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Abstract: The Lomax distribution is arguably one of the most useful lifetime distributions, explaining
the developments of its extensions or generalizations through various schemes. The Marshall–Olkin
length-biased Lomax distribution is one of these extensions. The associated model has been used
in the frameworks of data fitting and reliability tests with success. However, the theory behind this
distribution is non-existent and the results obtained on the fit of data were sufficiently encouraging
to warrant further exploration, with broader comparisons with existing models. This study
contributes in these directions. Our theoretical contributions on the the Marshall–Olkin length-biased
Lomax distribution include an original compounding property, various stochastic ordering results,
equivalences of the main functions at the boundaries, a new quantile analysis, the expressions of the
incomplete moments under the form of a series expansion and the determination of the stress–strength
parameter in a particular case. Subsequently, we contribute to the applicability of the Marshall–Olkin
length-biased Lomax model. When combined with the maximum likelihood approach, the model is
very effective. We confirm this claim through a complete simulation study. Then, four selected real
life data sets were analyzed to illustrate the importance and flexibility of the model. Especially, based
on well-established standard statistical criteria, we show that it outperforms six strong competitors,
including some extended Lomax models, when applied to these data sets. To our knowledge, such
comprehensive applied work has never been carried out for this model.

Keywords: Marshall–Olkin scheme; length-biased Lomax distribution; modeling; asymmetry;
simulation; data analysis

MSC: 60E05; 62E15; 62F10

1. Introduction

The Lomax distribution introduced by [1] can be described as a simple two-parameter lifetime
distribution with a varying polynomial decay. By denoting the shape parameter as α > 0 and the scale
parameter as β > 0, it is specified by the following probability density function (pdf):

fL(x; α, β) =
α

β

(
1 +

x
β

)−(α+1)
, x ≥ 0, (1)

and fL(x; α, β) = 0 for x < 0. Basically, the Lomax distribution corresponds to the famous Pareto
distribution that has been shifted to the left until its support starts at 0 (see [2], p. 573). It has been
widely used for the modeling of various measures in reliability and life testing from heavy tailed data.
The literature on the Lomax distribution and its applications is vast, including [3–9], to name of few.
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In order to make the statistical possibilities of the Lomax distribution more flexible and attractive,
several multiple-parameter modifications and generalizations have been proposed. Among them,
we cite the Marshall–Olkin Lomax distribution by [10], transmuted Lomax distribution by [11],
MacDonald Lomax distribution by [12], Poisson Lomax distribution by [13], exponentiated Lomax
distribution by [14], exponential Lomax distribution by [15], gamma Lomax distribution by [16],
Weibull Lomax distribution by [17], weighted Lomax distribution by [18], power Lomax distribution
by [19], length-biased Lomax by [20], half-logistic Lomax distribution by [21], Marshall–Olkin power
Lomax by [22] and Marshall–Olkin length-biased Lomax by [23], among others.

In particular, based on the concept of length-biased distribution pioneered by [20,24] introduced
the length-biased Lomax (LBLO) distribution with the following pdf:

fLBLO(x; α, β) =
1

µL
x fL(x; α, β), x ∈ R,

where µL denotes the mean of the Lomax distribution. That is, by taking into account that
µL = β/(α− 1) for α > 1, the pdf above can be expressed as

fLBLO(x; α, β) =
α(α− 1)

β2 x
(

1 +
x
β

)−(α+1)
, x ≥ 0, (2)

for α > 1 and β > 0, and fLBLO(x; α, β) = 0 for x < 0. One can remark that fLBLO(0; α, β) = 0 against
fL(0; α, β) = α/β. Thus the parameters α and β only governed the shapes of the pdf independently of
the values of the initial value, contrary to the former Lomax distribution, while keeping a similar level
of flexibility. In this sense, for some applied problems, the LBLO model is an interesting alternative to
the Lomax model, with the same number of parameters. Further detail can be found in [20].

Recently, [23] proposed a new extension of the LBLO distribution called Marshall–Olkin
length-biased Lomax (MOLBL) distribution. It consists in modifying the LBLO distribution via the
Marshall–Olkin scheme pioneered by [25]. The aim is to add more flexibility to the LBLO distribution
through ratio-type definitions of the main functions depending on a tuning parameter. Precisely,
the corresponding pdf with the shape parameters α > 0 and γ > 0, and scale parameter β > 0 is

fMOLBL(x; α, β, γ) =
α(α− 1)γ

β2
x(1 + x/β)−(α+1)

[1− (1− γ)(1 + x/β)−α(1 + αx/β)]2
, x ≥ 0, (3)

and fMOLBL(x; α, β, γ) for x < 0. Thus, the parameter γ modulates the denominator function;
the LBLO distribution being recovered by taking γ = 1. In [23], the parameters of the MOLBL
model are estimated by the maximum likelihood estimation method, without convergence evidence.
The remission data set by [26] is analyzed, and it is proved that the MOLBL model has a better fit to the
former LBLO model by considering the Akaike information criterion (AIC) and Bayesian information
criterion (BIC), only. In addition, a reliability test plan is developed to accept or reject a submitted lot
of products for inspection whose lifetime is directed to be a MOLBL distribution.

In this study, we complete the study of [23] on several important aspects, making significant
theoretical and practical contributions to the MOLBL distribution. For the theoretical findings, (i) we
prove that the MOLBL distribution can be derived by a simple compounding argument, (ii) new
stochastic ordering properties are established, (iii) asymptotic equivalences are described for the first
time with discussion on the role played by the parameters in this regard, (iv) a quantile analysis is
performed with a special focus on the case α = 2, (v) the incomplete moments are expressed, as well as
the ordinary moments, and (vi) the stress–strength parameter is determined for a special configuration
on the parameters. For the practical contributions, (a) a complete simulation study guaranties the
numerical convergence of the maximum likelihood estimates, (b) four different data sets are considered,
and (c), for these data sets, six competitors are used, including some extended Lomax distributions.
We show that the MOLBL model is the best based on the following benchmarks: AIC as well as its
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consistent version (CAIC), BIC, Hannan–Quinn information criterion (HQIC), Anderson–Darling
(A∗), Cramer–von Mises (W∗), Kolmogorov–Smirnov (KS) and the p-value of the corresponding KS
statistical test. A graphical analysis of the obtained fits is also provided, showing the high quality of
the MOLBL model.

The paper is as follows. Section 2 is devoted to the theoretical contributions on the MOLBL
distribution. Section 3 completes the above by offering the practical contributions. Finally, Section 4
contains some concluding remarks.

2. Theoretical Contributions

This section is devoted to new theoretical facts about the MOLBL distribution.

2.1. Main Functions of the MOLBL Distribution

We now recall the main functions of the MOLBL distribution, as sketched in [23]. First,
the cumulative distribution function (cdf) of the MOLBL distribution is given as

FMOLBL(x; α, β, γ) =
1− (1 + x/β)−α(1 + αx/β)

1− (1− γ)(1 + x/β)−α(1 + αx/β)
, x ≥ 0, (4)

and FMOLBL(x; α, β, γ) = 0 for x < 0. The cdf of the LBLO distribution is obtained as a special case;
it follows by substituting γ = 1 in Equation (4). Based on Equation (4), the survival function (sf) of the
MOLBL distribution can be expressed as

SMOLBL(x; α, β, γ) = γ
(1 + x/β)−α(1 + αx/β)

1− (1− γ)(1 + x/β)−α(1 + αx/β)
, x ≥ 0, (5)

and SMOLBL(x; α, β, γ) = 1 for x < 0. We recall that the pdf of the MOLBL distribution is specified by
Equation (3), corresponding to the derivative of FMOLBL(x; α, β, γ) with respect to x. From Equations (3)
and (5), we can express the hazard rate function (hrf) of the MOLBL distribution by

hMOLBL(x; α, β, γ) =
α(α− 1)

β2
x

[1− (1− γ)(1 + x/β)−α(1 + αx/β)] (1 + x/β)(1 + αx/β)
, x ≥ 0, (6)

and hMOLBL(x; α, β, γ) = 0 for x < 0. The above analytical definitions are fundamental to explore the
possibilities of the MOLBL model. They are used intensively in the remainder of the paper.

For the purposes of this study, the MOLBL distribution is denoted as MOLBL(α, β, γ) distribution
when the parameters must be communicated.

2.2. Compounding

The following proposition shows that the MOLBL distribution follows from a special
compounding distribution involving the classical exponential distribution with parameter γ.

Proposition 1. Let X and Y be continuous random variables such that

• the conditional cdf of X | {Y = y} is given as

Fo(x; α, β | y) = 1− exp

{
−
[(

1 +
x
β

)α (
1 +

αx
β

)−1
− 1

]
y

}
, y ≥ 0, (7)

which is a well-identified cdf specified later,
• Y has the exponential distribution with parameter γ > 0, that is with the pdf defined by fE(y; γ) = γe−γy

for y ≥ 0 and fE(y; γ) = 0 for y < 0.

Then X has the MOLBL(α, β, γ) distribution.
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Proof. By using the distribution of X conditionally to {Y = y}, the cdf of X is obtained as

F∗(x; α, β, γ) =
∫ +∞

0
Fo(x; α, β | y) fE(y; γ)dy

= 1−
∫ +∞

0
[1− Fo(x; α, β | y)] fE(y; γ)dy

= 1−
∫ +∞

0
exp

{
−
[(

1 +
x
β

)α (
1 +

αx
β

)−1
− 1

]
y

}
γe−γydy

= 1− γ
∫ +∞

0
exp

{
−
[(

1 +
x
β

)α (
1 +

αx
β

)−1
− (1− γ)

]
y

}
dy

= 1− γ

[(
1 +

x
β

)α (
1 +

αx
β

)−1
− (1− γ)

]−1

= 1− γ
(1 + x/β)−α(1 + αx/β)

1− (1− γ)(1 + x/β)−α(1 + αx/β)
= 1− SMOLBL(x; α, β, γ)

= FMOLBL(x; α, β, γ).

This entails the desired result.

As announced, the conditional cdf of X | {Y = y} expressed in Equation (7) is well identified;
it corresponds to the cdf of the Weibull-G family of distributions by [27] defined with the parameters
α̃ = y and β̃ = 1, and with the LBLO distribution as parental distribution. However, to our knowledge,
it has not received a special attention, and can be the object of a future study.

2.3. Stochastic Ordering

The notion of first-order stochastic dominance is the most basic stochastic ordering concept.
It consists in giving a mathematical setting to compare several distributions through their cdfs
or, equivalently, their sfs. More precisely, we say that a distribution symbolized by A first-order
stochastically dominates (FOSD) a distribution symbolized by B if their respective cdfs, say FA(x) and
FB(x), satisfy the following inequality: FA(x) ≤ FB(x), for all x ∈ R. This concept finds numerous
applications in actuarial sciences, econometrics, reliability and biometrics. One may refer to [28,29].

The next result shows several first order stochastic order dominance results for the MOLBL
distributions based on all its parameters.

Proposition 2. The following results hold.

(i) For α1 ≤ α2, the MOLBL(α1, β, γ) distribution FOSD the MOLBL(α2, β, γ) distribution.
(ii) For β1 ≤ β2, the MOLBL(α, β2, γ) distribution FOSD the MOLBL(α, β1, γ) distribution.
(iii) For γ1 ≤ γ2, the MOLBL(α, β, γ2) distribution FOSD the MOLBL(α, β, γ1) distribution.

Proof. (i) It is enough to study the monotonicity of FMOLBL(x; α, β, γ) in Equation (4) with respect to
α. After derivatives and standard manipulations, for x ≥ 0, we get

∂

∂α
FMOLBL(x; α, β, γ) = βγ

(1 + x/β)α [(αx + β) log(1 + x/β)− x]

[β(1 + x/β)α − (1− γ)(αx + β)]2
.

Now, the following logarithmic inequality is well-known: log(1 + y) ≥ y/(1 + y) for y > −1.
By applying it with y = x/β > 0 and using α > 1, we have

(αx + β) log(1 + x/β)− x ≥ (αx + β)
x/β

1 + x/β
− x ≥ (x + β)

x/β

1 + x/β
− x = 0.
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Therefore, ∂FMOLBL(x; α, β, γ)/∂α ≥ 0, implying that FMOLBL(x; α, β, γ) is an increasing
function with respect to α; For α1 ≤ α2, the MOLBL(α1, β, γ) distribution FOSD the
MOLBL(α2, β, γ) distribution.

(ii) Now, let us study the monotonicity of FMOLBL(x; α, β, γ) with respect to β. After some
developments, for x ≥ 0, we get

∂

∂β
FMOLBL(x; α, β, γ) = −(α− 1)αγ

x2(1 + x/β)α

(β + x) [β(1 + x/β)α − (1− γ)(αx + β)]2
.

Since α > 1, this partial derivative is clearly negative. Hence, FMOLBL(x; α, β, γ) is a
decreasing function with respect to β; For β1 ≤ β2, the MOLBL(α, β2, γ) distribution FOSD
the MOLBL(α, β1, γ) distribution.

(iii) The monotonicity of FMOLBL(x; α, β, γ) with respect to γ is now investigated. After some algebraic
manipulations, for x ≥ 0, we have

∂

∂γ
FMOLBL(x; α, β, γ) =

(αx + β) [αx + β− β(1 + x/β)α]

[β(1 + x/β)α − (1− γ)(αx + β)]2
.

Since α > 1, the Bernoulli inequality implies that

β

(
1 +

x
β

)α

≥ β

(
1 +

α

β
x
)
= αx + β.

Therefore, ∂FMOLBL(x; α, β, γ)/∂γ ≤ 0, implying that FMOLBL(x; α, β, γ) is a decreasing
function with respect to γ; for γ1 ≤ γ2, the MOLBL(α, β, γ2) distribution FOSD the
MOLBL(α, β, γ1) distribution.

The proof of Proposition 2 ends.

The next result is about a hazard rate ordering satisfied by the MOLBL distribution. We say that a
distribution symbolized by A dominates a distribution symbolized by B in the hazard rate ordering
if their respective hrfs, say hA(x) and hB(x), satisfy the following inequality: hA(x) ≤ hB(x), for all
x ∈ R. This kind of stochastic ordering is a useful concept in reliability and order statistics (see [30]).

Proposition 3. For γ1 ≤ γ2, the MOLBL(α, β, γ2) distribution dominates the MOLBL(α, β, γ1) distribution
in the hazard rate ordering.

Proof. On the basis of Equation (6), after differentiation and standard operations, we obtain

∂

∂γ
hMOLBL(x; α, β, γ) = −β2 x(1 + x/β)α−1

[β(1 + x/β)α − (1− γ)(αx + β)]2
,

which is clearly negative. Therefore, hMOLBL(x; α, β, γ) is decreasing with respect to γ, implying that,
for γ1 ≤ γ2, hMOLBL(x; α, β, γ2) ≤ hMOLBL(x; α, β, γ1). This ends the proof of Proposition 3.

Note that, by the relation between the first-stochastic order dominance and hazard rate ordering,
Proposition 3 implies Proposition 2 (iii).

2.4. Equivalences

The asymptotic behaviors of the main functions of the MOLBL distribution are useful to
understand the role of the parameters played in the limit bounds and also, to prove the existence
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of important probabilistic quantities such as the moments. When x tends to 0, since the following
equivalence at the order two holds:(

1 +
x
β

)−α

∼ 1− α
x
β
+

α(α + 1)
2

x2

β2 ,

we have

FMOLBL(x; α, β, γ) ∼ α(α− 1)
2γβ2 x2, fMOLBL(x; α, β, γ) ∼ hMOLBL(x; α, β, γ) ∼ α(α− 1)

γβ2 x.

The last result implies that both fMOLBL(x; α, β, γ) and hMOLBL(x; α, β, γ) tend to 0 with a
polynomial rate of degree 1. When x tends to +∞, the following equivalences hold:

FMOLBL(x; α, β, γ) ∼ 1− α

(
x
β

)−α+1
, fMOLBL(x; α, β, γ) ∼ α(α− 1)

β

(
x
β

)−α

and
hMOLBL(x; α, β, γ) ∼ α− 1

x
.

Therefore, fMOLBL(x; α, β, γ) and hMOLBL(x; α, β, γ) tend to 0 under all circumstances.
This convergence is with a polynomial decay with degree α for fMOLBL(x; α, β, γ), and with a
polynomial decay with degree 1 for hMOLBL(x; α, β, γ).

As a consequence, by the obtained equivalence: When x tends to +∞, xs fMOLBL(x; α, β, γ) ∼
α(α− 1)βα−1xs−α, the Riemann integral criteria ensures that the integral

∫ +∞
0 xs fMOLBL(x; α, β, γ)dx

exists for−1 < s < α− 1, implying the existence of the sth moments of the MOLBL distribution for any
positive integer s satisfying this condition. Also, with a similar argument, we show that, for all t > 0,∫ +∞

0 etx fMOLBL(x; α, β, γ)dx = +∞, meaning that the MOLBL distribution has a heavy (right) tail.

2.5. Quantile Analysis

Quantile analysis provides precise information on the central and dispersion properties of a
distribution. In the setting of the MOLBL distribution, the quantile function, say QMOLBL(u; α, β, γ),
satisfies the following equation: FMOLBL(QMOLBL(u; α, β, γ); α, β, γ) = u for any u ∈ (0, 1), that is,
after a rearrangement,(

1 +
QMOLBL(u; α, β, γ)

β

)−α (
1 +

αQMOLBL(u; α, β, γ)

β

)
=

1− u
γ + (1− γ)(1− u)

.

In full generality, QMOLBL(u; α, β, γ) has not a closed-form expression. Only the case α = 2 is
manageable by the analytical approach; In this special case, we have

QMOLBL(u; 2, β, γ) =
β

1− u

(
γu +

√
γu[γ + (1− γ)(1− u)]

)
.

The median is obtained as M = QMOLBL(1/2; 2, β, γ) = β(γ+
√

γ(γ + 1)). Similarly, the first and
third quartiles are specified by substituting u = 1/4 and u = 3/4 in QMOLBL(u; 2, β, γ), respectively.
Also, this quantile function can be used for simulated values from the MOLBL distribution.

2.6. Incomplete Moments

The interests of the incomplete moment of a random variable or a distribution are (i) to generalize
the notion of ordinary moments, (ii) to be involved in the definitions of important curves, deviation
measures and functions, such as the Lorenz curve, mean deviation about the mean and mean residual
life function. Discussions and applications on incomplete moments are available in [31,32]. Here,
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the incomplete moments of the MOLBL distribution are investigated, with discussion on the ordinary
moments as well.

First, we need the following general integral result.

Lemma 1. For any integer a ≥ 0, and real numbers b > 0, c > 0 and t ≥ 0, let us set

I(t; a, b, c) =
∫ t

0
xa
(

1 +
x
c

)−b
dx. (8)

Then, the following sum formula is valid:

I(t; a, b, c) = ca+1
a

∑
j=0

(
a
j

)
(−1)a−j 1

j− b + 1

[(
1 +

t
c

)j−b+1
− 1

]
.

This equality is true for t→ +∞ provided to b > 1 + a, and we have

I(+∞; a, b, c) = ca+1
a

∑
j=0

(
a
j

)
(−1)a−j+1 1

j− b + 1
.

Proof. By performing the change of variables y = 1 + x/c, that is, x = c(y− 1), we obtain

I(t; a, b, c) = ca+1
∫ 1+t/c

1
(y− 1)ay−bdy.

Since a is a positive integer, the classical binomial formula holds and we obtain

I(t; a, b, c) = ca+1
a

∑
j=0

(
a
j

)
(−1)a−j

∫ 1+t/c

1
yj−bdy

= ca+1
a

∑
j=0

(
a
j

)
(−1)a−j 1

j− b + 1

[(
1 +

t
c

)j−b+1
− 1

]
.

For the case t→ +∞, it is enough to notice that, for b > 1 + a, we have j− b + 1 < a− b + 1 < 0,
implying that (1+ t/c)j−b+1 tends to 0. The desired result follows. This ends the proof of Lemma 1.

Lemma 1 can be used independently of interest, but will be at the heart for manageable series
expression of the incomplete moments.

We are in the position to present the main results of this section, regarding the incomplete
moments of the MOLBL distribution. The proposition below proposes a series expansion of any of
these incomplete moments in the case γ ∈ (0, 1).

Proposition 4. Let s be an integer and X be a random variable having the MOLBL(α, β, γ) distribution with
γ ∈ (0, 1). Then, for t ≥ 0, the sth incomplete moment of X according to t is given as

µ′s(t) = E(Xs I({X ≤ t})) =
+∞

∑
k=0

k

∑
`=0

s+`+1

∑
j=0

∆k,`,j;s

[(
1 +

t
β

)j−α(k+1)
− 1

]
,

where I({X ≤ t}) is a random variable having the Bernoulli distribution with parameter P(X ≤ t), and

∆k,`,j;s =

(
k
`

)(
s + `+ 1

j

)
(α− 1)γβs(k + 1)(1− γ)kα`+1(−1)s+`+1−j 1

j− α(k + 1)
.
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Also, provided to s < α− 1, by applying t→ +∞, the sth ordinary moment of X is given as

µ′s = E(Xs) =
+∞

∑
k=0

k

∑
`=0

s+`+1

∑
j=0

∆∗k,`,j;s,

where ∆∗k,`,j;s = −∆k,`,j;s.

Proof. First, the integral definition of µ′s(t) is

µ′s(t) =
∫ t

0
xs fMOLBL(x; α, β, γ)dx. (9)

Then, since γ ∈ (0, 1), we have (1− γ)(1 + x/β)−α(1 + αx/β) ∈ (0, 1) for any x ≥ 0, based on
the geometric series expansion, we can express fMOLBL(x; α, β, γ) in Equation (3) as

fMOLBL(x; α, β, γ) =
α(α− 1)γ

β2 x
(

1 +
x
β

)−(α+1) +∞

∑
k=0

(k + 1)(1− γ)k
(

1 +
x
β

)−αk (
1 +

αx
β

)k

=
α(α− 1)γ

β2

+∞

∑
k=0

(k + 1)(1− γ)kx
(

1 +
x
β

)−α(k+1)−1 (
1 +

αx
β

)k
.

Now, by the classical binomial formula, we obtain

fMOLBL(x; α, β, γ) =
α(α− 1)γ

β2

+∞

∑
k=0

k

∑
`=0

(
k
`

)
(k + 1)(1− γ)k α`

β`
x`+1

(
1 +

x
β

)−α(k+1)−1
.

Therefore, by multiplication with xs, integrating over (0,+∞) with respect to x and introducing
the integral function I(t; a, b, c) defined in Equation (8), it comes

µ′s(t) =
α(α− 1)γ

β2

+∞

∑
k=0

k

∑
`=0

(
k
`

)
(k + 1)(1− γ)k α`

β`

∫ t

0
xs+`+1

(
1 +

x
β

)−α(k+1)−1
dx

=
α(α− 1)γ

β2

+∞

∑
k=0

k

∑
`=0

(
k
`

)
(k + 1)(1− γ)k α`

β`
I(t; s + `+ 1, α(k + 1) + 1, β).

The desired result follows from Lemma 1 applied to I(t; a, b, c) with a = s+ `+ 1, b = α(k+ 1)+ 1
and c = β, after some elementary simplifications. This concludes the proof of Proposition 4.

Based on Proposition 4, the following approximations are acceptable:

µ′s(t) ≈
K

∑
k=0

k

∑
`=0

s+`+1

∑
j=0

∆k,`,j;s

[(
1 +

t
β

)j−α(k+1)
− 1

]
, µ′s ≈

K

∑
k=0

k

∑
`=0

s+`+1

∑
j=0

∆∗k,`,j;s,

where K denotes any large integer. Such finite sums can give precise numerical evaluations of moments,
better in terms of error than computational integration procedures.

The next proposition completes Proposition 4 by investigating the case γ > 1.

Proposition 5. We adopt the same setting to Proposition 4 but with γ > 1. Then, for t ≥ 0, the sth incomplete
moment of X according to t is given as

µ′s(t) =
+∞

∑
k=0

k

∑
`=0

`

∑
m=0

s+m+1

∑
j=0

Ωk,`,m,j;s

[(
1 +

t
β

)j−α(`+1)
− 1

]
,
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where

Ωk,`,m,j;s =
α− 1

γ

(
k
`

)(
`

m

)
(k + 1)

(
1− 1

γ

)k
(−1)`αm+1βs

(
s + m + 1

j

)
(−1)s+m+1−j 1

j− α(`+ 1)
.

Also, provided to s < α− 1, by applying t→ +∞, the sth ordinary moment of X is given as

µ′s =
+∞

∑
k=0

k

∑
`=0

`

∑
m=0

s+m+1

∑
j=0

Ω∗k,`,m,j;s,

where Ω∗k,`,m,j;s = −Ωk,`,m,j;s.

Proof. Of course, the integral definition set in Equation (9) still holds. Now, remark that, after some
developments, we can write

fMOLBL(x; α, β, γ) =
α(α− 1)

β2γ

x(1 + x/β)−(α+1)

{1− (1− 1/γ) [1− (1 + x/β)−α(1 + αx/β)]}2 , x ≥ 0.

Then, since γ > 1, we have (1 − 1/γ) [1− (1 + x/β)−α(1 + αx/β)] ∈ (0, 1) for any x ≥ 0,
the geometric series expansion gives

fMOLBL(x; α, β, γ) =

α(α− 1)
β2γ

x
(

1 +
x
β

)−(α+1) +∞

∑
k=0

(k + 1)
(

1− 1
γ

)k
[

1−
(

1 +
x
β

)−α (
1 +

αx
β

)]k

.

The classical binomial formula applied two times in a row gives

fMOLBL(x; α, β, γ) =

α(α− 1)
β2γ

+∞

∑
k=0

k

∑
`=0

`

∑
m=0

(
k
`

)(
`

m

)
(k + 1)

(
1− 1

γ

)k
(−1)`

αm

βm xm+1
(

1 +
x
β

)−α(`+1)−1
.

Through the use of the integral function I(t; a, b, c) defined in Equation (8), we obtain

µ′s(t) =
α(α− 1)

β2γ

+∞

∑
k=0

k

∑
`=0

`

∑
m=0

(
k
`

)(
`

m

)
(k + 1)

(
1− 1

γ

)k
(−1)`

αm

βm

∫ t

0
xs+m+1

(
1 +

x
β

)−α(`+1)−1
dx

=
α(α− 1)

β2γ

+∞

∑
k=0

k

∑
`=0

`

∑
m=0

(
k
`

)(
`

m

)
(k + 1)

(
1− 1

γ

)k
(−1)`

αm

βm I(t; s + m + 1, α(`+ 1) + 1, β).

By virtue of Lemma 1 applied to I(t; a, b, c) with a = s + m + 1, b = α(` + 1) + 1 and c = β,
the stated result follows after some developments. The proof of Proposition 5 is ended.

Thanks to Proposition 5, the following approximations are possible:

µ′s(t) ≈
K

∑
k=0

k

∑
`=0

`

∑
m=0

s+m+1

∑
j=0

Ωk,`,m,j;s

[(
1 +

t
β

)j−α(`+1)
− 1

]
, µ′s ≈

K

∑
k=0

k

∑
`=0

`

∑
m=0

s+m+1

∑
j=0

Ω∗k,`,m,j;s,

where K denotes any large integer. Such finite sums can give precise numerical evaluations of moments,
better in terms of error than computational integration techniques.

From the moments of the MOLBL distribution, under some condition on α, one can derive
standard measures of centrality, dispersion, asymmetry and peakness, such as the mean (µ),
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variance (V), moments skewness coefficient (S) and moments kurtosis coefficient (K), respectively.
They are classically defined by

µ = µ′1, V = µ′2 − µ2, S =
µ′3 − 3µ′2µ + 2µ3

V3/2 , K =
µ′4 − 4µ′3µ + 6µ′2µ2 − 3µ4

V2 ,

respectively, all existing for α > 5.
Table 1 indicates numerical values for mean, variance, skewness and kurtosis of the MOLBL

distribution for α = 6 and some selected values of parameters β and γ.

Table 1. Numerical values for mean, variance, skewness and kurtosis of the Marshall–Olkin
length-biased Lomax (MOLBL) distribution for selected values of the parameters β and γ.

(β, γ) µ V S K

(50, 100) 132.9987 5732.9510 2.5346 29.9552
(10, 5) 9.8389 60.6085 3.0677 37.7773
(2, 2) 1.3567 1.4957 3.5105 46.1141
(2, 0.5) 0.7229 0.6452 4.6659 74.5677
(10, 0.2) 2.2954 8.5604 5.9086 115.8958

(0.5, 0.005) 0.0161 0.0010 19.9770 1437.7980
(100, 0.0002) 0.5982 2.1929 70.4261 21,114.7400

For the considered values, we see that the MOLBL distribution is right skewed. Wide variations
for the considered measures are observed.

2.7. Stress-Strength Parameter

The stress–strength parameter of a distribution naturally appears in many random systems and
population comparison (see [33–35]). Here, we formulate a result on the expression of this parameter
in the context of the MOLBL distribution.

Proposition 6. Let us define the stress–strength parameter by R = P(Y ≤ X), where X and Y are independent
random variables following the MOLBL(α, β, γ1) and MOLBL(α, β, γ2) distributions, respectively. Then,
we have

R =
γ1γ2

(γ1 − γ2)2

(
− ln(γ1) + ln(γ2)−

γ2 − γ1

γ2

)
.

Proof. We follow the lines of ([36] [Section 2]). Based on the independence of X and Y, and the
expressions of their pdf and sf in Equations (3) and (5), respectively, we get the following
integral expression:

R =
∫ +∞

0
SMOLBL(x; α, β, γ1) fMOLBL(x; α, β, γ2)dx

=
∫ +∞

0
γ1

(1 + x/β)−α(1 + αx/β)

1− (1− γ1)(1 + x/β)−α(1 + αx/β)

α(α− 1)γ2

β2
x(1 + x/β)−(α+1)

[1− (1− γ2)(1 + x/β)−α(1 + αx/β)]2
dx.

By performing the change of variables y = (1 + x/β)−α(1 + αx/β), the above integral is
reduced to
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R = γ1γ2

∫ 1

0

y
[1− (1− γ1)y][1− (1− γ2)y]2

dy

=
γ1γ2

(γ1 − γ2)2

∫ 1

0

(
1− γ1

1− (1− γ1)y
− 1− γ2

1− (1− γ2)y
− γ2 − γ1

[1− (1− γ2)y]2

)
dy

=
γ1γ2

(γ1 − γ2)2

[
− ln[1− (1− γ1)y] + ln[1− (1− γ2)y]−

γ2 − γ1

1− γ2

1
1− (1− γ2)y

]y=1

y=0

=
γ1γ2

(γ1 − γ2)2

(
− ln(γ1) + ln(γ2)−

γ2 − γ1

γ2

)
.

We get the desired result.

Proposition 6 is the first step for the statistical treatment of R, as derived in [36], for instance.

3. Applied Contributions

We now focus on the applicability of the MOLBL model in a concrete statistical setting.

3.1. Estimation with Simulation

As developed in [23], the parameters α, β and γ of the MOLBL model can be estimated via
the maximum likelihood method. That is, based on n data supposed to be drawn from the MOLBL
distribution, say x1, . . . , xn, the maximum likelihood estimates (MLEs) of α, β and γ, say α̂, β̂ and γ̂,
respectively, are defined by

(α̂, β̂, γ̂) = argmax(α,β,γ) L(α, β, γ; x1, . . . , xn),

where L(α, β, γ; x1, . . . , xn) = ∏n
i=1 fMOLBL(xi; α, β, γ) is the likelihood function of the model, that is

L(α, β, γ; x1, . . . , xn) =
αn(α− 1)nγn

β2n

[∏n
i=1 xi]

[
∏n

i=1(1 + xi/β)−(α+1)
]

∏n
i=1 [1− (1− γ)(1 + xi/β)−α(1 + αxi/β)]2

.

The log-likelihood function as well as the related score equations can be found in [23]. However,
it is worth mentioning that the MLEs α̂, β̂ and γ̂ have no closed-form expressions. For practical
purposes, they can be determined numerically by the use of statistical software. Here, we employ the
R software with the package named maxLik (see [37]).

As a new contribution, we conduct a simulation study to check the asymptotic behavior of the
MLEs of the model using Newton–Raphson method. The algorithm used in this simulation study is
as follows.

Step 1: We chose the number of replications denoted by N.
Step 2: We chose the sample size denoted by n, the values of the parameters α, β, γ and an initial

value denoted by x0.
Step 3: We generate a value denoted by u from a random variable with the unit uniform distribution.
Step 4: We update x0 by using the Newton formula in the following way:

x? = x0 − FMOLBL(x0; α, β, γ)− u
fMOLBL(x0; α, β, γ)

.

Step 5: For a small enough tolerance limit denoted by ε, if |x0 − x?| ≤ ε, we store x = x? as a
sample from MOLBL distribution.

Step 6: Otherwise, if |x0 − x?| > ε then, set x0 = x? and go to Step 3.
Step 7: Repeat Steps 3–6 n times to obtain x1, x2, . . . , xn, respectively.
Step 8: Compute the MLEs of the parameters.
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Step 9: Repeat Steps 3–8 N times to generate N MLEs.

The results are obtained from N = 1000 replications. In each replication, a random sample of size
n = 80, 120, 200, 300 and 800 is generated for different combinations of α, β and γ. Here, the considered
values of α, β and γ are (1.5, 5, 0.5), (1.5, 5, 1), (2.5, 10, 0.5), (1.75, 10, 1) and (1.5, 8, 0.5). Tables 2–6
list the average MLEs, biases and the corresponding mean squared errors (MSEs). We recall that the
average MLEs of α, β and γ are given by

α̂ =
1
N

N

∑
i=1

α̂i β̂ =
1
N

N

∑
i=1

β̂i γ̂ =
1
N

N

∑
i=1

γ̂i,

respectively, the biases of α, β and γ are

1
N

N

∑
i=1

(α̂i − α),
1
N

N

∑
i=1

(β̂i − β),
1
N

N

∑
i=1

(γ̂i − γ),

respectively, and the MSEs of α, β and γ are

1
N

N

∑
i=1

(α̂i − α)2,
1
N

N

∑
i=1

(β̂i − β)2,
1
N

N

∑
i=1

(γ̂i − γ)2,

respectively.

Table 2. Average maximum likelihood estimates (MLEs), biases and mean squared errors (MSEs) for
α = 1.5, β = 5 and γ = 0.5.

Sample Size (n) Parameters Estimates Biases MSEs

80
α 1.5340 0.0340 0.0322
β 5.3267 0.3267 8.8988
γ 1.2705 0.7705 27.4990

120
α 1.5202 0.0202 0.0215
β 5.3060 0.3060 5.5384
γ 0.8423 0.3423 9.1361

200
α 1.5146 0.0146 0.0117
β 5.0904 0.0904 3.0291
γ 0.6342 0.1342 0.2347

300
α 1.5066 0.0066 0.0085
β 5.0777 0.0777 1.9412
γ 0.5720 0.0720 0.0899

800
α 1.5043 0.0043 0.0031
β 5.0187 0.0187 0.7575
γ 0.5322 0.0322 0.0291

The values in Tables 2–6 show that, as the sample size increases, the MSEs of the estimates of the
parameters tend to zero and the average estimates of the parameters tend closer to the true parameter
values. One can notice that the convergence is slow for the estimation of β. This can be explained by
the fact that it is taken relatively large in our experiments, i.e., at 5, 8 and 10. The overall numerical
convergence can certainly be improved by using modern algorithms, such as the Simulated Annealing
(SANN) described in [38]. Indeed, the SANN method guarantees a convergence that does not depend
on the initial values, even when several local extrema are present. Further details and applications of
this method can be found in [39]. Alternatively, Bayesian estimation can be investigated in a similar
manner to the former Lomax distribution, as performed in [8]. However, these methods require
additional developments that we leave for future work.
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Table 3. Average MLEs, biases and MSEs for α = 1.5, β = 5 and γ = 1.

Sample Size (n) Parameters Estimates Biases MSEs

80
α 1.5218 0.0218 0.0204
β 5.5022 0.5022 11.9981
γ 2.2212 1.2212 36.6856

120
α 1.5178 0.0178 0.0122
β 5.2425 0.2425 6.6696
γ 1.6652 0.6652 19.0689

200
α 1.5028 0.0028 0.0077
β 5.2496 0.2496 4.0063
γ 1.1926 0.1926 0.6521

300
α 1.5027 0.0027 0.0046
β 5.1280 0.1280 2.3991
γ 1.1132 0.1132 0.2656

800
α 1.5062 0.0062 0.0019
β 5.0525 0.0525 0.9802
γ 1.0639 0.0639 0.1020

Table 4. Average MLEs, biases and MSEs for α = 2.5, β = 10 and γ = 0.5.

Sample Size (n) Parameters Estimates Biases MSEs

80
α 2.5924 0.0924 0.6944
β 13.5151 3.5151 229.5007
γ 4.7891 4.2891 267.2515

120
α 2.5221 0.0221 0.3499
β 12.3223 2.3223 128.5654
γ 4.9739 4.4739 438.0705

200
α 2.4826 −0.0173 0.0949
β 11.7554 1.7554 68.4243
γ 2.3752 1.8752 81.9030

300
α 2.4977 −0.0022 0.0631
β 10.8296 0.8296 46.9488
γ 1.8467 1.3467 58.7546

800
α 2.4985 −0.0014 0.0215
β 10.3779 0.3779 13.5564
γ 0.6925 0.1925 5.6992

Table 5. Average MLEs, biases and MSEs for α = 1.75 , β = 10 and γ = 1.

Sample Size (n) Parameters Estimates Biases MSEs

80
α 1.7641 0.0141 0.0406
β 11.6680 1.6680 68.3119
γ 3.3036 2.3036 126.6127

120
α 1.7657 0.0157 0.0286
β 11.2234 1.2233 44.8406
γ 2.4113 1.4113 75.0091

200
α 1.7508 0.0008 0.0176
β 10.9717 0.9717 27.4793
γ 1.3787 0.3787 2.6545

300
α 1.7476 −0.0023 0.0121
β 10.4570 0.4570 16.2543
γ 1.2615 0.2615 1.4301

800
α 1.7515 0.0015 0.0041
β 10.1657 0.1657 5.4276
γ 1.0745 0.0745 0.1636
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Table 6. Average MLEs biases and MSEs for α = 1.5, β = 8 and γ = 0.5.

Sample Size (n) Parameters Estimates Biases MSEs

80
α 1.5297 0.0297 0.0300
β 8.6390 0.6390 23.9079
γ 0.9305 0.4305 3.3392

120
α 1.5228 0.0227 0.0204
β 8.1801 0.1801 13.3483
γ 0.8115 0.3115 1.7893

200
α 1.5152 0.0152 0.0131
β 8.2728 0.2728 8.6269
γ 0.6280 0.1280 0.2504

300
α 1.5129 0.0129 0.0080
β 8.0517 0.0517 5.4576
γ 0.5975 0.0975 0.1281

800
α 1.5028 0.0028 0.0033
β 8.1072 0.1072 1.9991
γ 0.5260 0.0260 0.0287

3.2. Applications to Four Data Sets

This section provides new applications to explore the potential of the MOLBL model with other
six well known competitive models, namely the power Lomax (POLO) (see [19]), exponentiated Lomax
(EXLO) (see [14]), Marshall–Olkin length-biased exponential (MOLBE) (see [40]), length-biased Lomax
(LBLO), original Weibull and original Lomax models. The MOLBL, POLO and EXLO models have
three parameters, whereas the MOLBE, LBLO, Weibull and Lomax models have two parameters.
The pdfs of these competitive models are shown below.

• The pdf of the POLO model is

fPOLO(x; α, β, γ) = αβγαxβ−1(γ + xβ)−(α+1), x ≥ 0,

and fPOLO(x; α, β, γ) = 0 for x < 0.
• The pdf of the EXLO model is

fEXLO(x; α, β, γ) = αβγ
[
1− (1 + βx)−α

]γ−1
(1 + βx)−(α+1), x ≥ 0,

and fEXLO(x; α, β, γ) = 0 for x < 0.
• The pdf of the LBLO model is given as Equation (2), that is

fLBLO(x; α, β) =
α(α− 1)

β2 x
(

1 +
x
β

)−(α+1)
, x ≥ 0,

and fLBLO(x; α, β) = 0 for x < 0.
• The pdf of the MOLBE model is

fMOLBE(x; α, β) =
αxe−x/β

β2
[
1− (1− α)(1 + x/β)e−x/β

]2 , x ≥ 0,

and fMOLBE(x; α, β) = 0 for x < 0.
• The pdf of the Weibull model is

fW(x; α, β) =
β

α

( x
α

)β−1
e−(x/α)β

, x ≥ 0,
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and fW(x; α, β) = 0 for x < 0.
• The pdf of the Lomax model is specified by Equation (1), that is

fL(x; α, β) =
α

β

(
1 +

x
β

)−(α+1)
, x ≥ 0,

and fL(x; α, β) = 0 for x < 0.

Four data sets were considered and analyzed, chosen for their interests as well as their different
statistical natures (right-skewed, left-skewed, high peak, etc.) The model parameters were classically
estimated by the maximum likelihood method, as described in Section 3.1 for the MOLBL model.
Then, we compared the considered models by taking into account the AIC, CAIC, BIC, HQIC, A∗, W∗,
KS and the p-value of the corresponding KS test. The best model is the one with the smallest values
for the AIC, CAIC, BIC, HQIC, A∗, W∗, KS and the greatest value for the p-value of the KS test.

Data set 1: The data were extracted from [41]. It represents the survival times of a group of
patients suffering from Head and Neck cancer disease and treated using radiotherapy. The data are as
follows: 6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 64, 83, 84, 91, 108, 112, 129,
133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160, 160, 165, 173, 176, 218,
225, 241, 248, 273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417.

Table 7 shows the MLEs of the parameters of the considered models, with their standard errors.

Table 7. Estimates and standard errors (in parentheses) of the parameters for Data set 1.

Models α β γ

MOLBL 2.9983 (0.4386) 25.1170 (32.8547) 15.3790 (26.7963)
POLO 1.9084 (1.1445) 1.3647 (0.2460) 1979.7885 (1641.0391)
EXLO 3.5988 (0.6011) 0.0021 (0.0002) 1.4541 (0.2738)

MOLBE 0.0556 (0.0664) 382.9336 (238.9084) -
LBLO 3.6768 (0.9633) 193.7052 (89.0329) -

Weibull 223.1995 (31.8506) 0.9734 (0.0936) -
Lomax 6.7066 (6.1071) 1287.6457 (1332.8781) -

Table 8 indicates the values of the AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Table 8. Some criteria and goodness of fit measures for Data set 1.

Models AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBL 746.1597 746.6040 752.3410 748.5674 0.8795 0.1649 0.1313 0.2697
POLO 746.4435 746.8880 752.6249 748.8514 0.8645 0.1776 0.1342 0.2470
EXLO 746.9222 747.3666 753.1036 749.3300 0.9219 0.1927 0.1381 0.2181

MOLBE 748.1729 748.3912 752.4938 749.7782 1.3519 0.1771 0.1335 0.2522
LBLO 746.4163 746.6346 752.4372 748.9216 1.0499 0.1883 0.1444 0.1777

Weibull 748.7903 749.0086 752.9112 750.3956 1.2746 19.3330 0.1591 0.1059
Lomax 747.2189 747.4372 752.3998 748.8242 1.2243 0.2545 0.1452 0.1727

From Table 8, it is clear the MOLBL model is the best, with the smallest values for the AIC with
AIC = 746.1597, CAIC with CAIC = 746.6040, BIC with BIC = 752.3410, with HQIC with HQIC
= 748.5674, A∗ with A∗ = 0.8795, W∗ with W∗ = 0.1649, KS with KS = 0.1313 and the greatest value
for the p-value (p = 0.2697).

Data set 2: The data were taken from [42]. They represent the life of fatigue fracture of Kevlar
49/epoxy strands that are subject to a constant pressure at the 90% stress level until the strand failure.
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The data are as follows: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566,
0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596,
1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263,
1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903,
2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045,
3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

Table 9 shows the MLEs of the parameters of the considered models, with their standard errors.

Table 9. Estimates and standard errors (in parentheses) of the parameters for Data set 2.

Models α β γ

MOLBL 4.1671 (1.0776) 0.5366 (0.6936) 21.7677 (38.4907)
POLO 3.6298 (3.0090) 1.5908 (0.2425) 9.7499 (8.4845)
EXLO 190 (44) 0.0035 (0.00071) 1.7 (0.28)

MOLBE 0.6089 (0.3517) 1.1944 (0.3124) -
LBLO 14.7407 (13.7182) 12.4777 (13.2882) -

Weibull 2.1325 (0.1944) 1.3254 (0.1138) -
Lomax 112,212.8 (11,863.8471) 219,815.9 (231.3384) -

Table 10 indicates the values of the AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Table 10. Some criteria and goodness of fit measures for Data set 2.

Models AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBL 248.4290 248.7623 255.4212 251.2234 0.3773 0.0501 0.0731 0.7831
POLO 249.0583 249.3915 256.0505 251.8526 0.4969 0.0794 0.0845 0.6182
EXLO 250.4906 250.8239 257.4828 253.2850 0.6703 0.1122 0.0941 0.4818

MOLBE 249.5299 249.6944 256.1914 251.3929 0.5918 0.0854 0.0907 0.5284
LBLO 249.0605 249.2250 256.7220 251.9235 0.5671 0.0835 0.0859 0.5976

Weibull 249.0494 249.2138 256.7109 251.9123 0.7889 0.1353 0.1098 0.2959
Lomax 258.2289 258.3934 262.8904 260.0919 2.9893 0.5711 0.1663 0.0262

From Table 10, the MOLBL model is revealed to be the best, with the smallest values for the
AIC with AIC = 248.4290, CAIC with CAIC = 248.7623, BIC with BIC = 255.4212, with HQIC with
HQIC = 251.2234, A∗ with A∗ = 0.3773, W∗ with W∗ = 0.0501, KS with KS = 0.0731 and the greatest
value for the p-value (p = 0.7831).

Data set 3: The data were taken from [43]. The data represent the survival times of 72 guinea pigs
infected with virulent tubercle bacilli. The data are as follows: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77,
0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22,
1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97,
2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02,
4.32, 4.58, 5.55.

Table 11 shows the MLEs of the parameters of the considered models, with their standard errors.
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Table 11. Estimates and standard errors (in parentheses) of the parameters for Data set 3.

Models α β γ

MOLBL 4.8515 (1.0311) 0.2996 (0.3922) 257.7322 (661.4667)
POLO 1.7086 (1.0620) 2.5745 (0.4766) 6.1941 (4.1253)
EXLO 220 (52.2257) 0.0051 (0.0011) 3.6 (0.7381)

MOLBE 2.8751 (1.3436) 0.6030 (0.0960) -
LBLO 18,290,034 (16,777.2184) 16,168,309 (18.1193) -

Weibull 1.9958 (0.1362) 1.8254 (0.1587) -
Lomax 979,109.3 (5,869,365) 1,731,072 (0.0000) -

Table 12 indicates the values of the AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Table 12. Some criteria and goodness of fit measures for Data set 3.

Models AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBL 191.9522 192.3051 198.7822 194.6712 0.3737 0.0637 0.0774 0.7803
POLO 193.0753 193.4282 199.9053 195.7943 0.4053 0.0652 0.0776 0.7780
EXLO 194.5034 194.8563 201.3333 197.2224 0.5082 0.0784 0.0926 0.5667

MOLBE 194.7894 194.9633 199.3427 196.6021 0.8859 0.1372 0.1109 0.3385
LBLO 199.0483 199.2222 203.6016 200.8610 1.8464 0.3053 0.1681 0.0341

Weibull 195.5796 195.7535 200.1329 197.3923 1.0066 0.1678 0.1048 0.4077
Lomax 230.0741 230.2481 234.6275 231.8869 7.2662 1.4044 0.2945 0.0000

Table 12 confirms that the MOLBL model is more efficient in adaptive capacity, having the smallest
values for the AIC with AIC = 191.9522, CAIC with CAIC = 192.3051, BIC with BIC = 198.7822,
with HQIC with HQIC = 194.6712, A∗ with A∗ = 0.3737, W∗ with W∗ = 0.0637, KS with KS = 0.0774
and the greatest value for the p-value (p = 0.7803).

Data set 4: The data were taken from [44]. They represent the survival data on the death times of
psychiatric patients admitted to the University of Iowa hospital. The data are as follows: 1, 1, 2, 22, 30,
28, 32, 11, 14, 36, 31, 33, 33, 37, 35, 25, 31, 22, 26, 24, 35, 34, 30, 35, 40, 39.

Table 13 shows the MLEs of the parameters of the considered models, with their standard errors.

Table 13. Estimates and standard errors (in parentheses) of the parameters for Data set 4.

Models α β γ

MOLBL 43.4555 (43.8679) 198.2956 (222.0610) 43.2421 (41.1924)
POLO 9.6168 (8.6506) 1.7296 (0.2658) 2914.5124 (2549.2580)
EXLO 0.7107 (0.1072) 26.4658 (299.7339) 54.7922 (431.8110)

MOLBE 2.3713 (1.3264) 9.7102 (2.1102) -
LBLO 19,776,055 (0.0000) 261,169,295 (0.0000) -

Weibull 28.8672 (2.7794) 2.0807 (0.3791) -
Lomax 669,586.6 (16,777.4165) 17,628,007.9 (164.0279) -

Table 14 indicates the values of the AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Based on Table 14, it is flagrant that the MOLBL model is preferable among all, with the smallest
values for the AIC with AIC = 208.6018, CAIC with CAIC = 209.6927, BIC with BIC = 212.3761,
with HQIC with HQIC = 209.6887, A∗ with A∗ = 2.0432, W∗ with W∗ = 0.1393, KS with KS = 0.1547
and the greatest value for the p-value (p = 0.5622).
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Table 14. Some criteria and goodness of fit measures for Data set 4.

Models AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBL 208.6018 209.6927 212.3761 209.6887 2.0432 0.1393 0.1547 0.5622
POLO 218.5600 219.6509 222.3343 219.6469 3.3376 0.6043 0.2953 0.0214
EXLO 254.1068 255.1977 257.8811 255.1937 4.9443 0.9790 0.3587 0.0024

MOLBE 215.0588 215.5805 217.5750 215.7834 2.9376 0.4789 0.2590 0.0609
LBLO 220.8978 221.4195 223.4140 221.6224 3.5020 0.6239 0.3037 0.0164

Weibull 213.6781 214.1999 216.1943 214.4028 2.9932 0.4508 0.2411 0.0972
Lomax 226.2607 226.7825 228.7769 226.9854 4.3321 0.9206 0.3741 0.0013

A graphical analysis is now performed, showing the fitted pdfs and cdfs of all the models.
The fitted pdfs are superposed over the corresponding histogram of the data, and the estimated cdfs
are superposed over the corresponding empirical cdf of the data. The plots are displayed in Figures 1–4,
for Data sets 1, 2, 3 and 4, respectively.
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Figure 1. Plots of (a) estimated probability density function (pdf) and (b) estimated cumulative
distribution function (cdf) of the MOLBL model with those of the other competitive models for Data
set 1.
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Figure 2. Plots of (a) estimated pdf and (b) estimated cdf of the MOLBL model with those of the other
competitive models for Data set 2.
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Figure 3. Plots of (a) estimated pdf and (b) estimated cdf of the MOLBL model with those of the other
competitive models for Data set 3.
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Figure 4. Plots of (a) estimated pdf and (b) estimated cdf of the MOLBL model with those of the other
competitive models for Data set 4.

In all the figures, we see that the MOLBL model better adjusted the empirical objects, making
enough pliancy to adapt to the right or left skewness property of the data, as well as versatile peakness.

4. Concluding Remarks

The present study completes the work of [23] about the Marshall–Olkin length-biased Lomax
distribution by providing important theoretical and applied contributions. New results on the
following subjects are proved: (i) compounding, (ii) stochastic ordering, (iii) asymptotic equivalences
of the main functions, (iv) quantile, (v) incomplete and ordinary moments, and (vi) stress–strength
parameter. Thanks to a simulation study, the maximum likelihood estimates of the parameters
of the Marshall–Olkin length-biased Lomax model are proved to be numerically efficient in the
convergence sense. New applications are given, revealing that the Marshall–Olkin length-biased Lomax
model is more powerful than expected; it can outperform the famous power Lomax, exponentiated
Lomax, Marshall–Olkin length-biased exponential, length-biased Lomax, Weibull and Lomax models.
This fact is illustrated by the analysis of four different data sets coming from real-life experiments.
Graphic evidence is also provided.

We hope that the present study has revealed the potential of the Marshall–Olkin
length-biased Lomax distribution for various probabilistic and statistical purposes, also opening
new application horizons.
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