0.009
	0.751 ± 0.028



	Diabetes
	Full-Dataset
	691.200 ± 0.402
	0.213 ± 0.001
	0.000 ± 0.000
	0.954 ± 0.004



	Diabetes
	Random-sampling
	436.260 ± 27.768
	0.214 ± 0.021
	0.001 ± 0.001
	0.763 ± 0.028



	Diabetes
	Stratified-sampling
	436.260 ± 27.768
	0.215 ± 0.002
	0.000 ± 0.000
	0.766 ± 0.028



	Diabetes
	Balanced-sampling
	436.260 ± 27.768
	0.001 ± 0.001
	0.067 ± 0.001
	0.770 ± 0.028



	Ecoli
	Windowing
	126.640 ± 8.579
	0.109 ± 0.005
	0.182 ± 0.055
	0.761 ± 0.026



	Ecoli
	Full-Dataset
	302.400 ± 0.492
	0.145 ± 0.000
	0.001 ± 0.001
	0.979 ± 0.006



	Ecoli
	Random-sampling
	126.640 ± 8.579
	0.147 ± 0.010
	0.007 ± 0.010
	0.763 ± 0.025



	Ecoli
	Stratified-sampling
	126.640 ± 8.579
	0.154 ± 0.004
	0.013 ± 0.003
	0.758 ± 0.027



	Ecoli
	Balanced-sampling
	126.640 ± 8.579
	0.099 ± 0.004
	0.113 ± 0.028
	0.781 ± 0.028



	German
	Windowing
	584.750 ± 25.308
	0.119 ± 0.012
	0.041 ± 0.006
	1.000 ± 0.000



	German
	Full-Dataset
	900.000 ± 0.000
	0.283 ± 0.000
	0.000 ± 0.000
	1.000 ± 0.000



	German
	Random-sampling
	584.750 ± 25.308
	0.284 ± 0.022
	0.001 ± 0.001
	1.000 ± 0.000



	German
	Stratified-sampling
	584.750 ± 25.308
	0.283 ± 0.001
	0.000 ± 0.000
	1.000 ± 0.000



	German
	Balanced-sampling
	584.750 ± 25.308
	0.055 ± 0.022
	0.079 ± 0.015
	1.000 ± 0.000



	Hypothyroid
	Windowing
	151.680 ± 9.619
	0.293 ± 0.017
	0.262 ± 0.047
	0.428 ± 0.017



	Hypothyroid
	Full-Dataset
	3394.800 ± 0.402
	0.449 ± 0.000
	0.000 ± 0.000
	0.979 ± 0.005



	Hypothyroid
	Random-sampling
	151.680 ± 9.619
	0.580 ± 0.149
	0.212 ± 0.103
	0.387 ± 0.020



	Hypothyroid
	Stratified-sampling
	151.680 ± 9.619
	0.516 ± 0.007
	0.000 ± 0.001
	0.387 ± 0.013



	Hypothyroid
	Balanced-sampling
	151.680 ± 9.619
	0.191 ± 0.004
	0.668 ± 0.023
	0.435 ± 0.016



	Kr-vs-kp
	Windowing
	242.550 ± 18.425
	0.050 ± 0.036
	0.010 ± 0.012
	0.998 ± 0.004



	Kr-vs-kp
	Full-Dataset
	2876.400 ± 0.492
	0.031 ± 0.000
	0.000 ± 0.000
	0.999 ± 0.004



	Kr-vs-kp
	Random-sampling
	242.550 ± 18.425
	0.221 ± 0.130
	0.106 ± 0.099
	0.975 ± 0.013



	Kr-vs-kp
	Stratified-sampling
	242.550 ± 18.425
	0.032 ± 0.003
	0.000 ± 0.000
	0.977 ± 0.009



	Kr-vs-kp
	Balanced-sampling
	242.550 ± 18.425
	0.001 ± 0.001
	0.001 ± 0.000
	0.977 ± 0.008



	Letter
	Windowing
	7390.450 ± 491.435
	0.008 ± 0.000
	0.037 ± 0.002
	0.989 ± 0.006



	Letter
	Full-Dataset
	18000.000 ± 0.000
	0.001 ± 0.000
	0.000 ± 0.000
	0.999 ± 0.002



	Letter
	Random-sampling
	7390.450 ± 491.435
	0.007 ± 0.001
	0.022 ± 0.009
	0.983 ± 0.008



	Letter
	Stratified-sampling
	7390.450 ± 491.435
	0.000 ± 0.000
	0.000 ± 0.000
	0.985 ± 0.007



	Letter
	Balanced-sampling
	7390.450 ± 491.435
	0.001 ± 0.000
	0.001 ± 0.000
	0.984 ± 0.006



	Mushroom
	Windowing
	219.490 ± 16.871
	0.043 ± 0.033
	0.004 ± 0.005
	0.968 ± 0.021



	Mushroom
	Full-Dataset
	7311.600 ± 0.492
	0.025 ± 0.000
	0.000 ± 0.000
	1.000 ± 0.000



	Mushroom
	Random-sampling
	219.490 ± 16.871
	0.504 ± 0.244
	2.083 ± 1.852
	0.833 ± 0.072



	Mushroom
	Stratified-sampling
	219.490 ± 16.871
	0.026 ± 0.004
	0.000 ± 0.000
	0.903 ± 0.032



	Mushroom
	Balanced-sampling
	219.490 ± 16.871
	0.002 ± 0.002
	0.001 ± 0.000
	0.902 ± 0.033



	Segment
	Windowing
	371.280 ± 27.458
	0.104 ± 0.008
	0.390 ± 0.076
	0.279 ± 0.015



	Segment
	Full-Dataset
	2079.000 ± 0.000
	0.000 ± 0.000
	0.000 ± 0.000
	0.938 ± 0.003



	Segment
	Random-sampling
	371.280 ± 27.458
	0.050 ± 0.007
	0.105 ± 0.144
	0.310 ± 0.019



	Segment
	Stratified-sampling
	371.280 ± 27.458
	0.002 ± 0.001
	0.000 ± 0.000
	0.315 ± 0.018



	Segment
	Balanced-sampling
	371.280 ± 27.458
	0.002 ± 0.001
	0.000 ± 0.000
	0.315 ± 0.018



	Sick
	Windowing
	264.600 ± 17.420
	0.305 ± 0.028
	0.233 ± 0.032
	0.565 ± 0.019



	Sick
	Full-Dataset
	3394.800 ± 0.402
	0.621 ± 0.000
	0.000 ± 0.000
	0.979 ± 0.005



	Sick
	Random-sampling
	264.600 ± 17.420
	0.623 ± 0.066
	0.015 ± 0.014
	0.483 ± 0.018



	Sick
	Stratified-sampling
	264.600 ± 17.420
	0.623 ± 0.002
	0.000 ± 0.000
	0.483 ± 0.014



	Sick
	Balanced-sampling
	264.600 ± 17.420
	0.002 ± 0.001
	0.665 ± 0.002
	0.495 ± 0.014



	Splice
	Windowing
	835.300 ± 29.689
	0.072 ± 0.011
	0.036 ± 0.009
	0.969 ± 0.043



	Splice
	Full-Dataset
	2871.000 ± 0.000
	0.169 ± 0.047
	0.000 ± 0.000
	0.987 ± 0.034



	Splice
	Random-sampling
	835.300 ± 29.689
	0.161 ± 0.000
	0.014 ± 0.013
	0.890 ± 0.060



	Splice
	Stratified-sampling
	835.300 ± 29.689
	0.161 ± 0.001
	0.000 ± 0.000
	0.862 ± 0.036



	Splice
	Balanced-sampling
	835.300 ± 29.689
	0.001 ± 0.001
	0.104 ± 0.001
	0.871 ± 0.046



	Waveform-5000
	Windowing
	3263.590 ± 330.000
	0.006 ± 0.004
	0.000 ± 0.000
	0.940 ± 0.018



	Waveform-5000
	Full-Dataset
	4500.000 ± 0.000
	0.004 ± 0.000
	0.000 ± 0.000
	0.983 ± 0.001



	Waveform-5000
	Random-sampling
	3263.590 ± 330.000
	0.018 ± 0.010
	0.002 ± 0.002
	0.932 ± 0.019



	Waveform-5000
	Stratified-sampling
	3263.590 ± 330.000
	0.004 ± 0.000
	0.000 ± 0.000
	0.932 ± 0.019



	Waveform-5000
	Balanced-sampling
	3263.590 ± 330.000
	0.000 ± 0.000
	0.000 ± 0.000
	0.932 ± 0.019
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	Dataset
	Method
	L(H)
	L(D|H)
	MDL





	Adult
	Windowing
	1361.599 ± 465.850
	2366.019 ± 59.709
	3727.618 ± 483.653



	Adult
	Full-Dataset
	2077.010 ± 282.565
	2374.002 ± 49.985
	4451.012 ± 270.561



	Adult
	Random-sampling
	1009.386 ± 276.429
	2420.278 ± 56.458
	3429.664 ± 264.703



	Adult
	Stratified-sampling
	1031.172 ± 181.155
	2410.870 ± 49.932
	3442.042 ± 186.437



	Adult
	Balanced-sampling
	1351.736 ± 265.668
	2423.024 ± 44.271
	3774.759 ± 274.906



	Australian
	Windowing
	77.299 ± 29.067
	41.284 ± 6.849
	118.582 ± 30.088



	Australian
	Full-Dataset
	66.820 ± 16.934
	41.044 ± 6.711
	107.864 ± 17.430



	Australian
	Random-sampling
	45.151 ± 18.592
	41.820 ± 6.916
	86.971 ± 19.120



	Australian
	Stratified-sampling
	50.313 ± 22.016
	41.836 ± 6.776
	92.149 ± 21.220



	Australian
	Balanced-sampling
	44.603 ± 22.878
	42.327 ± 6.764
	86.929 ± 22.830



	Breast
	Windowing
	46.541 ± 13.199
	25.904 ± 4.584
	72.445 ± 12.435



	Breast
	Full-Dataset
	58.757 ± 7.942
	25.338 ± 5.280
	84.095 ± 8.195



	Breast
	Random-sampling
	22.301 ± 6.555
	29.008 ± 7.229
	51.309 ± 7.316



	Breast
	Stratified-sampling
	23.991 ± 6.915
	28.631 ± 6.720
	52.622 ± 8.350



	Breast
	Balanced-sampling
	22.767 ± 7.801
	28.191 ± 5.710
	50.959 ± 8.137



	Diabetes
	Windowing
	59.000 ± 37.207
	65.437 ± 5.227
	124.437 ± 37.477



	Diabetes
	Full-Dataset
	126.620 ± 46.019
	64.383 ± 5.161
	191.003 ± 45.988



	Diabetes
	Random-sampling
	95.960 ± 38.989
	65.674 ± 4.884
	161.634 ± 39.119



	Diabetes
	Stratified-sampling
	94.940 ± 39.261
	64.354 ± 5.965
	159.294 ± 39.505



	Diabetes
	Balanced-sampling
	104.840 ± 36.621
	65.263 ± 5.003
	170.103 ± 36.829



	Ecoli
	Windowing
	99.328 ± 23.152
	29.959 ± 7.767
	129.287 ± 23.257



	Ecoli
	Full-Dataset
	144.454 ± 19.804
	27.648 ± 6.460
	172.102 ± 18.623



	Ecoli
	Random-sampling
	69.348 ± 16.853
	33.969 ± 9.853
	103.317 ± 15.614



	Ecoli
	Stratified-sampling
	65.678 ± 16.214
	34.174 ± 10.710
	99.852 ± 16.457



	Ecoli
	Balanced-sampling
	83.869 ± 20.904
	30.357 ± 7.087
	114.226 ± 20.376



	German
	Windowing
	315.252 ± 60.182
	82.866 ± 5.220
	398.118 ± 60.077



	German
	Full-Dataset
	287.566 ± 54.049
	83.857 ± 5.339
	371.423 ± 53.413



	German
	Random-sampling
	211.627 ± 51.692
	83.245 ± 5.156
	294.871 ± 51.783



	German
	Stratified-sampling
	212.684 ± 54.545
	83.006 ± 5.125
	295.689 ± 53.830



	German
	Balanced-sampling
	238.184 ± 51.813
	84.412 ± 5.352
	322.596 ± 51.356



	Hypothyroid
	Windowing
	84.812 ± 19.108
	28.291 ± 6.449
	113.102 ± 20.727



	Hypothyroid
	Full-Dataset
	122.317 ± 10.791
	27.105 ± 6.877
	149.422 ± 10.562



	Hypothyroid
	Random-sampling
	15.667 ± 15.278
	189.232 ± 110.454
	204.899 ± 96.402



	Hypothyroid
	Stratified-sampling
	30.645 ± 6.465
	67.493 ± 22.683
	98.138 ± 22.336



	Hypothyroid
	Balanced-sampling
	45.353 ± 10.448
	61.502 ± 18.798
	106.854 ± 18.199



	Kr-vs-kp
	Windowing
	198.034 ± 14.570
	69.919 ± 4.871
	267.953 ± 14.944



	Kr-vs-kp
	Full-Dataset
	219.807 ± 16.870
	69.345 ± 4.277
	289.152 ± 17.014



	Kr-vs-kp
	Random-sampling
	64.438 ± 18.816
	98.961 ± 21.032
	163.399 ± 21.636



	Kr-vs-kp
	Stratified-sampling
	72.664 ± 18.341
	92.724 ± 15.119
	165.388 ± 15.947



	Kr-vs-kp
	Balanced-sampling
	73.848 ± 18.721
	91.842 ± 14.262
	165.690 ± 15.840



	Letter
	Windowing
	11862.644 ± 473.112
	1248.697 ± 64.017
	13111.341 ± 453.031



	Letter
	Full-Dataset
	12431.372 ± 180.896
	1165.793 ± 38.869
	13597.165 ± 182.617



	Letter
	Random-sampling
	7020.909 ± 385.222
	1473.635 ± 81.356
	8494.544 ± 358.576



	Letter
	Stratified-sampling
	7102.767 ± 358.000
	1461.702 ± 80.161
	8564.469 ± 328.131



	Letter
	Balanced-sampling
	7126.843 ± 381.507
	1449.106 ± 76.567
	8575.949 ± 354.232



	Mushroom
	Windowing
	79.249 ± 7.033
	76.881 ± 4.163
	156.130 ± 7.189



	Mushroom
	Full-Dataset
	77.237 ± 0.600
	79.510 ± 1.744
	156.747 ± 1.810



	Mushroom
	Random-sampling
	18.228 ± 19.552
	461.838 ± 353.124
	480.066 ± 337.153



	Mushroom
	Stratified-sampling
	31.126 ± 14.101
	114.606 ± 23.525
	145.732 ± 20.201



	Mushroom
	Balanced-sampling
	31.879 ± 15.063
	113.501 ± 22.427
	145.380 ± 17.422



	Segment
	Windowing
	348.723 ± 34.369
	81.656 ± 10.719
	430.379 ± 33.528



	Segment
	Full-Dataset
	365.928 ± 22.569
	79.045 ± 9.609
	444.973 ± 22.295



	Segment
	Random-sampling
	142.987 ± 22.538
	135.754 ± 31.843
	278.741 ± 31.578



	Segment
	Stratified-sampling
	142.715 ± 18.438
	126.640 ± 24.516
	269.356 ± 26.762



	Segment
	Balanced-sampling
	141.267 ± 17.852
	127.325 ± 23.254
	268.591 ± 26.010



	Sick
	Windowing
	170.530 ± 26.600
	50.476 ± 8.212
	221.005 ± 26.977



	Sick
	Full-Dataset
	182.701 ± 22.491
	42.346 ± 7.910
	225.047 ± 20.038



	Sick
	Random-sampling
	21.786 ± 16.605
	80.715 ± 38.277
	102.501 ± 24.810



	Sick
	Stratified-sampling
	31.126 ± 6.768
	55.199 ± 13.736
	86.325 ± 15.387



	Sick
	Balanced-sampling
	57.996 ± 17.446
	60.045 ± 9.531
	118.040 ± 18.444



	Splice
	Windowing
	725.951 ± 53.364
	181.187 ± 11.871
	907.139 ± 53.195



	Splice
	Full-Dataset
	745.146 ± 51.142
	179.689 ± 11.014
	924.834 ± 52.532



	Splice
	Random-sampling
	425.144 ± 52.153
	187.097 ± 21.631
	612.240 ± 47.209



	Splice
	Stratified-sampling
	443.339 ± 51.337
	188.061 ± 19.286
	631.400 ± 48.312



	Splice
	Balanced-sampling
	419.763 ± 41.676
	188.473 ± 20.593
	608.236 ± 40.687



	Waveform-5000
	Windowing
	2418.668 ± 215.760
	363.799 ± 56.499
	2782.467 ± 224.433



	Waveform-5000
	Full-Dataset
	2615.956 ± 94.305
	415.810 ± 20.601
	3031.766 ± 92.381



	Waveform-5000
	Random-sampling
	1957.647 ± 203.398
	413.447 ± 24.548
	2371.094 ± 202.636



	Waveform-5000
	Stratified-sampling
	1957.202 ± 199.174
	417.104 ± 26.348
	2374.306 ± 196.151



	Waveform-5000
	Balanced-sampling
	1966.554 ± 193.650
	417.152 ± 28.133
	2383.706 ± 190.987
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	Dataset
	Method
	Test Acc
	Test AUC





	Adult
	Windowing
	86.355 ± 0.889
	78.227 ± 1.161



	Adult
	Full-Dataset
	86.074 ± 0.390
	77.080 ± 0.823



	Adult
	Random-sampling
	85.516 ± 0.423
	76.131 ± 2.021



	Adult
	Stratified-sampling
	85.677 ± 0.401
	76.680 ± 0.885



	Adult
	Balanced-sampling
	80.489 ± 0.722
	81.956 ± 0.580



	Australian
	Windowing
	85.710 ± 4.355
	85.471 ± 4.411



	Australian
	Full-Dataset
	86.536 ± 3.969
	86.239 ± 4.041



	Australian
	Random-sampling
	85.101 ± 4.375
	84.849 ± 4.517



	Australian
	Stratified-sampling
	85.391 ± 4.164
	85.142 ± 4.266



	Australian
	Balanced-sampling
	85.536 ± 3.925
	85.584 ± 3.854



	Breast
	Windowing
	94.829 ± 2.804
	94.368 ± 3.117



	Breast
	Full-Dataset
	95.533 ± 2.674
	95.058 ± 2.830



	Breast
	Random-sampling
	92.696 ± 3.821
	91.687 ± 4.739



	Breast
	Stratified-sampling
	92.783 ± 3.485
	91.956 ± 3.982



	Breast
	Balanced-sampling
	92.433 ± 3.558
	92.301 ± 3.627



	Diabetes
	Windowing
	74.161 ± 4.864
	70.041 ± 5.654



	Diabetes
	Full-Dataset
	74.756 ± 4.661
	71.211 ± 5.027



	Diabetes
	Random-sampling
	72.280 ± 4.520
	68.602 ± 5.403



	Diabetes
	Stratified-sampling
	73.222 ± 5.113
	70.254 ± 5.721



	Diabetes
	Balanced-sampling
	71.018 ± 5.222
	71.726 ± 4.937



	Ecoli
	Windowing
	82.777 ± 6.353
	88.848 ± 4.134



	Ecoli
	Full-Dataset
	82.822 ± 5.467
	88.873 ± 3.567



	Ecoli
	Random-sampling
	80.059 ± 6.268
	86.924 ± 4.218



	Ecoli
	Stratified-sampling
	79.586 ± 6.227
	86.721 ± 4.113



	Ecoli
	Balanced-sampling
	79.405 ± 6.360
	86.981 ± 4.034



	German
	Windowing
	71.660 ± 4.608
	63.119 ± 5.518



	German
	Full-Dataset
	71.300 ± 3.765
	62.605 ± 4.388



	German
	Random-sampling
	71.800 ± 3.782
	62.867 ± 4.408



	German
	Stratified-sampling
	71.640 ± 3.799
	62.857 ± 4.546



	German
	Balanced-sampling
	67.820 ± 4.448
	66.833 ± 4.014



	Hypothyroid
	Windowing
	99.483 ± 0.346
	98.880 ± 1.204



	Hypothyroid
	Full-Dataset
	99.528 ± 0.353
	98.871 ± 1.259



	Hypothyroid
	Random-sampling
	94.340 ± 2.524
	70.634 ± 23.378



	Hypothyroid
	Stratified-sampling
	96.877 ± 1.652
	94.594 ± 4.769



	Hypothyroid
	Balanced-sampling
	96.236 ± 1.831
	97.598 ± 1.421



	Kr-vs-kp
	Windowing
	99.302 ± 0.583
	99.294 ± 0.594



	Kr-vs-kp
	Full-Dataset
	99.415 ± 0.433
	99.412 ± 0.433



	Kr-vs-kp
	Random-sampling
	94.171 ± 2.959
	94.139 ± 3.061



	Kr-vs-kp
	Stratified-sampling
	94.956 ± 1.766
	94.956 ± 1.802



	Kr-vs-kp
	Balanced-sampling
	94.984 ± 1.727
	94.996 ± 1.756



	Letter
	Windowing
	87.161 ± 2.074
	93.324 ± 1.078



	Letter
	Full-Dataset
	87.943 ± 0.720
	93.731 ± 0.375



	Letter
	Random-sampling
	82.216 ± 1.006
	90.753 ± 0.523



	Letter
	Stratified-sampling
	82.376 ± 1.148
	90.836 ± 0.597



	Letter
	Balanced-sampling
	82.430 ± 1.160
	90.864 ± 0.603



	Mushroom
	Windowing
	100.000 ± 0.000
	100.000 ± 0.000



	Mushroom
	Full-Dataset
	100.000 ± 0.000
	100.000 ± 0.000



	Mushroom
	Random-sampling
	73.746 ± 23.610
	73.625 ± 23.684



	Mushroom
	Stratified-sampling
	98.367 ± 0.813
	98.312 ± 0.831



	Mushroom
	Balanced-sampling
	98.424 ± 0.819
	98.376 ± 0.831



	Segment
	Windowing
	96.329 ± 1.655
	97.859 ± 0.965



	Segment
	Full-Dataset
	96.710 ± 1.335
	98.081 ± 0.779



	Segment
	Random-sampling
	90.719 ± 3.181
	94.586 ± 1.855



	Segment
	Stratified-sampling
	91.515 ± 2.074
	95.051 ± 1.210



	Segment
	Balanced-sampling
	91.455 ± 1.984
	95.015 ± 1.157



	Sick
	Windowing
	98.688 ± 0.640
	93.667 ± 3.370



	Sick
	Full-Dataset
	98.741 ± 0.523
	93.662 ± 3.323



	Sick
	Random-sampling
	96.193 ± 1.887
	75.662 ± 19.843



	Sick
	Stratified-sampling
	97.301 ± 1.051
	86.908 ± 6.166



	Sick
	Balanced-sampling
	94.785 ± 1.855
	94.812 ± 2.641



	Splice
	Windowing
	94.132 ± 1.682
	95.626 ± 1.344



	Splice
	Full-Dataset
	94.216 ± 1.474
	95.723 ± 1.125



	Splice
	Random-sampling
	89.997 ± 2.226
	92.370 ± 1.951



	Splice
	Stratified-sampling
	90.339 ± 1.973
	92.757 ± 1.572



	Splice
	Balanced-sampling
	89.846 ± 2.199
	92.902 ± 1.570



	Waveform-5000
	Windowing
	83.802 ± 9.864
	87.848 ± 7.402



	Waveform-5000
	Full-Dataset
	75.202 ± 1.989
	81.396 ± 1.493



	Waveform-5000
	Random-sampling
	75.046 ± 2.159
	81.279 ± 1.619



	Waveform-5000
	Stratified-sampling
	75.252 ± 1.981
	81.431 ± 1.487



	Waveform-5000
	Balanced-sampling
	75.514 ± 2.143
	81.628 ± 1.609
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