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Abstract: We propose a unified approach for different exponential perturbation techniques used in
the treatment of time-dependent quantum mechanical problems, namely the Magnus expansion,
the Floquet–Magnus expansion for periodic systems, the quantum averaging technique, and the
Lie–Deprit perturbative algorithms. Even the standard perturbation theory fits in this framework.
The approach is based on carrying out an appropriate change of coordinates (or picture) in each case,
and it can be formulated for any time-dependent linear system of ordinary differential equations.
All of the procedures (except the standard perturbation theory) lead to approximate solutions
preserving by construction unitarity when applied to the time-dependent Schrödinger equation.
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1. Introduction

Linear differential equations of the form

dU
dt

= A(t)U, U(0) = I (1)

are ubiquitous in many branches of physics, chemistry and mathematics. Here, U is a real or complex
d× d matrix, and A(t) is a sufficiently smooth matrix to ensure the existence of solutions. Perhaps the
most important example corresponds to the Schrödinger equation for the evolution operator in quantum
systems with a time-dependent Hamiltonian H(t), in which case A(t) = −iH(t)/h̄. Particular cases include
spin dynamics in magnetic resonance (Nuclear Magnetic Resonance—NMR, Electronic Paramagnetic
Resonance—EPR, Dynamic Nuclear Polarization—DNP, etc.) [1–3], electron-atom collisions in atomic
physics, pressure broadening of rotational spectra in molecular physics, control of chemical reactions
with driving induced by laser beams, etc. When the time-dependence of the Hamiltonian is periodic,
as occurs, for instance, in periodically driven quantum systems, atomic quantum gases in periodically
driven optical lattices, etc. [4,5], the Floquet theorem [6] relates H(t) with a constant Hamiltonian.
More specifically, it implies that the evolution operator is factorized as U(t) = P(t) exp(tF), with P(t) a
periodic time-dependent matrix and F a constant matrix. This theorem has been widely used in problems
of solid state physics, in NMR, in the quantum simulation of systems with time-independent Hamiltonians
by periodically driven quantum systems, etc. [7]. The Average Hamiltonian Theory is also closely related
with this result, and the effective Hamiltonian is an important tool in the description of the system [8,9].

In general, Equation (1) cannot be solved in closed form, and so different approaches have been
proposed along the years to obtain approximations, both analytic and numerical. Among the former,
we can mention the standard perturbation theory, the average Hamiltonian theory, and the Magnus
expansion [5,8,10]. Concerning the second approach, different numerical algorithms have been applied
to obtain solutions on specific time intervals [11–13].
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In this work, we will concentrate on different techniques providing analytic approximations to the
solution of (1) that also share some of its most salient qualitative features. In particular, if (1) represents
the Schrödinger equation, it is well known that U(t) is unitary for all t, and this guarantees that its
elements represent probabilities of transition between the different states of the system. However,
it happens that not every approximate scheme (either analytic or numerical) renders unitary matrices
and, thus, the physical description they provide is unreliable, especially for large integration times.

The Magnus expansion [14] presents the remarkable feature that it allows one to express the solution
as the exponential of a series, U(t) = exp(Ω(t)), so that, even when the series Ω(t) = ∑n≥1 Ωn(t) is
truncated, the corresponding approximation is still unitary when applied to the Schrödinger equation.
More generally, if (1) is defined in a Lie group G, then it provides an approximate solution also belonging to
G. Moreover, it has also been used to construct efficient numerical integration algorithms also preserving
this feature [12,15].

When A(t) periodically depends on time with period T, the Magnus expansion does not explicitly
provide the structure of the solution ensured by the Floquet theorem, i.e., U(t) = P(t)etF. with P(t)
periodic and F a constant matrix. Nevertheless, it can be conveniently generalized to cover also this
situation, in such a way that the matrix P(t) is expressed as the exponential of a series of periodic
terms. The resulting approach (the so-called Floquet–Magnus expansion [10]) has been used during
the last years in a variety of physical problems [4,5,7,16].

Very often, the coefficient matrix in (1) is of the form A(t) = A0 + εA1(t), where A0 is constant,
A1(t + T) = A1(t), and ε > 0 is a (small) parameter. In other words, one is dealing with a
time-dependent perturbation of a solvable problem defined by A0. In that case, several perturbative
procedures exist to construct U(t) as a power series in ε, either directly (by applying standard
perturbation techniques in the interaction picture defined by A0) or taking into account the structure
ensured by the Floquet theorem and constructing both matrices P(t) and F as power series [9]. Of course,
if P(t) = exp(Λ(t)) and Λ(t) is also constructed as a power series in ε, then the qualitative properties of
the solution are inherited by the approximations (in particular, they are unitary in quantum evolution
problems) [17].

An alternative manner of viewing the Floquet theorem is to interpret the matrix P(t), provided
that it is invertible, as a time-periodic transformation to a new set of coordinates where the new
evolution equation has a constant coefficient matrix F, so that exp(tF) is the exact solution in the
new coordinates. In the language of Quantum Mechanics, this corresponds to a change of picture.
This interpretation leads to the important mathematical notion of a reducible system: according to
Lyapunov, the general system (1) is called reducible if there exists a matrix P(t) which together with
det(P−1(t)) is bounded on 0 ≤ t < +∞, such that the system obtained from (1) by applying the linear
transformation defined by P(t) has constant coefficients [18]. In this sense, if A(t) is a periodic matrix,
then (1) is reducible by means of a periodic matrix. The situation is not so clear; however, when A(t) is
quasi-periodic or almost periodic: although several general results exist ensuring reducibility [19–21],
there are also examples of irreducible systems [22].

In this work, we pursue and generalize this interpretation to show that all of the above mentioned
exponential perturbative treatments can be considered as particular instances of a generic change
of variables applied to the original differential equation. The idea of making a coordinate change to
analyze a problem arises of course in many application settings, ranging from canonical (or symplectic)
transformations in classical mechanics (based either on generating functions expressed in terms of
mixed, old and new, variables [23], or on the Lie-algebraic setting [24,25]) to changes of picture and
unitary transformations in quantum mechanics. What we intend here is to show that several widely
used perturbative expansions in quantum mechanics can be indeed derived from the same basic
principle using different variations of a unique ansatz based on a generic linear transformations of
coordinates. We believe that this interpretation sheds new light into the different expansions and,
moreover, allows one to elaborate a unique procedure for analyzing a given problem and compare in
an easy way how they behave in practice.



Math. Comput. Appl. 2020, 25, 50 3 of 20

It is important to remark that all the procedures considered here (with the exception of course of
the standard perturbation theory) preserve by construction the unitarity of the solution when (1) refers
to the Schrödinger equation. More generally, the approximations obtained evolve in the same matrix
Lie group as the exact solution of the differential Equation (1).

2. Coordinate Transformations and Linear Systems

To begin with, let us consider the most general situation of a linear differential equation

ẋ ≡ dx
dt

= A(t)x, x(0) = x0 ∈ Cd, (2)

with A(t) a d× d matrix whose entries are integrable functions of t. Notice that U(t) in (1) can be
considered the fundamental matrix of (2). We analyze a change of variables x 7−→ X transforming the
original system (2) into

dX
dt

= F(t)X, X(0) = X0, (3)

where the matrix F adopts some desirable form. Because we are interested in preserving qualitative
properties of (2), we impose an additional requirement for the transformation, namely, it has to be of
the form

x(t) = exp(Ω(t))X(t), with Ω(0) = 0, (4)

so that x(0) = X(0). Thus, in particular, if (2) is the Schrödinger equation with Hamiltonian H(t) = ih̄A(t),
Ω(t) is skew-Hermitian.

It is clear that the transformation (4) is completely determined once the generator Ω(t) is obtained.
An evolution equation for Ω is obtained by introducing (4) in (2) and also taking into account (3) as

d
dt

exp(Ω) = A(t) exp(Ω)− exp(Ω)F(t). (5)

The derivative of a matrix exponential can be written as [26]

d
dt

exp(Ω(t)) = d expΩ(t)(Ω̇(t)) exp(Ω), (6)

where the symbol d expΩ(C) stands for the (everywhere convergent) power series

d expΩ(C) =
∞

∑
k=0

1
(k + 1)!

adk
Ω(C) ≡ exp(adΩ)− I

adΩ
(C). (7)

Here ad0
ΩC = C, adk

ΩC = [Ω, adk−1
Ω C], and [Ω, C] denotes the usual commutator. By inserting (6)

into (5), one gets
d expΩ(Ω̇) = A− exp(Ω)F exp(−Ω) = A− exp(adΩ)F, (8)

where
exp(adΩ)F = ∑

n≥0

1
n!

adn
ΩF = eΩF e−Ω.

If we invert the d expΩ operator given by (7), we get from (8) the formal identity

Ω̇ =
x

ex − 1
(A− exF), with x ≡ adΩ.

Now, taking into account that
x ex

ex − 1
=

x
ex − 1

+ x,
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it is clear that
Ω̇ =

x
ex − 1

(A− F)− xF. (9)

A more convenient way of expressing this identity is obtained by recalling that

d exp−1
Ω (C) =

adΩ

exp(adΩ)− I
(C) =

∞

∑
k=0

Bk
k!

adk
Ω(C),

where Bk are the Bernoulli numbers, so that (9) reads

Ω̇ =
∞

∑
k=0

Bk
k!

adk
Ω(A− F) − adΩF. (10)

With more generality, we can assume that both A(t) and F(t) are power series of some appropriate
parameter ε,

A(t) = A0(t) + ∑
n≥1

εn An(t), F(t) = F0(t) + ∑
n≥1

εnFn(t), (11)

and, thus, the generator Ω will be also a power series,

Ω(t) = ∑
n≥1

εnΩn(t), Ωn(0) = 0. (12)

The successive Ωn(t) can be determined by inserting (11) and (12) into Equation (10) and equating
terms of the same power in ε. Thus, one obtains the following recursive procedure:

n = 0 : F0 = A0

n = 1 : Ω̇1 + [Ω1, A0] = W(0)
1

n ≥ 2 : Ω̇n + [Ωn, A0] = W(0)
n + Gn −Vn,

(13)

where
W(0)

n = An − Fn, n ≥ 1

W(k)
n =

n−k

∑
m=1

[Ωm, W(k−1)
n−m ], n ≥ 1, 1 ≤ k ≤ n− 1

Gn =
n−1

∑
k=1

Bk
k!

W(k)
n , Vn =

n−1

∑
k=1

[Ωk, Fn−k], n ≥ 2.

(14)

Of course, although the change of variables x 7−→ X is completely general, it is only worth to
be considered if Equation (3) is simpler to solve than (2). In the following we analyze several ways
of choosing F fulfilling this basic requirement, and how, in this way, we are able to recover different
exponential perturbative expansions.

3. Magnus Expansion

The simplest choice one can imagine of is taking F = 0 or, in other words, one is looking for a
linear transformation rendering the original system (2) into

dX
dt

= 0, (15)

with trivial solution X(t) = X(0) = x0. A sufficient condition for the reducibility of Equation (2) to
(15) is [18] ∫ +∞

0
‖A(t)‖F dt < +∞,
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where ‖A(t)‖F =
√

∑d
i,j=1 |aij|2. If this is the case, from (4),

x(t) = exp(Ω(t))X(t) = exp(Ω(t))x0,

where Ω(t) is determined from (10) with F = 0, i.e.,

Ω̇ =
∞

∑
k=0

Bk
k!

adk
Ω A. (16)

This, of course, corresponds to the well known Magnus expansion for the solution x(t) of (2) [14,26].
The terms Ωn(t) are then determined by the recursion (14) by taking Fn = 0. If we take A0 = 0 and
A1(t) = A(t) in (11), then we get the familiar recursive procedure [26]

W(0)
1 = A, W(0)

n = 0, n ≥ 2

W(k)
n =

n−k

∑
m=1

[Ωm, W(k−1)
n−m ], n ≥ 1, 1 ≤ k ≤ n− 1

Gn =
n−1

∑
k=1

Bk
k!

W(k)
n , n ≥ 2

Ω̇1 = A1, Ω̇n = Gn, n ≥ 2,

(17)

whence the successive terms Ωn are obtained by integration. An explicit expression for Ωn(t) involving
only independent nested commutators can be obtained by working out this recurrence and using
the class of bases proposed by Dragt and Forest [27] for the Lie algebra generated by the operators
A1(t1), . . . A1(tn). Specifically, one has [28]

Ωn(t) =
1
n ∑

σ∈Sn−1

(−1)dσ
1

(n−1
dσ

)

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

[A(tσ(1)), [A(tσ(2)) · · · [A(tσ(n−1)), A(tn)] · · · ]],
(18)

where σ is a permutation of {1, 2, . . . , n− 1} and dσ corresponds to the number descents of σ. We recall
that σ has a descent in i if σ(i) > σ(i + 1), i = 1, . . . , n− 2. Notice that the argument in the last term is
fixed to tn, and one considers all of the permutations in A(t1), A(t2), . . . , A(tn−1). Moreover, the series
(12) converges in this case in the interval t ∈ [0, tf], such that

∫ tf

0
‖A(s)‖2 ds < π (19)

and the sum Ω(t) satisfies exp(Ω(t)) = U(t) [26]. Here, ‖ · ‖2 denotes the spectral norm, characterized
as ‖A‖2 = max{

√
λ : λ is an eigenvalue of A† A}.

The Magnus expansion has a long history as a tool to approximate solutions in a wide spectrum of
fields in Physics and Chemistry, from atomic and molecular physics to Nuclear Magnetic Resonance to
Quantum Electrodynamics (see [26] and references therein). Additionally, in computational mathematics,
it has been used to construct efficient algorithms for the numerical integration of differential equations
within the widest field of geometric numerical integration [12,13,15]. Recently, it has also been used in
the treatment of dissipative driven two-level systems [29].

4. Floquet–Magnus Expansion

The Magnus expansion can be, in principle applied for any particular time dependence in A(t),
as long as the integrals in Ωn(t) can be computed or conveniently approximated. When A(t) in (2) is
periodic in t with period T; however, other changes of variables may be more suitable. According to
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Floquet’s theorem, the original system is reducible to a system with a constant coefficient matrix F,
whose eigenvalues (the so-called characteristic exponents) determine the asymptotic stability of the
solution x(t). In addition, the linear transformation is periodic with the same period T [6].

In our general framework, then, it makes sense to determine a change of variables x = exp(Ω(t))X(t)
in such a way that F in (3) is constant, so that X(t) = exp(tF)x0 and Ω(t) is periodic. Proceeding as
before, if we take A0 = 0 and A1(t) = A(t) in (11), the procedure (13)–(14) simplifies to

W(0)
1 = A− F1, W(0)

n = −Fn, n ≥ 2

W(k)
n =

n−k

∑
m=1

[Ωm, W(k−1)
n−m ], n ≥ 1, 1 ≤ k ≤ n− 1

Gn =
n−1

∑
k=1

Bk
k!

W(k)
n , Vn =

n−1

∑
k=1

[Ωk, Fn−k], n ≥ 2

(20)

and
n = 1 : Ω̇1 = A− F1

n ≥ 2 : Ω̇n = −Fn + Gn −Vn≡ Fn − Fn
(21)

Notice that, in general,Fn = Gn−Vn depends on the previously computed Ωk, Fk, k = 1, . . . , n− 1,
so that equations (21) can be solved recursively, as follows. First, we determine F1 and Fn by taking the
average of A and Fn, respectively, over one period T,

F1 =
1
T

∫ T

0
A(s) ds, Fn = 〈Fn〉 ≡

1
T

∫ T

0
(Gn(s)−Vn(s)) ds,

and then compute the integrals

Ω1(t) =
∫ t

0
A(s) ds− tF1, Ωn(t) =

∫ t

0
(Gn(s)−Vn(s)) ds− tFn,

respectively, thus ensuring that Ωn is periodic with the same period T. This results in the well known
Floquet–Magnus expansion for the solution of (2),

x(t) = exp(Ω(t)) exp(tF)x0,

originally introduced in [10] and subsequently applied in different areas [4,5,7,16]. In the context of
periodic quantum mechanical problems, Hef ≡ ih̄F is called the effective Hamiltonian of the problem.
This expansion presents the great advantage that, in addition to preserving unitarity as the Magnus
expansion, also allows one to determine the stability of the system by analyzing the eigenvalues of F.

As shown in [10], the resulting series for Ω(t) is absolutely convergent at least for t ∈ [0, tf],
such that ∫ tf

0
‖A(s)‖2 ds < 0.20925...

The procedure can be easily generalized to quasi-periodic problems [30]. We recall that A(t) is
quasi-periodic in t with frequencies (ω1, . . . , ωr) if A(t) = Ã(θ1, . . . , θr), where Ã is 2π-periodic with
respect to θ1, . . . , θr and θj = ωjt for j = 1, . . . , r. In that case, we can write

A(t) = ∑
k∈Zr

akei(k,ω)t

where (k, ω) ≡ k1ω1 + · · ·+ krωr and ∑ |ak|2 < ∞ [31].
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In this case, Fn is also quasi-periodic (by induction) and we take

Fn = 〈Fn〉 ≡ lim
T→∞

1
T

∫ a+T

a
Fn(s)ds,

the limiting mean value of Fn(t), independent of the particular value of a. In consequence,

Ω̇n = −Fn +Fn(t) = ∑
k∈Zr\{0}

f j,k ei(k,ω)t

and

Ωn(t) =
∫ t

0
Fn(s)ds − tFn

is also quasi-periodic with the same basic frequencies as Fn.

5. Perturbed Problems

There are many problems that can be formulated as (2) with A(t), depending on a perturbation
parameter ε,

A(t) = A0 + ∑
n≥1

εn An(t),

so that A0 is a constant matrix and An(t) are periodic or quasi-periodic functions of t. Here, again the
issue of reducibility has received much attention along the years, and the problem consists in determining
both the linear transformation P(t) and the constant matrix F. In this section, we consider several possible
ways to proceed, depending on the final matrix F one is aiming for.

5.1. Removing the Perturbation

One obvious approach is to take F = A0. In other words, we try to construct a transformation
rendering the original system into another one in which the perturbation is removed [17]. Therefore,
the transformation fulfilling this requirement is

x(t) = exp(Ω(t, ε)) exp(tA0)x0, Ω(t, ε) = ∑
n≥1

εn Ωn(t), (22)

where we have written explicitly the dependence on ε, the parameter of the perturbation. The recurrence
for determining the generators Ωn is obtained from (13)–(14) as

W(0)
n = An, n ≥ 1

W(k)
n =

n−k

∑
m=1

[Ωm, W(k−1)
n−m ], n ≥ 1, 1 ≤ k ≤ n− 1

G1 = 0, Gn =
n−1

∑
k=1

Bk
k!

W(k)
n , n ≥ 2

Ω̇n + [Ωn, A0] = An + Gn, n ≥ 1.

(23)

Alternatively, we can write
Ω̇n = adA0 Ωn + An + Gn (24)

with solution verifying Ωj(0) = 0 given by

Ωn(t) = et adA0

∫ t

0
e−s adA0

(
An(s) + Gn(s)

)
ds.
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As a matter of fact, this scheme can be related with the usual perturbation treatment of Equation (2).
To keep the formalism simple, let us assume that A(t) in (11) is A(t) = A0 + εA1(t) and work directly
with the power series of the transformation,

P(t, ε) = exp(Ω(t, ε)) = ∑
n≥0

εnPn(t), with P0 = I.

Subsequently, by inserting x(t) = P(t, ε) etA0 x0 into Equation (2), one determines the differential
equation satisfied by P as

Ṗ + PA0 = AP,

whence the successive terms Pn(t) verify

Ṗn + [Pn, A0] = A1Pn−1, Pn(0) = 0, n ≥ 1.

The solution, as with Equation (24), is given by

Pn(t) = etA0 gn(t) e−tA0 ,

with

gn(t) =
∫ t

0
ds e−sA0 A1(s)Pn−1(s)esA0 =

∫ t

0
ds e−sA0 A1(s)esA0 gn−1(s)

=
∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn AI(s1)AI(s2) . . . AI(sn).

(25)

Here, g0 ≡ I and we have denoted AI(s) ≡ e−sA0 A1(s) esA0 . Therefore, the solution of (2) reads

x(t) = P(t, ε) etA0 x0 =

(
I + ∑

n≥1
εnPn(t)

)
etA0 x0 =

(
etA0 + ∑

n≥1
εnetA0 gn(t)

)
x0

= etA0

(
I + ∑

n≥1
εngn(t)

)
x0

and so, taking into account the explicit expression (25) for gn(t), one recovers the solution provided by
the standard perturbation theory in the picture defined by A0.

5.2. Lie–Deprit Perturbative Algorithm

The previous treatment has one important drawback (in addition to the lack of preservation
of unitarity when one deals with the Schrödinger equation and the expansion is truncted), namely,
when A(t) is a periodic or quasi-periodic function of time, the secular terms are not removed and,
as a result, the time interval of validity of the resulting approximations is very small indeed. For this
reason it is worth considering in the general framework (13) and (14) the quasi-periodic case and look
for a quasi-periodic transformation leading to a constant coefficient matrix

F(ε) = F0 + ∑
n≥1

εnFn, with F0 = A0. (26)

This problem has been addressed a number of times in the literature (see, e.g., [21,32] and
references therein). In particular, in [33] a perturbative algorithm is presented for constructing this
transformation as the exponential of a quasi-periodic matrix. Here, we show how the results of [17,33]
can be reproduced by the generic scheme proposed here in a more direct way, in the sense that the
terms Ωj are determined at once from (13)–(14).

It is clear that the problem reduces to solve

Ω̇n + [Ωn, A0] = Fn − Fn, Ωn(0) = 0
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where now
F1 ≡ A1, Fn ≡ An + Gn −Vn, n ≥ 2,

and the goal is to determine the constant term Fn and construct Ωn(t) as a quasi-periodic function
with the same basic frequencies as An for n ≥ 1.

As shown in Appendix A, the solution verifying all of these requirements is given by

Fn = 〈Fn(t)〉 − [A0, Mn(0)], Ωn(t) = −Mn(0) + et adA0 Mn(t),

where Mn(t) is the antiderivative

Mn(t) =
∫

e−t adA0
(
Fn(t)− 〈Fn(t)〉

)
dt.

Finally, the solution of (2) is written as

x(t) = exp(Ω(t, ε)) exp(tF(ε))x0,

where Ω(t, ε) and F(ε) are appropriate truncations of the corresponding series.

5.3. Quantum Averaging

In the context of time-dependent quantum mechanical systems, the averaging method has been
used to construct quantum analogues of classical perturbative treatments [34,35]. Essentially, the basic
approach in that setting is to transform the original Hamiltonian of the problem by a unitary
transformation, so that the problem of finding the time evolution of the transformed Hamiltonian is
easier than the original one. The idea has been also applied in the perturbative treatment of pulse-driven
quantum problems [36–38].

This approach to quantum averaging can be fit into our general framework of Section 2 by taking
F0 = A0 and the terms Fn(t) in (11) verifying in addition

Ḟn(t) + [Fn(t), A0] = 0, n ≥ 1. (27)

Clearly, the solution of (27) verifies Fn(t) = etadA0 Fn(0) = etA0 Fn(0)e−tA0 and, thus,

d
dt

(
e−tA0 X(t)

)
= (F(0)− A0) e−tA0 X(t),

which leads to exp(−tA0)X(t) = exp(t(F(0)− A0)X(0) and finally

X(t) = etA0et(F(0)−A0)X(0).

In other words, condition (27) guarantees that Equation (3) can be solved in a closed way and the
dynamics of (2) is obtained once the generator Ω(t) is determined, even when Fn depends explicitly
on time. As shown in [35], the corresponding solutions are

Fn(t) = lim
T→∞

1
T

∫ T

0
Bn(σ, t)dσ, Ωn(t) = lim

T→∞

1
T

∫ T

0
dτ
∫ τ

0
dσ
(

Bn(σ, t)− Fn(t)
)
,

where
Bn(σ, t) = e(t−σ)A0Fn(t− σ)e−(t−σ)A0

provided

lim
T→∞

1
T
(
Fn(t)− e−TA0Fn(t− T)eTA0

)
= 0.

Here F1 = A1 and Fn = An + Gn −Vn for n ≥ 2.
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6. Illustrative Examples

In previous sections, we have reviewed several perturbative expansions aimed to get analytic
approximations for the solution of (1), and how they can be derived from a same basic principle, namely
a transformation of coordinates. This allows one, in particular, to design a unique computational
procedure to deal with a particular problem defined by A(t) and take the most appropriate variant
in each case. To illustrate the technique we next consider two examples describing the dynamics of
simple time-dependent quantum systems, although the same treatment can be applied of course to
other more involved problems.

6.1. The Three-Lambda System

The so-called driven three-lambda system describes an atomic three energy-level system with
two ground states |1〉, |2〉 with the same energy E1 that are coupled with an excited state |3〉 with
energy E3 via a time-dependent laser field. In the interaction picture, the Hamiltonian is given by
H(t) = f (t) |3〉

(
〈1|+ 〈2|

)
(+ Hermitian conjugate), or equivalently,

H(t) =

 0 0 f̄ (t)
0 0 f̄ (t)

f (t) f (t) 0

 , (28)

where f (t) is usually a periodic function. The corresponding Schrödinger equation, ih̄U̇(t) = H(t)U(t),
is then a particular case of Equation (2) with A(t) = −iH(t)/h̄, and one is typically interested in obtaining
the induced probability of transition between states |1〉 and |2〉, namely P12(t) = |〈1|U(t)|2〉|2.

We follow [30] and take
f (t) = β eiωt (29)

with β = 1 and ω = 10

(1+
√

2
2 )

1
2
≈ 7.65 as an example of periodic function. Starting from the

initial condition U(0) = I, we compute the approximate solution until the final time ω t = 400,
i.e., for 487 periods, with the Floquet–Magnus (FM) expansion (20)–(21) up to n = 3 and n = 4 and
determine the corresponding transition probability. In this way, we get Figure 1, where the result
achieved by the effective Hamiltonian X(t) = etF, with F = −iHef/h̄, is also depicted. We see that,
for this value of ω, considering more terms in the series for both Ω(t) and F leads to better results and
that working only with the effective Hamiltonian gives indeed a good approximation. The reference
solution is computed with the DSolve function of Mathematica. For completeness, the value of the
effective Hamiltonian up to n = 4 reads

Hef =


6−ω2

ω4
6−ω2

ω4
4

ω3

6−ω2

ω4
6−ω2

ω4
4

ω3

4
ω3

4
ω3

2(ω2−6)
ω4

 ,

whereas, the transition probability obtained with Hef up to n = 3 is given by (h̄ = 1)

P(3)
12 =

sin2(t ω̃)

(ω2 + 8)

(
−4 cos(2tω̃) + ω2 + 4

)
with ω̃ ≡

(√
ω2 + 8

)
/ω3.
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Figure 1. Transition probability for the three-lambda system with f (t) = eiωt for ω = 10 (1 +
√

2
2 )−

1
2

obtained with Floquet–Magnus (FM) with n = 3 (left) and n = 4 (right) terms in the expansion.
Blue line corresponds to FM, orange (Ef) line stands for the effective Hamiltonian Hef ≡ iF and black
(Ex) line is the exact solution.

Next, we repeat the simulation with ω = 6 and ω = 12, by taking n = 3 terms in both the
Floquet–Magnus and the Magnus expansion (17). The results are shown in Figure 2 (top). Notice that
the approximations get worse for smaller values of ω. To get a more quantitative view, also in Figure 2
(bottom) we show the error in the transition probability (in logarithmic scale) for the same values of
ω, but now include n = 3 and n = 7 terms in the FM expansion, as well as the result obtained with
just the effective Hamiltonian in this last case. As is clear from the figure, taking into account more
terms in the FM expansion improves the approximations, and this improvement is more remarkable
for larger values of ω.
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Figure 2. Top: transition probability for the three-lambda system with f (t) = eiωt obtained with
Floquet–Magnus (blue line) and Magnus expansion (red line), both with n = 3 terms. Left diagram is
for ω = 6, right diagram is for ω = 12. Bottom: error (in logarithmic scale) as a function of time for
Floquet–Magnus with n = 3 and n = 7 terms, and the effective solution with n = 7 terms (purple).

Here, the approximate solution is obtained as

U(t) = exp(Ω̃(t)) exp(−i tHef/h̄)



Math. Comput. Appl. 2020, 25, 50 12 of 20

and the two parts of U encode different behaviors of the system. Thus, exp(Ω̃(t)) describes fast
fluctuations around the envelope evolution provided by exp(−itHef/h̄), but these fluctuations are not
always negligible, especially if the driving frequency is not too large. In any case, it is worth noticing
that taking only into consideration the effective Hamiltonian renders less accurate results than working
with the full approximation.

Next, we take f (t) in (28) to be a quasi-periodic function, namely

f (t) = β(eiωt + ei
√

2ωt), (30)

with β = 1 and ω = 12, and compute approximations using the Floquet–Magnus and Magnus
expansions with n = 2 and n = 3 terms. The corresponding errors in the transition probability are
shown in Figure 3. We see that, in this case, including more terms in the expansions does not improve
significantly the accuracy of the approximations. This is an indication of the lack of convergence of the
expansions for these values of the parameters. In fact, it is straightforward to verify that ‖A(t)‖2 =√

8 β
∣∣∣cos

(√
2−1
2 ωt

)∣∣∣, so that for the values of the parameters considered, the convergence of the
Magnus expansion is ensured for t < 1.6117 according to the estimate (19). To illustrate the behavior
in this range of times, in Figure 4 we collect the results obtained by taking up to n = 6 terms in the
expansion. It is worth noticing the systematic decrease in the error when more terms are included in
the expansion. A similar pattern is observed for the Floquet–Magnus expansion, but with much smaller
times (the convergence is only assured for t < 0.074).
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Figure 3. Error (in logarithmic scale) in the transition probability (in logarithmic scale) for the
quasi-periodic case (30) as a function of time for FM (left) and Magnus (right) with n = 2 and n = 3
terms in the expansion. In both cases ω = 12 in (30).
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Figure 4. Detail of Figure 3 right in the interval ωt ∈ [0, 30]. We have included up to n = 6 terms in the
Magnus series.
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6.2. Bloch–Siegert Dynamics

This is an example of a periodically driven two-level quantum system described by the
time-dependent Hamiltonian

H(t) =

(
ω0/2 2b cos(ωt)

2b cos(ωt) −ω0/2

)
. (31)

The coupling parameter b is the amplitude of a driving radio-frequency field and ω is its frequency.
We can write

H(t) = H0 + εH1(t)

with ε = 2b and
H0 =

ω0

2
σ3, H1(t) = cos(ωt) σ1,

where σi are Pauli matrices. With this simple example, we can illustrate the different treatments
previously considered, both perturbative and non-perturbative, and also analyze how the results vary
with the perturbation parameter ε.

The use of the Magnus expansion for the approximate analytic treatment of time-dependent
two-level systems has a long history. In particular, the work of Pechukas and Light [39] includes,
for the first time, an specific analysis of the convergence of the procedure for this class of systems.

As in [40], we consider the resonant case ω = ω0 = 1 and two different values of the perturbation,
ε = 0.2 and ε = 1. One could use the Magnus expansion (17) directly to the matrix A(t) = −iH(t)/h̄.
However, in that case, the convergence of the series, as given by (19), is only ensured for times t ∈ [0, tf],
such that ∫ tf

0

√
1
4
+ ε2 cos2(t) dt < π.

Thus, in particular, if ε = 0.2, then tf ≈ 6.056, whereas, for ε = 1, it reduces to tf ≈ 3.608. We cannot
expect, then, accurate results for larger time intervals, and this is indeed what is observed in practice.
Something analogous also happens for the Floquet–Magnus expansion, with the difference that the
interval of convergence is even smaller. It makes sense, in consequence, to apply both procedures in
the interaction picture, i.e., to the matrix AI(t) = e−tA0 A1(t)etA0 and this is what we have done in
our computations by applying the procedure of Section 4. We also compare with the Lie–Deprit (LD)
perturbation algorithm and the formalism removing the perturbation, i.e., such that F = A0. As in
the previous example, we compute |U12(t)|2, i.e., the probability of transition between the two levels,
obtained with each procedure with n = 3 terms. The corresponding results are shown in Figure 5 as a
function of time, where we also include the exact result for comparison. Left diagrams are obtained
with FM (in the interaction picture), whereas we depict in the right diagrams the results obtained by
LD and also when F is taken as A0. Notice that top and bottom panels correspond to ε = 0.2 and ε = 1,
respectively. We have also depicted the result obtained with just the effective Hamiltonian in the case
of the Floquet–Magnus expansion.

It can be observed that both the LD perturbative algorithm and the one obtained by removing the
perturbation provide accurate results only when ε takes small values, in contrast with Floquet–Magnus
in the interaction picture, with an enlarged validity domain in ε. Notice that, also in this case,
the effective Hamiltonian is not enough to get a precise description of the dynamics when ε increases.
We should remark that all schemes render unitary approximations by construction.
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Figure 5. Transition probability obtained with FM (left, blue line) and LD (right, green line) with n = 3
terms in comparison with the exact result for the Bloch–Siegert Hamiltonian with ε = 0.2 (top) and
ε = 1 (bottom). Black line corresponds to the exact solution, and orange to the result achieved with
the effective Hamiltonian. On the right panels, the results achieved by the algorithm removing the
perturbation are also depicted (F = A0).

For comparison, in Figure 6 we collect the results achieved by the standard Magnus expansion in
the interaction picture for this same problem and values of the perturbation parameter: ε = 0.2 (left)
and ε = 1 (right). Here again, increasing the value of ε leads to a loss of accuracy for long times. If the
Magnus expansion is applied to the matrix A(t), then only accurate results are obtained for times in
the convergence domain.
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Figure 6. Transition probability obtained with the standard Magnus expansion with n = 3 terms
(red line) in comparison with the exact result (black line) for the Bloch–Siegert Hamiltonian with ε = 0.2
(left) and ε = 1 (right).

To analyze how incorporating an increasing number of terms in the Floquet–Magnus expansion
leads to an improvement of the approximation, even for large values of ε, we show in Figure 7 the
results for the transition probability for ε = 1.5 obtained with n = 3, 5, 7, 9 terms (left to right, top
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to bottom) as a function of time. Notice that, even for this large value of the perturbation parameter,
we still have a correct description of the dynamics when a sufficiently large number of terms is taken
into account.
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Figure 7. Transition probability obtained with FM (solid blue line) with n = 3, 5, 7, 9 terms (left to right,
top to bottom) in comparison with the exact result (black line) for the Bloch–Siegert Hamiltonian with
ε = 1.5.

To get a more quantitative description of the different approximations, in Figure 8 we depict the
error in the transition probability committed by the Floquet–Magnus expansion (left) and Lie–Deprit
(right) with n = 3, 5, 7, 9 terms each for ε = 0.5. Notice that taking into account more terms leads to
a reduction in the error, and the LD approximation clearly deteriorates with time, whereas FM still
provides excellent results, even for large time intervals.
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Figure 8. Error (in logarithmic scale) in the transition probability committed by FM (left) and LD (right)
with n = 3, 5, 7, 9 terms each for the Bloch-Siegert Hamiltonian with ε = 0.5. Notice the different time
interval in each panel.
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7. Concluding Remarks

The subject of the perturbative treatment of linear systems of time-dependent differential equations
has a long history in physics and mathematics. In physics, in particular, it plays a fundamental role in the
study of the evolution of quantum systems. Among the different procedures, the so-called exponential
perturbation algorithms have the relevant property of preserving the unitary character of the evolution.
More in general, the approximations they provide belong to the same Lie group than the exact solution
of the problem. Archetypical examples of exponential perturbation theories are the Magnus expansion
since its inception in the 1950s and, more recently, the Floquet–Magnus expansion, several quantum
averaging procedures and a generalization of the well known Hori–Deprit perturbation theory of classical
mechanics. Each of these algorithms has been derived in an independent way and it is not always easy
to establish connections and common points between them.

The present paper tries to bridge this gap by showing that all of them can be seen in fact as the
result of linear changes of coordinates expressed as the exponential of a certain series whose terms can
be obtained recursively. In addition to the Magnus and Floquet–Magnus expansions, other techniques
can also be incorporated into our general framework, including the quantum averaging method and the
Lie–Deprit perturbative algorithm. In the process, we have also considered a novel approach, namely an
exponential transformation rendering the original system into another one in which the perturbation
is removed. The resulting approximations preserve whatever qualitative features the exact solution
may possess (unitarity, orthogonality, symplecticness, etc.). Even the standard perturbation theory in
the interaction picture is recovered in this setting when the exponential defining the transformation
is truncated.

With this same framework one might of course consider other exponential transformations, and
this would automatically lead to new perturbation formalisms that might be particularly adapted
to the problem at hand. For instance, we could choose F(t) as a diagonal time-dependent matrix,
so that equation (3) is easy to solve, and construct the corresponding generator Ω(t). We believe that
the proposed framework sheds new light into nature of the different expansions and allows one to
create a unique procedure to analyze a given problem, obtaining all of the expansions by choosing
appropriately the coefficient matrix in the new variables. Moreover, it also allows one to determine in
an easy way what is the best algorithm for a given problem. This feature has been illustrated in this
work by applying the procedure to two simple examples.

We have seen, in particular, that for problems with a periodic time dependence, the Floquet–Magnus
expansion leads to more accurate results over longer time intervals, even for perturbed problems of
the form A(t) = A0 + εA1(t) in the interaction picture, unless the parameter ε is exceedingly small, in
which other purely perturbative procedures are competitive. It would be interesting to check whether this
conclusion remains valid for more involved problems.

The interested reader may find useful the file available in [41] containing the Mathematica
implementation of the techniques exposed here for the quantum mechanical problem describing
the Bloch–Siegert dynamics.

In this paper we have always taken X(0) = x(0) = x0, but it is clear that we can also take instead
X(0) as the image by the transformation of x0. In that case, the solution is factorized as

x(t) = exp(Ω(t)) exp(tF)X(0) = exp(Ω(t)) exp(tF) exp(−Ω(0))x0,

where, obviously, the recurrences for determining Ω(t) and F are slightly different from those collected
here. The final results can also vary, as shown in [33].

Although only examples of quantum mechanics have been considered here, the formalism of this
paper can be applied in fact to any explicitly time-dependent linear system of differential equations.
This might include the treatment of open quantum systems described by a non-Hermitian Hamiltonian
operator [42]. This will be the subject of future research.
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Appendix A

In this appendix we solve the equation

Ω̇n + [Ωn, A0] = Fn − Fn, (A1)

with initial condition Ωn(0) = 0 and where Fn(t) is a quasi-periodic function

Fn(t) = ∑
k∈Zr

fn,k ei(k,ω)t,

in such a way that Fn is constant and Ωn(t) is quasi-periodic with the same frequencies as Fn(t).
First we compute the limiting mean value of Fn(t),

〈Fn〉 ≡ lim
T→∞

1
T

∫ T

0
Fn(t)dt

and then the antiderivative

Mn(t) =
∫

e−tadA0 (Fn(t)− 〈Fn〉) dt. (A2)

Then, a direct computation show that

Fn = 〈Fn(t)〉 − [A0, Mn(0)], Ωn(t) = −Mn(0) + et adA0 Mn(t) (A3)

provides the solution of (A1). To show that Ωn(t) is indeed quasi-periodic, we proceed as follows.
First, it is clear that

Fn(t)− 〈Fn〉 = ∑
k∈Zr\{0}

fn,k ei(k,ω)t (A4)

and thus

Mn(t) =
∫

dt ∑
k∈Zr\{0}

e−t adA0 fn,k ei(k,ω)t =
∫

dt ∑
k∈Zr\{0}

e−t adA0+i(k,ω)tI fn,k

=
∫

dt ∑
k∈Zr\{0}

e−t adA0+i(k,ω)tI(−adA0 + i(k, ω)I)gn,k

= ∑
k∈Zr\{0}

e−t adA0+i(k,ω)tI gn,k = e−t adA0 ∑
k∈Zr\{0}

gn,k ei(k,ω)t,

where gn,k is the unique solution of the linear system consisting of d2 equations(
− adA0 + i(k, ω)I

)
X = fn,j. (A5)

In that case,
Ωn(t) = −Mn(0) + ∑

k∈Zr\{0}
gn,k ei(k,ω)t (A6)
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is clearly a quasi-periodic function with the same basic frequencies as Fn(t). On the other hand,
the system (A5) has a unique solution if and only if X = 0 is the unique solution of(

− adA0 + i(k, ω)I
)

X = −A0X + X(A0 + i(k, ω)I) = 0,

and this happens when A0 and A0 + i(k, ω)I do not have common characteristic values, or equivalently
when λ` − λm − i(k, ω) 6= 0 for all `, m ∈ {1, . . . , s}, where {λj}s

j=1 denote the distinct eigenvalues
of A0. To avoid the problem of small divisors, a diophantine condition is introduced, namely one
assumes that

|λ` − λm − i(k, ω)| > δ

|k|γ ∀ `, m ∈ {1, . . . , s} ∀ k ∈ Zr\{0} (A7)

for some constants δ > 0 and γ > r− 1, see [20,43,44] for more details. Here |k| = |k1|+ · · ·+ |kr|.
Notice that both Fn and Ωn(t) in (A3) depend on the constant of integration Mn(0). One way of

fixing it is to solve Equation (A5) and substitute gn,k into the expression of Mn(t). In any case, it is
worth mentioning a remarkable property of the Equation (A1), namely if we have one solution Fn and
Ωn(t), then we can get infinite solutions of the form

F̃n = Fn + [A0, R], Ω̃n(t) = Ωn(t) + R,

where R is an arbitrary constant matrix. If we choose R = Mn(0), then

F̃n = 〈Fn(t)〉, Ω̃n(t) = et adA0 Mn(t),

so that Ω̃n(0) = Mn(0) and one has the factorization

x(t) = exp(Ω(t)) exp(tF)X(0) = exp(Ω(t)) exp(tF) exp(−Ω(0))x0

for the solution of (2).
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