
Mathematical

and Computational

Applications

Article

Modeling and Optimizing the Multi-Objective Portfolio
Optimization Problem with Trapezoidal Fuzzy Parameters

Alejandro Estrada-Padilla, Daniela Lopez-Garcia, Claudia Gómez-Santillán, Héctor Joaquín Fraire-Huacuja ,
Laura Cruz-Reyes, Nelson Rangel-Valdez * and María Lucila Morales-Rodríguez

����������
�������

Citation: Estrada-Padilla, A.;

Lopez-Garcia, D.; Gómez-Santillán,

C.; Fraire-Huacuja, H.J.; Cruz-Reyes,

L.; Rangel-Valdez, N.;

Morales-Rodríguez, M.L. Modeling

and Optimizing the Multi-Objective

Portfolio Optimization Problem with

Trapezoidal Fuzzy Parameters. Math.

Comput. Appl. 2021, 26, 36. https://

doi.org/10.3390/mca26020036

Academic Editor: Leonardo Trujillo

Received: 28 February 2021

Accepted: 22 April 2021

Published: 24 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate Program Division, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero,
Ciudad Madero 89440, Mexico; aestrada1993@hotmail.com (A.E.-P.); dann.loga@gmail.com (D.L.-G.);
claudia.gs@cdmadero.tecnm.mx (C.G.-S.); hector.fh@cdmadero.tecnm.mx (H.J.F.-H.);
laura.cr@cdmadero.tecnm.mx (L.C.-R.); lucila.mr@cdmadero.tecnm.mx (M.L.M.-R.)
* Correspondence: nelson.rv@cdmadero.tecnm.mx

Abstract: A common issue in the Multi-Objective Portfolio Optimization Problem (MOPOP) is the
presence of uncertainty that affects individual decisions, e.g., variations on resources or benefits
of projects. Fuzzy numbers are successful in dealing with imprecise numerical quantities, and
they found numerous applications in optimization. However, so far, they have not been used to
tackle uncertainty in MOPOP. Hence, this work proposes to tackle MOPOP’s uncertainty with a new
optimization model based on fuzzy trapezoidal parameters. Additionally, it proposes three novel
steady-state algorithms as the model’s solution process. One approach integrates the Fuzzy Adaptive
Multi-objective Evolutionary (FAME) methodology; the other two apply the Non-Dominated Genetic
Algorithm (NSGA-II) methodology. One steady-state algorithm uses the Spatial Spread Deviation as
a density estimator to improve the Pareto fronts’ distribution. This research work’s final contribution
is developing a new defuzzification mapping that allows measuring algorithms’ performance using
widely known metrics. The results show a significant difference in performance favoring the proposed
steady-state algorithm based on the FAME methodology.

Keywords: multi-objective optimization; multi-objective portfolio optimization problem; trapezoidal
fuzzy numbers; density estimators; steady state algorithms

1. Introduction

The Portfolio Optimization Problem (POP) is always present in organizations. One key
issue in POP’s decision process is the uncertainty caused by the variability in the project
benefits and resources. The latter situation arises the necessity of a tool for describing
and representing uncertainty associated with real-life decision-making situations. The
POP searches a subset of projects under a predefined set of resources that maximizes the
produced benefits; its formal definition is as follows.

Let A be a finite set of N projects, each characterized by estimates of its impacts and
resource consumption. A portfolio is a subset of A that can be represented by a binary
vector x = x1, x2, . . . , xn that assigns xi = 1 for every financed project i, and xi = 0
otherwise. Let

→
z (x) = z1 (x), z2(x), . . . , zp(x) be the vector of impacts resulting from

the linear sum of the attribute values of each financed project in x, i.e., the vector of
size p representing multiple attributes related to organizational goals that describe the
consequences of a portfolio x. Assume w.l.o.g. that the higher an attribute’s value is, the
better. Then, Problem (1) formally defines POP.

Maximize
{

z1(x), z2(x), . . . , zp(x)
}

, x ∈ RF (1)

Math. Comput. Appl. 2021, 26, 36. https://doi.org/10.3390/mca26020036 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0003-3326-8807
https://orcid.org/0000-0002-4745-2325
https://doi.org/10.3390/mca26020036
https://doi.org/10.3390/mca26020036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26020036
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca26020036?type=check_update&version=2

Math. Comput. Appl. 2021, 26, 36 2 of 30

In Problem (1), RF is the space of feasible portfolios, usually determined by the
available budget and other constraints that the Decision Maker (DM) wants to impose (e.g.,
budget limits on types, geographic areas, social roles of projects, etc.).

Different scientific research works address POP’s variant in Problem (1), considering
precise values on the available resources and the projects’ impacts [1–6]. Moreover, there
is an area called Portfolio Decision Analysis (PDA) dedicated to studying mathematical
models to solve POP. There are theories, methods, and practices developed within this area
to help decision-makers select projects from a very large set of them, taking into account
relevant constraints, preferences, uncertainty, or imprecision [7]. PDA-related problems’
difficulty comes from a combination of factors such as (1) large entry space; (2) conse-
quences of multidimensionality in portfolio construction and selection; or (3) qualitative,
imprecise or uncertain information.

A large entry space requires a solution process with exponential complexity for decision-
making problems, even with simple decisions on allocating resources for candidate projects.

The consequences of multidimensionality in portfolio construction and selection relate
conflicting attributes with difficulty in the decision process. Usually, the larger the number
of dimensions, the more complex the solution space is. The latter causes a situation with so
many solutions that it easily exceeds the human cognitive capabilities for evaluating and
selecting the best candidate solutions [8].

The qualitative, imprecise, or uncertain information exists because of the varying
nature of the distinct attributes and resources considered in the construction of portfolios.
Such information can sometimes occur from different circumstances as a DM needs to use
non-numerical data to describe the effects of a project instead of a quantitative measure.
Other cases might indicate that there is lack of knowledge about future states of specific
criteria, vagueness in the provided information, the values used to describe attributes
or resources are not accurately known beforehand, or vague approximations and areas
of ignorance. All the previous situations, denoted hereafter as uncertainty, limit the sci-
entific approach in Operational Research-Decision Aiding [9], and modeling them using
probability distributions can be a challenge [9].

Several optimization problems use fuzzy numbers to model the uncertainty in pa-
rameters’ values from arbitrariness, imprecision, and poor determination [10]. Among
the most recent and works related to the Multi-objective Portfolio Optimization Problem
are the following: García [11] solved the Multi-objective and Static Portfolio Optimization
Problem (MOSPOP) with real parameters using the generational algorithms HHGA-SPPv1
and HHGA-SPPv2 and considering the preferences of a DM. Rivera-Zarate [12] uses the
Non-Outranked Ant Colony Optimization (NO-ACO) to address a variant of MOSPOP
that includes interdependency among objectives and that has partial support with real
parameters. Bastiani [13] solves the MOSPOP variant that includes synergy using ACO-
SPRI, ACO-SOP, and ACO-SOP, three strategies based on the ACO that incorporate in
their search process priority ranking, preferences, and synergy, respectively. Sánchez [14]
proposes using classification methods on the generational algorithms H-MCSGA and I-
MCSGA to approximate the Region of Interest (ROI) in MOSPOP. The first algorithm adds
the preferences at the beginning of the process, while the second algorithm adds them
during the process (while interacting with the DM). Balderas addresses the MOSPOP with
uncertainty using intervals; it proposes the generational algorithm I-NOSGA based on
NSGAII but incorporates interval numbers. I-NOSGA includes preferences “a priori” and
uses Crowding Distance as its density estimator. Martínez [15] addresses the Dynamic
Multi-objective Portfolio Optimization Problem (DMOPOP) with real parameters; the
proposed approach introduces dynamism by changing the problem definition at the end of
each period. Martínez presents three new multi-objective algorithms that also incorporate
“a priori” preferences: the generational D-NSGA-II-FF, a new version of a classic genetic
algorithm of no-dominance; the D-AbYSS-FF, a modified version of scatter search; and the
D-MOEA\D-FF, a new variant of a state-of-the-art algorithm based on decomposition.

Math. Comput. Appl. 2021, 26, 36 3 of 30

Table 1 summarizes the main features of the previously described works. Column 1
cites the research work and the studied POP variant. Columns 2 to 7 show the considered
features in the research works: the solution algorithms it proposed, the type of instances it
solved, the performance metrics it used, if it integrated preferences in the search process, if
it considered a static or dynamic POP’s version, the type of parameters it used, and if it
used a steady-state selection scheme or not.

Table 1. Related works.

Work Algorithm Instances Metrics Preferences E/D Parameters Steady State

[11]
Social projects

HHGA-SPPv1
HHGA-SPPv2

(3,4,20)
(3,9,100)

No-dominated
Solutions Yes E Real NA

[12]
Interdependent
social projects,

several objectives

NO-ACO (10,4,25)
(10,9,100)

No-dominated
Solutions,

ROI solutions
Yes E Real NA

[13]
Social projects
with priorities

and sinergy

ACO-SPRI
ACO-SOP
ACO-SOP

sinergy

(1,ND,25)
(1,ND,40)

(1,ND,100)

No-dominated
Solutions Yes E Real NA

[14]
Social projects,

several objectives

H-MCSGA
I-MCSGA

(3,9,100)
(2,9,150)

(1,16,500)

No-dominated
solutions, higher

net flow
Yes E Real No

[10]
Portfolio

selection with
interval

parameters

I-NSGA-II-CD (1,2,100)
(1,9,100) Cardinality Yes E Intervals No

[15]
Dynamic
portfolio

selection and
several objectives

D-NSGA-II-FF
AbYSS-FF

D-MOEA\D–
FF

(30,2,100)
(30,3,100)
(30,9,100)

Hypervolume
modified, Spread

modified,
inverted

generational
distance
modified

Yes D Real No

This work
Portfolio

selection with
trapezoidal

fuzzy numbers

T-NSGA-II-CD
T-NSGA-II-

SSD
T-FAME

(12,2,25)
(9,2,100)

Hypervolume,
Generalized

Spread
No E Trapezoidal

fuzzy numbers Yes

It is worth nothing that, from the information in Table 1, only approaches based on
intervals address POP’s variant with uncertainty, and none of them utilized a steady-state
selection scheme. The Fuzzy Adaptive Multi-objective Evolutionary solution methodology
(FAME) has had great success in many optimization problems; however, there is a lack
of studies about its performance on the POP. The previous situations open an area of
opportunity, addressed in this work, consisting of studying optimization approaches’
performance derived from fuzzy numbers and steady-state selection schemes on their
search process to solve the Multi-objective POP with uncertainty (MOPOP).

Evolutionary algorithms commonly use a generational selection scheme to update each
generation’s population; the process creates several offspring through genetic operators
and combines them with the parents to form the next generation of individuals [10,14,15].
On the other hand, an algorithm using a steaty-state selection scheme produces a single
offspring during the reproduction process to combine with the parents. The efficiency
of the population’s update process achieved by the latter method is advantageous for
any research [16]. Hence, this work proposes a new method based on FAME and fuzzy
numbers to handling uncertainty and obtaining more robust solutions in MOPOP; the
approach mainly uses fuzzy trapezoidal sets to reflect a magnitude’s imprecision.

Math. Comput. Appl. 2021, 26, 36 4 of 30

This work’s main contributions are: (1) a new mathematical model for MOPOP that
considers fuzzy trapezoidal parameters; (2) a new algorithm based on FAME to solve the
proposed model; (3) two novel steady-state NSGA-II to solve this MOPOP’s variant; and
(4) a novel strategy to measure the performance of the fuzzy multi-objective algorithms
with the commonly used real metrics.

The remaining structure of this paper is as follows. Section 2 includes some elements
of the fuzzy theory used in this work. Section 3 describes a new mathematical model
of the Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters. Sections 4
and 5 contain the proposed steady-state algorithms: T-NSGA-II and T-FAME, respectively.
Section 6 describes the computational experiments done to assess the performance of the
algorithms. Finally, Section 7 presents the conclusions.

2. Elements of Fuzzy Theory

This section contains the main concepts of fuzzy theory used in this work.

2.1. Fuzzy Sets

Let X be a collection of objects x, then a fuzzy set A defined over X is a set of ordered
pairs A = {(x, µA(x))/x єX} where µA(x) is called the membership function or grade of
membership of x in A which maps X to the real membership subspace M [17]. The range of
the membership function is a subset of the nonnegative real numbers whose supremum is
finite. Elements with a zero degree of membership usually are not listed.

2.2. Generalized Fuzzy Numbers

A generalized fuzzy number A is any fuzzy subset of the real line R, whose member-
ship function µA(x) satisfies the following conditions [18]:

1. µA(x) is a continuous function from R to the closed interval [0, 1]
2. µA(x) = 0,−∞ < x < a
3. µA(x) = L(x), is strictly increasing on [a, b]
4. µA(x) = w, for b < x < α

5. µA(x) = R(x) is strictly decreasing on [α, β]
6. µA(x) = 0, for β < x < ∞

where 0 < w < 1, a, b, α, β are real numbers.
We denote this type of generalized fuzzy number as A = (a, b,α,β, w)LR. When

w = 1, the generalized fuzzy number is denoted as A = (a, b,α,β)LR. When L(x) and R(x)
are straight lines, then A is a trapezoidal fuzzy number, and denoted as A = (a, b,α,β).
When b = α, then A is a triangular fuzzy number, and denoted as A = (a, b,β).

A triangular membership function definition is as:

µA(x) =

0x < a
x− a
b− a

x ε (a, b)

β− x
β− b

x ε (b, β)

0x > β

(2)

A trapezoidal membership function definition is as:

Math. Comput. Appl. 2021, 26, 36 5 of 30

µA(x) =

0x < a
x− a
b− a

x ε (a, b)

1x ε (b, α)

β− x
β− α

x ε (α, β)

0x > β

(3)

2.3. Trapezoidal Addition Operator

Given two trapezoidal numbers A1 = (a1, b1,α1,β1) and A2 = (a2, b2,α2,β2), then [19]:

A1 + A2 = (a1 + a2, b1 + b2,α1 + α2,β1 + β2) (4)

2.4. Graded Mean Integration (GMI)

Graded mean integration [19] is a defuzzification method to compare two generalized
fuzzy numbers. We compare the numbers based on their defuzzified values. The number
with a higher defuzzified value is larger. The formula to calculate the graded mean
integration of a trapezoidal number A is given by:

P(A) = (
∫ w

0
h
(

L−1(h) + R−1(h)
2

)
dh)/

∫ w

0
hdh (5)

For a trapezoidal fuzzy number A = (a, b, α, β), there is a more straightforward
expression which is P(A) = (3a + 3b + β− α)/6.

2.5. Order Relation in the Set of the Trapezoidal Fuzzy Numbers

Given the trapezoidal fuzzy numbers A1 and A2, then:

• A1 < A2 if only if P(A1) < P(A2)
• A1 > A2 if only if P(A1) > P(A2)
• A1 = A2 if only if P(A1) = P(A2)

2.6. Pareto Dominance

Given the following fuzzy vectors: x̂ = (x1, x2,, xn) and ŷ = (y1, y2,, yn)
where xi and yi are trapezoidal fuzzy numbers, then we say that x̂ dominates ŷ, if only if
xi ≥ yi for all i = 1, 2, . . . , n and xi > yi for some i = 1, 2, . . . , n [20].

3. Multi-Objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters

This section presents the proposed mathematical model for MOPOP with Fuzzy
Trapezoidal Parameters. It offers a detailed description of the construction of the fuzzy
trapezoidal instances used in this work to assess the proposed solution algorithms’ per-
formance. It also includes a description of how the fuzzy trapezoidal parameter’ values
participate in evaluating objective functions and the candidate solutions’ feasibility when
the solution algorithms search across the solution space.

3.1. Mathematical Model

Let n be the number of projects to consider, C the total available budget, O the number
of objectives, ci the cost of the project i, bij the produced benefit with the execution of
the project i in objective j, K the number of areas to consider, M the number of regions,
Amin

k and Amax
k the lower and upper limits in the available budget for the area k, and Rmin

m
and Rmax

m the lower and upper limits in the available budget for the region m. The arrays
ai and bi contain the area and region assigned to the project i. x̂ = (x1, x2,, xn) is a
binary vector that specifies the selected projects included in the portfolio. If xi = 1 then the

Math. Comput. Appl. 2021, 26, 36 6 of 30

project i is selected, otherwise it is not. Now we define the MOPOP with Fuzzy Trapezoidal
parameters as follows:

Maximize ẑ = (z1, z2,, zO) (6)

where
zj = ∑n

i=1 bijxi j = 1, 2, . . . O (7)

Subject to the following constraints:

n

∑
i=1

cixi ≤ C (8)

Amin
k ≤∑n

i=1,ai=k cixi ≤ Amax
k k = 1, 2,, K (9)

Rmin
k ≤∑n

i=1,bi=k cixi ≤ Rmax
k k = 1, 2, M (10)

xiε{0, 1} for all. i = 1, 2, , n (11)

In this model, all the parameters and variables in bold and italic are trapezoidal
fuzzy numbers.

The objective function tries to maximize the contributions of each objective (6). We
calculate each objective by adding all the selected projects’ contributions in the binary
vector (7). The constraint (8) makes sure that the sum of the costs required for all the
selected projects does not exceed the available budget. The set of constraints (9) makes sure
that the sum of the projects’ costs is in the range of the involved areas’ available budget.
The set of constraints (10) makes sure that the sum of the projects’ costs is in the range of
the available budgets for the corresponding regions. The final set of constraints (11) makes
sure that the binary variables xi can only have values of 0 or 1.

We should note that the problem definition is over the space defined by the binary
vectors whose size is 2n. Then the solution algorithms must search across this space to
find the Pareto optimal solutions. On the other hand, given that the well-known NP-hard
Knapsack problem can be easily reduced to MOPOP, the latter is also NP-hard [21].

3.2. Strategy to Generate the Fuzzy Trapezoidal Instances

This work uses instances initially designed for the POP with interval parameters,
where the fuzzy representation of the parameters of the problem uses fuzzy interval
type numbers (for example, the interval [76,800, 83,200]) [10]. Fixing the values of α,
β to 0.5, and adding them to any interval in the original POP’s instances allowed the
creation of MOPOP’s instances with Trapezoidal Fuzzy Parameters. Following this way, an
interval value such as [76800, 83200] would be seen as [76800, 83200, 0.5, 0.5] in the new
set of instances.

To create a random fuzzy interval type instance the following real parameters are
considered: budget (B), number of objectives (m), projects (p), areas (a) and regions (r), and
ranges of costs (c1, c2), and objectives (m1, m2). Then to generate a fuzzy interval instance
the following interval type values must be determined:

[B, B′]← Budget as interval
[ai, a′i]← Limits of each area I = 1, 2, . . . , a
[ri, r′i]← Limits of each region r = 1, 2, . . . , r
[bij, b′ij]← Benefit from the objective I = 1, 2, ..., m and for each project j = 1, 2, . . . , p
{Ci, Ai, Ri} ← Real values of the cost, area and region for each project i = 1, 2, . . . , p.

Implementing MOPOP’s instances generator combines the previous parameters along
with Equations (12)–(24) to create random instances [10].

B = 0.58B B′ = 1.3B (12)

al = (0.7 * B)/(1.7ª + 0.1a2), a′l = (1.27 * B)/(1.7ª + 0.1a2)] (13)

Math. Comput. Appl. 2021, 26, 36 7 of 30

au = ((1.02 + 0.06r) * B)/r), a′u = ((2.635 + 0.155a) * B)/a (14)

ai = al + Random (a′l− al) for i = 1,2, . . . ,a (15)

a′i = au + Random (a′u − al) for i = 1,2, . . . ,a (16)

rl = (0.7 * B)/(1.7a + 0.1a2), r′l = (1.27 * B)/(1.7a + 0.1a2)] (17)

ru = ((1.02 + 0.06r) *B)/r), r′u = ((2.635 + 0.155a) * B)/a (18)

ri = rl + Random (r′l − rl) for i = 1,2, . . . ,r (19)

r′I = ru + Random (r′u − rl) for i = 1,2, . . . ,r (20)

Ai = Random(a) i = 1,2, . . . ,p (21)

Ri = Random(r) i = 1,2, . . . ,p (22)

o = m1 + Random (m2 − m1), bij = 0.8*o, (23)

b′ij = 1.1*o for i = 1, 2, . . . , p and i = 1, 2, . . . , m (24)

The interval instances, built with the instances generator, have names under the
following format ompn_idI, where m is the number of objectives the instance has, n is the
number of projects, id is a consecutive number, and I indicate that the instance is of interval
type. An example of this would be the instance o2p100_1I, meaning that it is the instance
number 1 with 2 and 100 projects.

The Algorithm 1 details the structure of a fuzzy interval type instance.

Algorithm 1. o2p25_0I fuzzy interval type instance

// Fuzzy interval type value of the total available budget
[76800, 83200]
// Number of objectives
2
// Number of areas
3
// Fuzzy interval type values of the upper and lower bounds of the available budget
// in each area, a row for each area.
[13060, 16560] [46245, 49745]
[13810, 15810] [47895, 48095]
[13210, 16410] [46545, 49445]
// Number of regions.
2
// Fuzzy interval type values of the upper and lower bounds of the available budget // in each
region, a row for each region.
[22775, 24275] [67950, 68050]
[23325, 23725] [67900, 68100]
// Number of projects
25
// For each project, there is a row that includes the following: fuzzy interval type
// value of the project cost, project area, project region, and the fuzzy interval type
// value of the benefits obtained with each objective. (only 5 of the 25 projects are
// showed)
[9308, 10082] [1] [1] [7642, 8278] [231, 249]
[8290, 8980] [2] [1] [8506, 9214] [404, 436]
[5895, 6385] [3] [1] [3831, 4149] [111, 119]
[9053, 9807] [1] [2] [3908, 4232] [399, 431]
[6058, 6562] [1] [2] [5760, 6240] [418, 452]

In order to transform a given fuzzy interval type instance into a fuzzy trapezoidal
instance, all the interval values [a, b] are changed to fuzzy trapezoidal values [a, b, a, b]

Math. Comput. Appl. 2021, 26, 36 8 of 30

with a = 0.5 and b = 0.5. The Algorithm 2 shows the result of converting the fuzzy interval
type instance o2p25_0I to the fuzzy trapezoidal instance o2p25_0T.

Algorithm 2. o2p25_0T fuzzy trapezoidal instance

// Fuzzy trapezoidal value of the total available budget
[76800, 83200, 0.5, 0.5]
// Number of objectives
2
// Number of areas
3
// Fuzzy trapezoidal values of the upper and lower bounds for the available budget
// in each area, a row for each area.
[13060, 16560, 0.5, 0.5] [46245, 49745, 0.5, 0.5]
[13810, 15810, 0.5, 0.5] [47895, 48095, 0.5, 0.5]
[13210, 16410, 0.5, 0.5] [46545, 49445, 0.5, 0.5]
// Number of regions.
2
// Fuzzy trapezoidal values of the upper and lower bounds for the available budget
// in each region, a row for each region.
[22775, 24275, 0.5, 0.5] [67950, 68050, 0.5, 0.5]
[23325, 23725, 0.5, 0.5] [67900, 68100, 0.5, 0.5]
// Number of projects
25
// For each project, there is a row that includes the following: fuzzy trapezoidal value // of the
project cost, project area, project region, and the fuzzy trapezoidal values of
// the benefits obtained with each objective. (only 5 of the 25 projects are showed)
[9308, 10082, 0.5, 0.5] [1] [1] [7642, 8278, 0.5, 0.5] [231, 249, 0.5, 0.5]
[8290, 8980, 0.5, 0.5] [2] [1] [8506, 9214, 0.5, 0.5] [404, 436, 0.5, 0.5]
[5895, 6385, 0.5, 0.5] [3] [1] [3831, 4149, 0.5, 0.5] [111, 119, 0.5, 0.5]
[9053, 9807, 0.5, 0.5] [1] [2] [3908, 4232, 0.5, 0.5] [399, 431, 0.5, 0.5]
[6058, 6562, 0.5, 0.5] [1] [2] [5760, 6240, 0.5, 0.5] [418, 452, 0.5, 0.5]

3.3. Evaluating the Solutions and Verifying the Feasibility

This section describes how to calculate the objective values of a solution and how
to determine its feasibility. To explain this process, let F the trapezoidal fuzzy numbers
set, and R the set of real numbers. Now it is described how to apply the map δ : F → R
such that δ(A) = P(A). The map associates the GMI value to each trapezoidal fuzzy
number. A remarkable property of this map is that if X ⊂ Fn, then δ(X) ⊂ Rn,
hence, the computation of a vector solution for a MOPOP’s instance with two objectives is
transformed into a vector of two trapezoidal fuzzy numbers, which in turn is transformed
into a vector of two real numbers. As this process is consistently applied to all the solutions,
the algorithms will be performed considering that the binary vector objectives space is the
real vector space. The transformation must also be applied to all the trapezoidal fuzzy
numbers in the constraints to validate the solutions’ feasibility in the search space process.
Equations (25)–(30) shows how evaluate the solution and verify the feasibility.

Maximize ẑ = (z1, z2,, zO) (25)

where
zj = P

(
∑n

i=1 bijxi

)
j = 1, 2, . . . O (26)

Subject to the following constraints:

P(∑n
i=1 cixi) ≤ P(C) (27)

P(Amin
k) ≤ P

(
∑n

i=1,ai=k cixi

)
≤ P(Amax

k) k = 1, 2,, K (28)

Math. Comput. Appl. 2021, 26, 36 9 of 30

P(Rmin
k) ≤ P

(
∑n

i=1,bi=k cixi

)
≤ P(Rmax

k) k = 1, 2, M (29)

xiε{0, 1} for all. i = 1, 2, , n (30)

An additional benefit is that this mapping transforms the approximated Pareto front
in a set of real vectors. In such a case, standard commonly used metrics can be applied to
evaluate the performance of the algorithms.

Example: Consider the following simplified instance:

n = 3, C = [3, 20, 1, 5], o = 2
ci bij [2, 8, 0.5, 0.8]

[10, 13, 0.2, 0.5]
[4, 12, 0.5, 0.5]

|
 [3, 6, 1, 1] [2, 10, 0.2, 0.4]

[1, 5, 0.8, 0.8] [5, 13, 0.7, 0.5]
[10, 15, 1, 0.5] [4, 9, 0.5, 0.8]

Then using the model, the problem to solve is:
Maximize:

z1 = [3, 6, 1, 1]x1 + [1, 5, 0.8, 0.8]x2 + [10, 15, 1, 0.5]x3 (31)

z2 = [2, 10, 0.2, 0.4]x1 + [5, 13, 0.7, 0.5]x2 + [4, 9, 0.5, 0.8]x3 (32)

Subject to:

[2, 8, 0.5, 0.8]x1 + [10, 13, 0.2, 0.5]x2 + [4, 12, 0.5, 0.5]x3 ≤ [3, 20, 1, 5] (33)

The objectives z1 and z2 are the benefits generated by the projects selected in the
binary vector x. The constraint verifies that the cost of that project is not higher than the
available budget (C).

Given the solution x = [0, 1,0], then the fuzzy trapezoidal values of the two objectives
are the following:

z1 = [1, 5, 0.8, 0.8] (34)

z2 = [5, 13, 0.7, 0.5] (35)

Evaluating the constraint to verify the feasibility of the solution x, we have:

[10, 13, 0.2, 0.5] ≤ [3, 20, 1, 5] (36)

Now the GMI is used to compare the fuzzy trapezoidal numbers. For a trapezoidal
fuzzy number A = (a, b, α, β), the GMI is:

P(A) = (3a + 3b + β− α)/6 (37)

As P([10, 13, 0.2, 0.5]) = 11.55 ≤ P([3,20,1,5]) = 12.166, solution x is feasible.
Notice that this process was done in the fuzzy trapezoidal numbers space; only at

the end the GMI is used to verify the constraint. To perform the process in the real space,
the two fuzzy objectives and the fuzzy costs in the constraint are transformed into real
numbers using the GMI. The evaluation of the solution is as follows:

z1 = P([3, 6, 1, 1]x1 + [1, 5, 0.8, 0.8]x2 + [10, 15, 1, 0.5]x3) = P([1, 5, 0.8, 0.8]) (38)

z2 = P([5, 13, 0.7, 0.5]) (39)

Then z1 = 3 and z2 = 8.966.
Transforming the constraint we have:

P([2, 8, 0.5, 0.8]x1 + [10, 13, 0.2, 0.5]x2 + [4, 12, 0.5, 0.5]x3) ≤ P([3, 20, 1, 5]) (40)

Math. Comput. Appl. 2021, 26, 36 10 of 30

P([10, 13, 0.2, 0.5]) ≤ P([3, 20, 1, 5]) (41)

Hence, the solution x is feasible given that 11.55 ≤ 12.166.
The algorithms proposed in this work use the evaluation and feasibility verification

procedures described in this section. The algorithms must call such methods on every new
solution generated by them.

4. Steady-State T-NSGA-II Algorithm

This section presents the design of all the components included in the definition of
the proposed algorithm. This is an adaptation of the classic Deb algorithm NSGA-II [22]
modified to work with the trapezoidal fuzzy numbers. As all the algorithms proposed
in this work, T-NSGA-II updates the population, applying in each generation the steady-
state approach to include in the population only one of the generated individuals. In
generational algorithms, the new set of offsprings are combined with the parents to create
individuals’ next generation; the input to the algorithm is a MOPOP’s instance. The output
is an approximate Pareto front for the instance.

4.1. Representation of the Solutions

A MOPOP’s solution is represented by binary vector S = {0, 1}n, where n is the
number of projects. This vector is a portfolio, and each value si = 1 represents the inclusion
of project i in the portfolio. The first element in the vector is s0, and the last is sn–1. Figure 1
shows an example of this representation.

Math. Comput. Appl. 2021, 26, 36 10 of 30

Notice that this process was done in the fuzzy trapezoidal numbers space; only at the
end the GMI is used to verify the constraint. To perform the process in the real space, the
two fuzzy objectives and the fuzzy costs in the constraint are transformed into real num-
bers using the GMI. The evaluation of the solution is as follows: 𝑧ଵ = 𝑃([3,6,1,1]𝑥ଵ + [1,5,0.8,0.8]𝑥ଶ + [10,15,1,0.5]𝑥ଷ) = 𝑃([1,5,0.8,0.8]) (38)𝑧ଶ = 𝑃([5,13,0.7,0.5]) (39)

Then 𝑧ଵ = 3 and 𝑧ଶ = 8.966.
Transforming the constraint we have: 𝑃([2,8,0.5,0.8]𝑥ଵ + [10,13,0.2,0.5]𝑥ଶ + [4,12,0.5,0.5]𝑥ଷ) ≤ 𝑃([3,20,1,5]) (40)

P([10,13,0.2,0.5]) ≤ P([3,20,1,5]) (41)

Hence, the solution x is feasible given that 11.55 ≤ 12.166.
The algorithms proposed in this work use the evaluation and feasibility verification

procedures described in this section. The algorithms must call such methods on every new
solution generated by them.

4. Steady-State T-NSGA-II Algorithm
This section presents the design of all the components included in the definition of

the proposed algorithm. This is an adaptation of the classic Deb algorithm NSGA-II [22]
modified to work with the trapezoidal fuzzy numbers. As all the algorithms proposed in
this work, T-NSGA-II updates the population, applying in each generation the steady-
state approach to include in the population only one of the generated individuals. In gen-
erational algorithms, the new set of offsprings are combined with the parents to create
individuals’ next generation; the input to the algorithm is a MOPOP’s instance. The out-
put is an approximate Pareto front for the instance.

4.1. Representation of the Solutions
A MOPOP’s solution is represented by binary vector 𝑆 = {0,1}, where n is the num-

ber of projects. This vector is a portfolio, and each value si = 1 represents the inclusion of
project i in the portfolio. The first element in the vector is s0, and the last is sn–1. Figure 1
shows an example of this representation.

Figure 1. Representation of a solution.

4.2. One-Point Crossover Operator
The one-point crossover operator generates two offsprings from two parents [23].

The process first defines a random cutting point cp in the range [0, n – 1]. After this, it split
each parent vector into left and right sections, where for parent i, the lefti contains its values
{s0, …, scp}, and the righti contains its values {scp+1, …, sn–1}. Finally, it mixes the split sections
to generate two new offsprings h1, h2, where h1 uses left1 and right2, and h2 uses left2 and
right1. The parents are chosen at random. The steady-state approach only utilizes the first
offspring h1. The number of crossovers that are done is a defined parameter. Figure 2
shows an example of this operator.

Figure 1. Representation of a solution.

4.2. One-Point Crossover Operator

The one-point crossover operator generates two offsprings from two parents [23]. The
process first defines a random cutting point cp in the range [0, n – 1]. After this, it split
each parent vector into left and right sections, where for parent i, the lefti contains its values
{s0, . . . , scp}, and the righti contains its values {scp+1, . . . , sn–1}. Finally, it mixes the split
sections to generate two new offsprings h1, h2, where h1 uses left1 and right2, and h2 uses
left2 and right1. The parents are chosen at random. The steady-state approach only utilizes
the first offspring h1. The number of crossovers that are done is a defined parameter.
Figure 2 shows an example of this operator.

Math. Comput. Appl. 2021, 26, 36 11 of 30

Figure 2. Example of one-point crossover operator at index cp=3.

4.3. Uniform Mutation Operator
The uniform mutation operator generates a new solution for the mutation population

from given a solution vector S = {s0, s1, …, sn–1 } [24]. The process generates for each index
i, for 0 ≤ i ≤ n – 1, a random number u in the range [0, 1], and if u < mut then the value of si
changes from 1 to 0 or vice versa, otherwise the value si remains intact. The parameter mut
is the mutation probability used by the operator. Figure 3 shows an example of the use of
this mutation.

Figure 3. Example of when an element changes its value.

Another parameter of the operator is the number of new mutated solutions that must
be generated. Usually, the solutions that undergo this process come from the crossover
operator’s results; otherwise are randomly chosen.

4.4. Initial Population
A predefined number of randomly generated solutions are created to have an initial

population. When a new random solution is generated, the objectives vector for the solu-
tion is determined and its feasibility is verified.

4.5. Population Sorting
This process consists of sorting the solutions of the population, and it is composed of

two phases: (1) the elitist phase, which keeps the best solutions; and (2) the diversification
phase, which ensures that there are solutions different enough to avoid local optima in
the search process of the algorithm. The elitist phase is also known as non-dominated

Figure 2. Example of one-point crossover operator at index cp = 3.

4.3. Uniform Mutation Operator

The uniform mutation operator generates a new solution for the mutation population
from given a solution vector S = {s0, s1, . . . , sn–1 } [24]. The process generates for each index

Math. Comput. Appl. 2021, 26, 36 11 of 30

i, for 0 ≤ i ≤ n − 1, a random number u in the range [0, 1], and if u < mut then the value of
si changes from 1 to 0 or vice versa, otherwise the value si remains intact. The parameter
mut is the mutation probability used by the operator. Figure 3 shows an example of the use
of this mutation.

Math. Comput. Appl. 2021, 26, 36 11 of 30

Figure 2. Example of one-point crossover operator at index cp=3.

4.3. Uniform Mutation Operator
The uniform mutation operator generates a new solution for the mutation population

from given a solution vector S = {s0, s1, …, sn–1 } [24]. The process generates for each index
i, for 0 ≤ i ≤ n – 1, a random number u in the range [0, 1], and if u < mut then the value of si
changes from 1 to 0 or vice versa, otherwise the value si remains intact. The parameter mut
is the mutation probability used by the operator. Figure 3 shows an example of the use of
this mutation.

Figure 3. Example of when an element changes its value.

Another parameter of the operator is the number of new mutated solutions that must
be generated. Usually, the solutions that undergo this process come from the crossover
operator’s results; otherwise are randomly chosen.

4.4. Initial Population
A predefined number of randomly generated solutions are created to have an initial

population. When a new random solution is generated, the objectives vector for the solu-
tion is determined and its feasibility is verified.

4.5. Population Sorting
This process consists of sorting the solutions of the population, and it is composed of

two phases: (1) the elitist phase, which keeps the best solutions; and (2) the diversification
phase, which ensures that there are solutions different enough to avoid local optima in
the search process of the algorithm. The elitist phase is also known as non-dominated

Figure 3. Example of when an element changes its value.

Another parameter of the operator is the number of new mutated solutions that must
be generated. Usually, the solutions that undergo this process come from the crossover
operator’s results; otherwise are randomly chosen.

4.4. Initial Population

A predefined number of randomly generated solutions are created to have an initial
population. When a new random solution is generated, the objectives vector for the solution
is determined and its feasibility is verified.

4.5. Population Sorting

This process consists of sorting the solutions of the population, and it is composed of
two phases: (1) the elitist phase, which keeps the best solutions; and (2) the diversification
phase, which ensures that there are solutions different enough to avoid local optima in
the search process of the algorithm. The elitist phase is also known as non-dominated
sorting. It consists of separating the population in fronts or sets of non-dominated solutions,
making sure that the best solutions are always on the first front. The diversification phase
sorts the solutions of a front according to the Crowding Distance indicator. The solutions
in the best fronts are included in the population, and when a front cannot be completely
inserted, the solutions with the worst crowding distances are discarded. Figure 4 shows
both phases.

4.6. Non-Dominated Sorting

This process has two parts, and works on a given population. The first part constructs
the first front with the set of non-dominated solutions identified from the comparison
of vectors of objective values among all the population’ solutions. A solution is non-
dominated if its vector of objective values is not dominated by any other. Note that the
Pareto dominance uses real value vectors in its definition.

The second part builds the remaining fronts one by one. Each new front integrates
those solutions that are only dominated by solutions in previously built fronts. The process
repeats until no more fronts can be made.

Math. Comput. Appl. 2021, 26, 36 12 of 30

Math. Comput. Appl. 2021, 26, 36 12 of 30

sorting. It consists of separating the population in fronts or sets of non-dominated solu-
tions, making sure that the best solutions are always on the first front. The diversification
phase sorts the solutions of a front according to the Crowding Distance indicator. The
solutions in the best fronts are included in the population, and when a front cannot be
completely inserted, the solutions with the worst crowding distances are discarded. Fig-
ure 4 shows both phases.

Figure 4. Elitism sorting and diversification phases.

4.6. Non-Dominated Sorting
This process has two parts, and works on a given population. The first part constructs

the first front with the set of non-dominated solutions identified from the comparison of
vectors of objective values among all the population’ solutions. A solution is non-domi-
nated if its vector of objective values is not dominated by any other. Note that the Pareto
dominance uses real value vectors in its definition.

The second part builds the remaining fronts one by one. Each new front integrates
those solutions that are only dominated by solutions in previously built fronts. The pro-
cess repeats until no more fronts can be made.

4.7. Calculating the Crowding Distance
According to [22], this process orders the solutions in a front by their Crowding Dis-

tance (CD). The distance is a measure of the separation of the solutions, and it is relative
to the normalized value of the objectives. The CD identify the solutions with extreme val-
ues on the objectives and put it first on the front. After that, the solutions order are ac-
cording to their accumulated degree of separation per objective, the greatest the separa-
tion the better. For each objective, the CD computes the degree of separation using the
ordered array of objective values resulting from the front; the solutions with the highest
and smallest objective values will have a specific Crowding Distance value d equal to in-
finite (∞), while the remaining solutions will be calculated by the following formula:

𝑑ூೕ = 𝑑ூೕ + 𝑓ೕశభூ − 𝑓ೕషభூ 𝑓௫ − 𝑓 (42)

where d is the Crowding Distance, I is the solution position in the whole population in
general, j is the solution position after the ordering by objective m within the front, f is the
objective value and m is the current objective. The accumulation of Crowding Distance
value d of all the objectives results in the final value of CD for each solution I.

Figure 4. Elitism sorting and diversification phases.

4.7. Calculating the Crowding Distance

According to [22], this process orders the solutions in a front by their Crowding
Distance (CD). The distance is a measure of the separation of the solutions, and it is relative
to the normalized value of the objectives. The CD identify the solutions with extreme values
on the objectives and put it first on the front. After that, the solutions order are according to
their accumulated degree of separation per objective, the greatest the separation the better.
For each objective, the CD computes the degree of separation using the ordered array
of objective values resulting from the front; the solutions with the highest and smallest
objective values will have a specific Crowding Distance value d equal to infinite (∞), while
the remaining solutions will be calculated by the following formula:

dIj
m = dIj

m +
f Im

mj+1 − f Im

mj−1

f max
m − f min

m
(42)

where d is the Crowding Distance, I is the solution position in the whole population in
general, j is the solution position after the ordering by objective m within the front, f is the
objective value and m is the current objective. The accumulation of Crowding Distance
value d of all the objectives results in the final value of CD for each solution I.

4.8. Calculating the Spatial Spread Deviation (SSD)

The Spatial Spread Deviation (SSD) is a density estimator used to rearrange the
solutions in a front, so the spread is not by a wide margin [25]. The method calculates for
each solution the SSD value using a matrix of normalized distances between the solutions
in the approximated front. The solutions are sorted from the lowest to highest SSD value
in order to punish solutions according to their standard deviation and their proximity to
their closest k-neighbors. The next three equations show how to calculate the SSD values,
in the process i is the solution in the front for which the SSD is calculated, and j take values
over all the solutions in the front except i.

temp1(i) =
1

n− 1

√
∑n

j=1(D(i, j)− (Dmax − Dmin))
2∀ i 6= j (43)

temp2(i) = ∑jEK
(Dmax − Dmin)

D(i, j)
(44)

SSD(i) = SSD0(i) + temp1(i) + temp2(i) (45)

where D(i, j) is the distance from solution i to solution j. Dmax is the biggest distance
between all the solutions and Dmin is the closest distance between all the solutions. K is the

Math. Comput. Appl. 2021, 26, 36 13 of 30

number of k neighbors closest to solution i. SSD0 is the initial value of SSD, which is -INF
if the solution is at one of the ends of the front when the normalized values of the graded
mean integration of the objective values are calculated.

4.9. Pseudocode of the T-NSGA-II Algorithm

The T-NSGA-II is based in the structure of the classic multi-objective algorithm NSGA-
II proposed by Deb [22]. As previously described, the algorithm had several modifications
to work with trapezoidal fuzzy numbers and the proposed MOPOP model. Algorithm 3
shows the detailed pseudocode of the algorithm T-NSGA-II.

Algorithm 3. T-NSGA-II pseudocode

INPUT: Instance with the trapezoidal parameters of the portfolio problem.
OUTPUT: Approximated Pareto Front
NOTE: The algorithm is called T-NSGA-II-CD when the Crowding Distance is used, and
T-NSGA-II-SSD when is used the Spatial Spread Deviation.

1. Create the initial population pop
2. Evaluate all the solutions in pop
3. Order pop using no-dominated Sorting
4. For all solutions in pop calculate Spatial Spread Deviation/Crowding distance
5. pop sorting due to fronts and Spatial Spread Deviation/CD
6. Main loop, until stopping condition is met
*** Steady state approach: only one generated individual is considered to include in popc
7. Create popc using crossover operator

8. Create popm using mutation operator
9. Join popc and popm to create popj
10. Evaluate solutions in popj and put feasibles in popf
11. Add popf to pop, and calculate objective functions
12. Order pop using no-dominated sorting
13. Calculate Spatial Spread Deviation/Crowding distance
14. pop sorting due to the front ranking and Spatial Spread Deviation/CD
15. Truncate pop to keep a population of original size
16. No-dominated sorting
17. Calculate Spatial Spread Deviation/Crowding distance of the individuals in pop
18. pop sorting due to front ranking and Spatial Spread Deviation/CD
19. End Main loop
20. Return (Front 0). ***Approximated Pareto Front

5. T-FAME Algorithm

This section presents the design of all the components of the T-FAME algorithm. The
algorithm adapts the FAME algorithm to work with the trapezoidal fuzzy numbers [25].
The input to the algorithm is an instance of MOPOP. The output is the approximate
Pareto front for that instance. T-FAME updates the population, applying the steady-state
approach to include in the population only one of the generated individuals. The following
algorithm components are the same described in Section 4: the structure used to represent
the solutions, the evaluation of a solution, the construction of the initial population, the
sorting of the population, the non-dominated sorting process, and the density SSD estimator.
The components described in this section are those not included in the previous description
or with significant differences, such as the fuzzy controller, the additional genetic operators,
and the structure used to store the approximated Pareto front.

5.1. Fuzzy Controller

This section introduces an intelligent mechanism that allows an MOEA to apply
different recombination operators at different search process stages. The use of different
operators is dynamically adjusted according to their contribution to the search in the past.

Math. Comput. Appl. 2021, 26, 36 14 of 30

Intuitively, the idea is to favor operators generating higher quality solutions over others.
For this purpose, the fuzzy controller dynamically tunes the probability selection of the
available recombination operators [25].

The fuzzy controller uses a Mamdani-Type Fuzzy Inference System (FIS) [26] to com-
pute the probability of applying the different operators. Fuzzy sets defined by membership
functions represent the linguistic values of the model’s input and output variables. Re-
garding the inference, we use the approach originally proposed by Mamdani based on
the “max min” composition: using the minimum operator for implication and maximum
operator for aggregation. The aggregation of the consequents from the rules are combined
into a single fuzzy set (output), to be defuzzified (mapped to a real value). A widely used
defuzzification method is the centroid calculation, which returns the area’s center under
the curve. We use triangular-shaped membership functions in all inputs and outputs,

µA(x) =

0 x < a

x−a
b−a x ε (a, b)
c−x
c−b x ε (b, c)

0 x > c

(46)

the parameters a and c determine the “corners” of the triangle, and b determines the
peak. A membership function µA(x) maps real values of x with a degree of membership
0 ≤ µA(x)≤ 1. The used granularity levels were: Low (a = −0.4, b = 0.0, c = 0.4), Mid
(a = 0.1, b = 0.5, c = 0.9) and High (a = 0.6, b = 1.0, c = 1.4).

The interaction of the fuzzy controller with the algorithm works as follows: Let
Operators the set of genetic operators available. The evolutionary algorithm monitors
the search process in a series of time windows, each of size Window. At the end of each
time window, the algorithm sends to the fuzzy controller the real values of the input
variables Stagnation and UseOp, and receives from the controller the real value of the output
variable ProbOp.

Each of the fuzzy variables has associated the fuzzy linguistic values: High, Mid and
Low. Then the membership functions of the fuzzy variable Stagnation are: µStagnation=High(x),
µStagnation=Mid(x) and µStagnation=Low(x). In a similar way, the membership functions are
defined for the variables UseOp and ProbOp.

To show how works the fuzzification process consider that the received real values of
the input variables are Stagnation = 0.7 and UseOp = 0.8.

The fuzzified values for the Stagnation variable are the membership degrees:
µStagnation=High(0.7), µStagnation=Mid(0.7) y µStagnation=Low(0.7).

For the UseOp variable the fuzzified values are the membership degrees: µUseOp=High(0.8),
µUseOp=Mid(0.8) y µUseOp=Low(0.8). All the membership degrees are values in the
interval (0,1).

Now the FIS includes a set of fuzzy rules which are specified in terms of the fuzzy
variables, the linguistic values, and a set of logic operators. To continue with the previous
example, consider that the fuzzy rules in the FIS are:

R1 : I f Stagnation = High and UseOp = High then ProbOp = High (47)

R2 : I f Stagnation = High and UseOp = Low then ProbOp = Mid (48)

Once the fuzzification of the inputs is done, the next process is to evaluate the an-
tecedents of the rules R1 and R2, determining the following values:

k1 = min
(

µStagnation=High(0.7), µUseOp=High(0.8)) (49)

k2 = min
(

µStagnation=High(0.7), µUseOp=Low(0.8)) (50)

In the rule evaluation, the min operator is associated with the logic operator and, and
the max operator is associated to the logic operator or.

Math. Comput. Appl. 2021, 26, 36 15 of 30

Now the membership functions of the consequents of the rules must be determined.
For each rule an operator of implication is applied to the antecedent value obtained in the
previous process and to the consequent of the rule, to determine the membership function
of the conclusion of the rule. The min operator is used to implement the implication logic
operator, which truncates the membership function of the rule’s consequent. For example,
the truncated membership functions of the consequents are the following:

µ∗ProbOp=High(z) = min
(

µProbOp=High(z), k1

)
z ∈ (0, 1) (51)

µ∗ProbOp=Mid(z) = min
(

µProbOp=Mid(z), k2

)
z ∈ (0, 1) (52)

Now the truncated membership functions are integrated using an aggregation op-
erator to create a new membership function, which is the controller’s fuzzy output. The
aggregation operators that are frequently used are max and sum.

For the example, the max operator is used to determine the aggregated membership
function, which is the following:

µ∗∗(z) = max(µ∗Z=A(z), µ∗Z=M(z)) z ∈ (0, 1) (53)

Finally, the defuzzification of the fuzzy output obtained is done. In this step a real
number is associated to the aggregated membership function, which is the output of the
inference process. In the previous example, the center of the area under the curve of
the aggregated membership function is used to defuzzify the output of the controller
as following:

z =

∫
µ∗∗(z)zdz∫
µ∗∗(z)dz

(54)

Figure 5 graphically shows the fuzzy inference process for the example described.

Math. Comput. Appl. 2021, 26, 36 16 of 30

Figure 5. Mamdani Fuzzy Inference System used in the fuzzy controller.

All of the controller rules are of the type: Antecedent AND Antecedent then Conse-
quent. The fuzzy rules were designed to have soft changes in the input variables (Stagna-
tion and UseOp), to avoid abrupt changes in the output variable (ProbOp). The configura-
tion was manually done by observing the surface that these three variables generated [25].
Table 2 shows the rules of the fuzzy controller.

Table 2. Fuzzy controller rules.

AND Antecedents Consequent
Stagnation Utilization ProbOp

High High Mid
High Mid Low
High Low Mid
Mid High Mid
Mid Mid Low
Mid Low Mid
Low High High
Low Mid Mid
Low Low Low

The Algorithm 4 shows the structure of the fuzzy controller used in the fuzzy con-
troller implementation with the Java Library Fuzzy Lite 6.0.

Algorithm 4. Fuzzy controller structure.
[System]
Name=‘FuzzyController ‘
Type=‘mamdani’
Version=2.0
NumInputs=2
NumOutputs=1
NumRules=9
AndMethod=‘min’
OrMethod=‘max’
ImpMethod=‘min’
AggMethod=‘max’
DefuzzMethod=‘centroid’
[Input1]
Name=‘Stagnation’

Figure 5. Mamdani Fuzzy Inference System used in the fuzzy controller.

All of the controller rules are of the type: Antecedent AND Antecedent then Conse-
quent. The fuzzy rules were designed to have soft changes in the input variables (Stagnation
and UseOp), to avoid abrupt changes in the output variable (ProbOp). The configuration
was manually done by observing the surface that these three variables generated [25].
Table 2 shows the rules of the fuzzy controller.

Math. Comput. Appl. 2021, 26, 36 16 of 30

Table 2. Fuzzy controller rules.

AND Antecedents Consequent

Stagnation Utilization ProbOp

High High Mid
High Mid Low
High Low Mid
Mid High Mid
Mid Mid Low
Mid Low Mid
Low High High
Low Mid Mid
Low Low Low

The Algorithm 4 shows the structure of the fuzzy controller used in the fuzzy controller
implementation with the Java Library Fuzzy Lite 6.0.

Algorithm 4. Fuzzy controller structure.

[System]
Name=‘FuzzyController ‘
Type=‘mamdani’
Version=2.0
NumInputs=2
NumOutputs=1
NumRules=9
AndMethod=‘min’
OrMethod=‘max’
ImpMethod=‘min’
AggMethod=‘max’
DefuzzMethod=‘centroid’
[Input1]
Name=‘Stagnation’
Range=[0 1]
NumMFs=3
MF1=‘Low’:’trimf’,[−0.4 0 0.4]
MF2=‘Mid’:’trimf’,[0.1 0.5 0.9]
MF3=‘High’:’trimf’,[0.6 1 1.4]
[Input2]
Name=‘UseOp’
Range=[0 1]
NumMFs=3
MF1=‘Low’:’trimf’,[−0.4 0 0.4]
MF2=‘Mid’:’trimf’,[0.1 0.5 0.9]
MF3=‘High’:’trimf’,[0.6 1 1.4]
[Output1]
Name=‘ProbOp’
Range=[0 1]
NumMFs=3
MF1=‘Low’:’trimf’,[−0.4 0 0.4]
MF2=‘Mid’:’trimf’,[0.1 0.5 0.9]
MF3=‘High’:’trimf’,[0.6 1 1.4]
[Rules]
3 3, 2 (1) : 1
3 2, 1 (1) : 1
3 1, 2 (1) : 1
2 3, 2 (1) : 1

Math. Comput. Appl. 2021, 26, 36 17 of 30

2 2, 1 (1) : 1
2 1, 2 (1) : 1
1 3, 3 (1) : 1
1 2, 2 (1) : 1
1 1, 1 (1) : 1

In the [Rules] section, the first and second columns contain the linguistic values of
the two input variables (1-Low, 2-Mid, 3-High), the third column is the weight of the rules,
and the last one indicates the logic operator used in the rule (1-and, 2-or).

The interaction of the fuzzy controller with the algorithm works as follows: Let
Operators the set of genetic operators available. The T-FAME algorithm searches in the
solutions space in time windows of size Window, each time window the algorithm performs
Window iterations. At the end of each time window, the algorithm sends to the fuzzy
controller the values of the input variables Stagnation and UseOp[i] for all i ∈ Operator. For
each pair of input values, a Fuzzy Inference generates ProbOp[i] for all i ∈ Operator. This
process is done for the T-FAME algorithm with the following pseudocode where v is the
windows counter:

If (v == Window) then
∀ iε {1, 2,SizeOP}

38. ProbOp(i) = FuzzyController(Stagnation, UseOp(i));

39. v =0; Stagnation = 0;
40. Endif
The line numbers are those that appear in the T-FAME algorithm pseudocode included

in Section 6.4. Notice that in lines 37 and 38, the algorithm uses the fuzzy controller to
update all the available recombination genetic operators’ selection probability.

The Stagnation value is shared for all the operators, and it is an indicator of the
evolution of the search in the current time window. This is a normalized value that is
increased by 1.0/Window each time the generated solution cannot enter the set where the
non-dominated solutions are kept and reset when the time window is over. UseOp[i] is a
normalized value that is increased by 1.0/Window every time the operator i is used.

5.2. Additional Genetic Operators

Four operators are used in T-FAME to create new solutions: One-point crossover,
Uniform Mutation, Fixed Mutation, and Differential Evolution. Two of these operators
(One-point crossover and Uniform Mutation) are the same ones that are used on T-NSGA-II,
and they are already described in the previous section.

Differential Evolution: This method was proposed by Rainer [27], and its implementa-
tion was based on [28]. It uses the four parents obtained with the tournament method. The
first part of the process consists of creating a new solution called Candidate using Parent 1,
Parent 2, and Parent 3, this solution is obtained by doing a binary addition of the parents.
Figure 6 shows an example of how this operator works.

Once the Candidate is calculated, a binary crossover operator is done between the
candidate and Parent 4 to create a new solution called Son, this binary crossover operator
is different from the one-point crossover operator described previously, and it uses a
parameter called crossover percentage (CP). The binary crossover operator consists of the
following: For each array index, a random number between 0 and 1 is generated, if that
number has a lesser value than CP, then that index receives the value of the Candidate, if
this is not the case, then that index receives the value of Parent 4.

Math. Comput. Appl. 2021, 26, 36 18 of 30

Math. Comput. Appl. 2021, 26, 36 18 of 30

5.2. Additional Genetic Operators
Four operators are used in T-FAME to create new solutions: One-point crossover,

Uniform Mutation, Fixed Mutation, and Differential Evolution. Two of these operators
(One-point crossover and Uniform Mutation) are the same ones that are used on T-NSGA-
II, and they are already described in the previous section.

Differential Evolution: This method was proposed by Rainer [27], and its implementa-
tion was based on [28]. It uses the four parents obtained with the tournament method. The
first part of the process consists of creating a new solution called Candidate using Parent
1, Parent 2, and Parent 3, this solution is obtained by doing a binary addition of the par-
ents. Figure 6 shows an example of how this operator works.

Figure 6. Differential evolution operator example.

Once the Candidate is calculated, a binary crossover operator is done between the
candidate and Parent 4 to create a new solution called Son, this binary crossover operator
is different from the one-point crossover operator described previously, and it uses a pa-
rameter called crossover percentage (CP). The binary crossover operator consists of the
following: For each array index, a random number between 0 and 1 is generated, if that
number has a lesser value than CP, then that index receives the value of the Candidate, if
this is not the case, then that index receives the value of Parent 4.

Once the new solution Son is completed, a dominance test is done between Son and
Parent 4, if the objective values of Parent 4 dominate the objective values of Son, then
Parent 4 proceeds to be the new solution, but if this is not the case, then Son proceeds to
be the new solution.

Fixed Mutation: This method is very similar to the uniform mutation operator that
was described previously. The main difference lies in the fact that the whole process is
done in a loop until n mutations are made, where n is a parameter previously defined.
This operator also makes sure that no element in the solution is changed twice or more
times, this is done by using a fixed array to keep track of the changed elements in the
solution. Figure 7 shows an example of the Fixed Mutation operator.

Figure 6. Differential evolution operator example.

Once the new solution Son is completed, a dominance test is done between Son and
Parent 4, if the objective values of Parent 4 dominate the objective values of Son, then
Parent 4 proceeds to be the new solution, but if this is not the case, then Son proceeds to be
the new solution.

Fixed Mutation: This method is very similar to the uniform mutation operator that
was described previously. The main difference lies in the fact that the whole process is
done in a loop until n mutations are made, where n is a parameter previously defined. This
operator also makes sure that no element in the solution is changed twice or more times,
this is done by using a fixed array to keep track of the changed elements in the solution.
Figure 7 shows an example of the Fixed Mutation operator.

Math. Comput. Appl. 2021, 26, 36 19 of 30

Figure 7. Fixed Mutation operator example.

5.3. Used Structures to Store the Population and the Approximated Pareto Front
The algorithm uses the structure pop to maintain a solutions population, which con-

tains the following information for each solution i:
• V(i): vector binary associated to the solution i.
• O1(i) and O2(i): values of the two objectives of the solution i, converted to GMI values.
• r(i): ranking of the solution i is the number of the front in which is located.
• Dominated(i): solutions dominated by the solution i.
• Domines(i): solutions that dominates to solution i.
• CD (i): Crowding Distance value of the solution i.
• SSD(i): Spatial Spread Deviation value of solution i.

The structure Front is used to store the approximated Pareto front, which contains
the following information for each stored solution i:
• V(i): vector binary associated to the solution i.
• O(i): real vector of the graded mean values of the fuzzy triangular objectives of the

solution V(i).
• r(i): ranking of the solution i is the number of the front in which is located.
• Dominated(i): solutions dominated by the solution i.
• Domines(i): solutions that dominates to solution i.
• SSD (i): Spatial Spread Deviation value of the solution i.

5.4. T-FAME Algorithm Pseudocode
This section presents the pseudocode for the algorithm T-FAME in Algorithm 5.

Algorithm 5. T-FAME pseudocode
INPUT: Instance with the trapezoidal parameters of the portfolio problem.
OUTPUT: Approximated Pareto front

Variables
pop: Population of solutions (binary vectors)
Front: Limited sized set were no-dominated solutions are kept
Operator: Vector of size SizeOP that contains the index of the available operators
Parents: Vector of size NParents that contains the chosen parents
ProbOp(i): Probability that operator i has of being chosen, it has values between 0 and 1
UseOp(i): Normalized Indicator of how much operator i has been used, it has values between 0 and 1
Stagnation: Normalized indicator of the number of generated solutions that couldn’t be inserted into Front, because they were either
dominated solutions or there was not space available for them, it can have values between 0 and 1.

Figure 7. Fixed Mutation operator example.

5.3. Used Structures to Store the Population and the Approximated Pareto Front

The algorithm uses the structure pop to maintain a solutions population, which
contains the following information for each solution i:

• V(i): vector binary associated to the solution i.

Math. Comput. Appl. 2021, 26, 36 19 of 30

• O1(i) and O2(i): values of the two objectives of the solution i, converted to GMI values.
• r(i): ranking of the solution i is the number of the front in which is located.
• Dominated(i): solutions dominated by the solution i.
• Domines(i): solutions that dominates to solution i.
• CD (i): Crowding Distance value of the solution i.
• SSD(i): Spatial Spread Deviation value of solution i.

The structure Front is used to store the approximated Pareto front, which contains the
following information for each stored solution i:

• V(i): vector binary associated to the solution i.
• O(i): real vector of the graded mean values of the fuzzy triangular objectives of the

solution V(i).
• r(i): ranking of the solution i is the number of the front in which is located.
• Dominated(i): solutions dominated by the solution i.
• Domines(i): solutions that dominates to solution i.
• SSD (i): Spatial Spread Deviation value of the solution i.

5.4. T-FAME Algorithm Pseudocode

This section presents the pseudocode for the algorithm T-FAME in Algorithm 5.

Algorithm 5. T-FAME pseudocode

INPUT: Instance with the trapezoidal parameters of the portfolio problem.
OUTPUT: Approximated Pareto front

Variables
pop: Population of solutions (binary vectors)
Front: Limited sized set were no-dominated solutions are kept
Operator: Vector of size SizeOP that contains the index of the available operators
Parents: Vector of size NParents that contains the chosen parents
ProbOp(i): Probability that operator i has of being chosen, it has values between 0 and 1
UseOp(i): Normalized Indicator of how much operator i has been used, it has values between 0 and 1
Stagnation: Normalized indicator of the number of generated solutions that couldn’t be inserted into Front, because they were either
dominated solutions or there was not space available for them, it can have values between 0 and 1.
MAXEVAL: Maximum number of evaluations of the objective function (stopping criterion)
Window: Size of the time window.
eval: Accumulator of the evaluations of the objective function
v: Counter of the time windows that have elapsed

Functions
CreateaSon(Operator(i), Parents): Generates one solution using the previous chosen operator i with the chosen parents (Steady state)
Evaluate(Son): Calculates the objective values of Son and verify feasibility
FuzzyController(Stagnation, UseOp(i)): Function that invokes the fuzzy controller with Stagnation and UseOp(i) as input values and
returns the probability of selection of all the operators
no-dominated_sortingSSD(NewPop): Sorts the fronts of NewPop by dominance and uses as ranking the SSD values of the solutions.
EliminateWorstSolutionSSD(NewPop): Eliminates from the last front of NewPop the solution with the worst SSD, and assign NewPop
to pop.
**
1. Create(pop) **Create random population
2. Front=NoDominated(pop) **Insert in Front the no-dominated solutions of pop
3. ∀ iε {1, 2,, SizeOP} ProbOp(i) =1, UseOp(i)=0
4. v =0; Stagnation = 0; eval=0;
5. while (eval<MAXEVAL) do. **** Stop condition
** Chose |NParents|
** With a probability β each parent is taken from Front to intensify) and with 1- β from pop to diversify.
6. ∀ iε {1, 2, ..|NParents|} do
7. if (RandomDouble(0,1) ≤ β) then
**The parent is chosen from Front

Math. Comput. Appl. 2021, 26, 36 20 of 30

8. Parents[i]← TournamentSSD(Front)
9. Else
**The parent is chosen from pop
10. Parents[i]← TournamentSSD(pop)

*** Roulette to choose an operator with the selection probabilities of the operators
11. sum=0
12. i = Random(1, 2, . . . , NParents)
13. sum=sum+ProbOp(i)
14. while (sum>0) do
15. i = Random(1, 2, . . . , NParents)
16. sum=sum+ProbOp(i)

***** The chosen operator is associated with the last value of i
** ***Steady state approach
17. Son← CreateaSon(Operator(i), Parents)

**** Get the objective vector values corresponding to Son and verify feasibility.
18. Evaluate(Son)
19. eval=eval+1
20. UseOp(Operator(i)) = UseOp(Operator(i))+ 1 . 0/ Window
21. v=v+1

22. If (Son dominates a set S of solutions in Front)
23. then { Front=Front\S; Front=Front ∪ Son}
24. else If (∃ s Front such that s dominates Son)
25. then (Stagnation= Stagnation+1.0/ Window)
26. else if (Sizeof(Front)<100)
27. then (Front=Front ∪ Son)
28. else {
29. Front=Front ∪ Son ** Front[1 00]=Son
30. Calculate SSD for all the solutions in Front
31. Sort the solutions in Front in ascending order by SSD
32. Eliminate the solution in Front with worst SSD:Front[100]
33. If (Son Front)
34. then Stagnation= Stagnation+1.0/ Window
35. }
36. If (v == Window) then
**** The Fuzzy Controller is used to update the selection probability
****of all the operators

37. ∀ iε {1, 2, . . . SizeOP}
38. ProbOp(i) = FuzzyController(Stagnation, UseOp(i))
39. v =0; Stagnation = 0;
40. End if
41. pop=pop ∪ Son
42. NewPop=pop
43. no-dominated_sortingSSD(NewPop)
44. pop← EliminateWorstSolutionSSD(NewPop)
45. End while
46. Return(Front) *** Approximated Pareto front generated

6. Experimental Results

Two experiments were done in order to evaluate the performance of the proposed
algorithms. The tested steady-state algorithms were T-NSGA-II-CD, T-NSGA-II-SSD, and
T-FAME. The first experiment was done to make sure the algorithms were implemented
correctly, while the second experiment was done to compare the performance between
them using performance metrics.

Math. Comput. Appl. 2021, 26, 36 21 of 30

The software and hardware platforms that were used for these experiments include
Intel Core i5 1.6GHz processor, RAM 4GB, and IntelliJ IDEA CE IDE.

6.1. Performance Metrics Used

In order to measure the performance of each algorithm, two metrics were used:
hypervolume [28] and generalized spread [29].

Hypervolume is the n-dimensional solution space volume that is dominated by the
solutions in the reference set. If this space is big, then that means that the set is close to
the Pareto Front. It is desirable for the indicator to have large values. Generalized Spread
calculates the average of the distances of the points in the reference set to their closest
neighbor. If this indicator has small values, then that means the solutions in the reference
set are well distributed.

6.2. Experimental Setup

In order to configure the algorithms used in this work, the parameter values reported
in the state-of-the-art were considered. The parameter value for the maximum number of
evaluations was determined after a preliminary experimental phase. The comparison of all
the algorithms, under the same operation conditions, utilizes a steady-state approach, using
the dominant son. Tables 3 and 4 show the values of the parameters used in the algorithms.
The configuration of algorithm T-NSGA-II-SSD is the same one as T-NSGA-II-CD, however,
it uses Spatial Spread Deviation instead of Crowding Distance as its density estimator.

Table 3. T-NSGA-II-SSD parameters.

Parameter Value

Evaluation of the objective function 5000
Population Size 50

Crossover population % 70
Mutation population % 40

Mutation % 5

Table 4. T-FAME parameters.

Parameter Value

Evaluation of the objective function 5000
Population Size 25

Front Size 100
Tournament Size 5

Number of parents 4
Window Size 13

Differential Evolution Crossover % 10
Number of mutations in FM 2
Front choice probability (β) 0.9

6.3. Experiment 1. Validating the Implemented Algorithms

For this experiment, an instance named o2p25_rand was used, this instance was
originally created for POP with intervals, which was converted in a trapezoidal fuzzy
instance by adding two parameters to the intervals. The optimum Pareto Front was
obtained using an exhaustive algorithm, and approximate fronts were obtained with T-
NSGA-II-CD, T-NSGA-II-SSD, and T-FAME algorithms. All algorithms solve the MOPOP
with Fuzzy Parameters and use a steady-state election mechanism, creating one solution
from the genetic operators’ application. This adaptation from FAME has an advantage over
algorithms using the classic generational approach in genetic algorithms.

The purpose of this experiment is to validate the correct operation of the implemented
algorithms in the project. In the experiment, the fronts are generated, and they are com-
pared to the optimum front, in order to determine if the algorithms are generating similar

Math. Comput. Appl. 2021, 26, 36 22 of 30

fronts. All the fronts that were generated are shown in Table 5. Each front is shown in
two columns that contain the values of the two objectives that were originally Trapezoidal
Fuzzy numbers, but they were converted into real numbers with the transformation based
on GMI. The graph the fronts uses the GMI values obtained from the objectives.

Table 5. Generated fronts of the algorithms with instance o2p25_rand.

Pareto Optimal Front T-NSGA-II-CD T-NSGA-II-SSD T-FAME

O2 O1 O2 O1 O2 O1 O2

3530 78,510 3465 81,155 3425 81,285 3530
3805 62,350 4245 66,240 4400 77,480 3715
3825 76,360 3840 75,650 3860 74,485 3750
3840 70,035 3870 68,610 4240 73,425 3775
3865 77,020 3490 70,350 4005
3965 66,605 4070 66,850 4375
3980 62,755 4090 59,865 4385
4000 77,900 3490
4025 77,920 3485
4035
4060
4065
4120
4150
4215
4235
4240
4260
4310
4375
4400
4435
4460

It is worth nothing that, in Figure 8, the approximated fronts are relatively close and
below the optimum front. Also, observe that the T-NSGA-II-SSD and T-FAME algorithms
managed to reach some optimum solutions. Finally, note that the T-FAME algorithm has a
good distribution between its solutions.

Math. Comput. Appl. 2021, 26, 36 23 of 30

4310
4375
4400
4435
4460

It is worth nothing that, in Figure 8, the approximated fronts are relatively close and
below the optimum front. Also, observe that the T-NSGA-II-SSD and T-FAME algorithms
managed to reach some optimum solutions. Finally, note that the T-FAME algorithm has
a good distribution between its solutions.

Figure 8. Generated fronts of the algorithms with instance o2p25_rand.

6.4. Experiment 2. Evaluating the Performance of the Algorithms with Instances of 25 Projects
This experiment evaluates the performances of algorithms T-NSGA-II-CD, T-NSGA-

II-SSD, and T-FAME, and utilizes 13 instances with 2 objectives and 25 projects. In order
to compare the performance between the three algorithms, each algorithm was executed
30 times per instance. The performance metrics used were hypervolume and generalized
spread. For each instance, the reference set contains the non-dominated solutions obtained
from the combination of the 30 generated fronts. The computation of the metrics uses the
reference set as an approximation to the optimum Pareto Front. The computation of the
median value and interquartile ranges uses the metric values of the 30 instances sorted in
ascending order. With the sorted array, the median value was the average of the metric
values from positions 15 and 16. At the same time, the interquartile ranges correspond to
those in positions 23 and 8, corresponding to the 75% and 25% of the metrics values, re-
spectively. The median value and the interquartile ranges are used instead of the average
and the standard deviation because they are less sensitive to extreme values. The experi-
ment performs a hypothesis test to validate the obtained results. The hypothesis was
proven using the parametric t student test on those data sets that passed the normality
and homoscedasticity tests and using the non-parametric Wilcoxon signed-rank test on
those that do not. Both tests apply a confidence level of 95%, pairing T-FAME with each
of the other two algorithms. Tables 6–9 show the results of the normality and homosce-
dasticity tests done for all the instances used in this work (25 and 100 projects) and the
metrics of hypervolume and generalized spread. Tables 6 and 8 show in the last column
pairs (i,j), which indicate that the comparison of T-NSGA-II-CD and T-FAME uses test i,
and the comparison T-NSGA-II-SSD and T-FAME uses test j. The values t and W in (i, j)
stand for t student test and Wilcoxon test. This work tests each instance separately.

3000

3200

3400

3600

3800

4000

4200

4400

4600

55000 60000 65000 70000 75000 80000 85000

Comparative graph Optimal front/T-NSGA-II-CD/T-NSGA-II-SSD/T-FAME

Optimal front T-NSGA-II-CD T-NSGA-II-SSD T-FAME

Figure 8. Generated fronts of the algorithms with instance o2p25_rand.

Math. Comput. Appl. 2021, 26, 36 23 of 30

6.4. Experiment 2. Evaluating the Performance of the Algorithms with Instances of 25 Projects

This experiment evaluates the performances of algorithms T-NSGA-II-CD, T-NSGA-
II-SSD, and T-FAME, and utilizes 13 instances with 2 objectives and 25 projects. In order
to compare the performance between the three algorithms, each algorithm was executed
30 times per instance. The performance metrics used were hypervolume and generalized
spread. For each instance, the reference set contains the non-dominated solutions obtained
from the combination of the 30 generated fronts. The computation of the metrics uses
the reference set as an approximation to the optimum Pareto Front. The computation
of the median value and interquartile ranges uses the metric values of the 30 instances
sorted in ascending order. With the sorted array, the median value was the average of
the metric values from positions 15 and 16. At the same time, the interquartile ranges
correspond to those in positions 23 and 8, corresponding to the 75% and 25% of the metrics
values, respectively. The median value and the interquartile ranges are used instead of the
average and the standard deviation because they are less sensitive to extreme values. The
experiment performs a hypothesis test to validate the obtained results. The hypothesis was
proven using the parametric t student test on those data sets that passed the normality and
homoscedasticity tests and using the non-parametric Wilcoxon signed-rank test on those
that do not. Both tests apply a confidence level of 95%, pairing T-FAME with each of the
other two algorithms. Tables 6–9 show the results of the normality and homoscedasticity
tests done for all the instances used in this work (25 and 100 projects) and the metrics of
hypervolume and generalized spread. Tables 6 and 8 show in the last column pairs (i,j),
which indicate that the comparison of T-NSGA-II-CD and T-FAME uses test i, and the
comparison T-NSGA-II-SSD and T-FAME uses test j. The values t and W in (i, j) stand for t
student test and Wilcoxon test. This work tests each instance separately.

Table 6. Hypervolume normality test, the null hypothesis is that the samples follow a normal distribution which is accepted
(a) when p-value < 0.05 and rejected (r) otherwise.

T-NSGA-II-CD T-NSGA-II-SSD T-FAME

Instance Statistic p-Value R Statistic p-Value R Statistic p-Value R Tests

o2p25_0T 0.9429 0.1089 a 0.83756 0.00034 r 0.96919 0.51737 a t,W
o2p25_1T 0.93655 0.07348 a 0.92817 0.04391 r 0.97408 0.65561 a t,W
o2p25_2T 0.92141 0.02918 r 0.95491 0.22837 a 0.96987 0.53551 a W,t
o2p25_3T 0.94311 0.11035 a 0.90566 0.01159 r 0.94528 0.12625 a t,W
o2p25_4T 0.95413 0.21782 a 0.93505 0.06696 a 0.89022 0.00488 r W,W
o2p25_5T 0.86113 0.00107 r 0.89584 0.00665 r 0.94768 0.14643 a W,W
o2p25_6T 0.9023 0.00956 r 0.89233 0.00548 r 0.96519 0.41715 a W,W
o2p25_7T 0.94961 0.16508 a 0.86559 0.00134 r 0.92644 0.03953 r W,W
o2p25_8T 0.92385 0.0338 r 0.91474 0.01963 r 0.85737 0.00089 r W,W
o2p25_9T 0.94965 0.16541 a 0.89673 0.00699 r 0.97209 0.59792 a t,W

o2p25_10T 0.92989 0.04877 r 0.78913 0.00004 r 0.97575 0.70469 a W,W
o2p25_11T 0.93191 0.05518 a 0.95357 0.21047 a 0.96642 0.44633 a t,t
o2p25_12T 0.94626 0.13411 a 0.95055 0.17491 a 0.98323 0.9033 a t,t
o2p100_1T 0.96346 0.37847 a 0.96637 0.44525 a 0.98333 0.90552 a t,t
o2p100_2T 0.95885 0.28944 a 0.98951 0.98844 a 0.9737 0.64441 a t,t
o2p100_3T 0.93272 0.05801 a 0.9821 0.87827 a 0.94779 0.14745 a t,t
o2p100_4T 0.78768 0.00004 r 0.78085 0.00003 r 0.89022 0.00488 r W,W
o2p100_5T 0.95289 0.20189 a 0.94588 0.13101 a 0.93478 0.06586 a t,t
o2p100_6T 0.94043 0.09341 a 0.93788 0.07976 a 0.95224 0.194 a t,t
o2p100_7T 0.97249 0.60937 a 0.99025 0.99229 a 0.94017 0.0919 a t,t
o2p100_8T 0.96892 0.51019 a 0.98362 0.9115 a 0.96805 0.48728 a t,t
o2p100_9T 0.57553 0 r 0.52513 0 r 0.71502 0 r W,W

Math. Comput. Appl. 2021, 26, 36 24 of 30

Table 7. Hypervolume homoscedasticity test, the null hypothesis is that all the input populations
come from populations with equal variances, which is accepted (a) when p-value < 0.05 and rejected
(r) otherwise. We can observe that the null hypothesis is accepted (a) for all the instances. The
parametric t student test can be applied for all the instances that accept the null hypothesis in the
normality tests.

Instance Statistic p-Value R

o2p25_0T 8.46563 0.00044 a
o2p25_1T 17.23159 0 a
o2p25_2T 8.53517 0.00041 a
o2p25_3T 11.87763 0.00003 a
o2p25_4T 7.1698 0.00131 a
o2p25_5T 7.60431 0.0009 a
o2p25_6T 7.19194 0.00129 a
o2p25_7T 2.20562 0.11631 a
o2p25_8T 8.18222 0.00055 a
o2p25_9T 4.45024 0.01445 a

o2p25_10T 3.63843 0.03037 a
o2p25_11T 3.98587 0.02207 a
o2p25_12T 9.90574 0.00013 a
o2p100_1T 0.27401 0.76098 a
o2p100_2T 2.14347 0.1234 a
o2p100_3T 0.29369 0.74624 a
o2p100_4T 1.79147 0.17281 a
o2p100_5T 5.98972 0.00365 a
o2p100_6T 1.09354 0.33959 a
o2p100_7T 2.30064 0.10626 a
o2p100_8T 4.20117 0.01812 a
o2p100_9T 1.39539 0.25322 A

Table 8. Generalized Spread normality test, the null hypothesis is that the samples follow a normal distribution which is
accepted (a) when p-value < 0.05 and rejected (r) otherwise.

T-NSGA-II-CD T-NSGA-II-SSD T-FAME

Instance Statistic p-Value R Statistic p-Value R Statistic p-Value R Tests

o2p25_0T 0.92895 0.04606 r 0.97607 0.71429 a 0.9784 0.78164 a W,t
o2p25_1T 0.98376 0.91432 a 0.95618 0.24658 a 0.97193 0.59314 a t,t
o2p25_2T 0.98074 0.84479 a 0.97925 0.8053 a 0.96813 0.48946 a t,t
o2p25_3T 0.9215 0.02934 r 0.9225 0.03116 r 0.96419 0.39452 a W,W
o2p25_4T 0.95187 0.18969 a 0.96214 0.35091 a 0.68255 0 r W,W
o2p25_5T 0.96913 0.51555 a 0.95677 0.25552 a 0.92403 0.03416 r W,W
o2p25_6T 0.87495 0.00216 r 0.97296 0.62306 a 0.958 0.27513 a W,t
o2p25_7T 0.94053 0.094 a 0.95631 0.24864 a 0.94784 0.14792 a t,t
o2p25_8T 0.9648 0.40819 a 0.95561 0.23827 a 0.94282 0.10833 a t,t
o2p25_9T 0.97001 0.53934 a 0.97168 0.58607 a 0.9686 0.50171 a t,t

o2p25_10T 0.92765 0.04254 r 0.96999 0.53902 a 0.97623 0.71907 a W,t
o2p25_11T 0.91446 0.01932 r 0.96986 0.53537 a 0.95816 0.27785 a W,t
o2p25_12T 0.95492 0.22856 a 0.98402 0.91939 a 0.95432 0.22029 a t,t
o2p100_1T 0.92495 0.03611 r 0.92054 0.02771 r 0.94295 0.10926 a W,W
o2p100_2T 0.9812 0.85642 a 0.95454 0.22326 a 0.95353 0.21003 a t,t
o2p100_3T 0.92278 0.03169 r 0.86033 0.00103 r 0.96482 0.40857 a W,W
o2p100_4T 0.65395 0 r 0.79925 0.00006 r 0.68255 0 r W,W
o2p100_5T 0.91266 0.01738 r 0.86347 0.0012 r 0.96541 0.4223 a W,W
o2p100_6T 0.90797 0.01323 r 0.91912 0.02544 r 0.90857 0.01369 r W,W
o2p100_7T 0.89328 0.00578 r 0.89889 0.00789 r 0.96516 0.41655 a W,W
o2p100_8T 0.94824 0.15169 a 0.96578 0.43096 a 0.96071 0.32297 a t,t
o2p100_9T 0.49141 0 r 0.68971 0 r 0.68313 0 r W,W

Math. Comput. Appl. 2021, 26, 36 25 of 30

Table 9. Generalized Spread homoscedasticy test, the null hypothesis is that all the input populations
come from populations with equal variances, which is accepted (a) when p-value < 0.05 and rejected
(r) otherwise. Observe that the null hypothesis is accepted (a) for all the instances. The parametric t
student test can be applied for all the instances that accept the null hypothesis in the normality tests.

Instance Statistic p-Value R

o2p25_0T 0.33509 0.71619 a
o2p25_1T 3.11548 0.04934 a
o2p25_2T 5.44373 0.00592 a
o2p25_3T 7.81001 0.00076 a
o2p25_4T 0.38001 0.68498 a
o2p25_5T 3.01271 0.05431 a
o2p25_6T 1.58378 0.21106 a
o2p25_7T 10.87966 0.00006 a
o2p25_8T 1.51668 0.22518 a
o2p25_9T 19.54345 0 a

o2p25_10T 5.78604 0.00437 a
o2p25_11T 7.0285 0.00148 a
o2p25_12T 15.29209 0 a
o2p100_1T 8.48884 0.00043 a
o2p100_2T 9.53401 0.00018 a
o2p100_3T 3.46674 0.0356 a
o2p100_4T 1.42075 0.24708 a
o2p100_5T 3.96176 0.02256 a
o2p100_6T 4.19408 0.01824 a
o2p100_7T 4.62372 0.01235 a
o2p100_8T 5.30008 0.00673 a
o2p100_9T 0.90643 0.40774 a

Table 10 shows the performance results with the hypervolume metric, and Table 11
shows the results with the generalized spread metric. For the hypervolume metric, the
algorithm with the largest value is considered to be the one with the best performance.
For the generalized spread metric, the best algorithm is considered to be the one with
the smallest value. The table’s cells show the median value of the metric (M) and the
interquartile range (IRQ) in the following format: MIRQ. In the result tables, for each
instance the best and second-best values are marked with solid or light black, respectively.
In order to indicate if the observed differences in the performance of the algorithms are
significant or not, for each algorithm the symbol

∧
indicates that the performance of T-

FAME is significantly better that the algorithm which it is being compared. The symbol∨
indicates the opposite, and the symbol = indicates that the difference is not significant.

These symbols are marked with an asterisk when the t student test was applied. To
confirm the results obtained with the paired tests, a global evaluation is done with the three
algorithms. This evaluation was done by applying a Friedman test with 95% confidence.

Math. Comput. Appl. 2021, 26, 36 26 of 30

Table 10. Results with the hypervolume metric.

Hypervolume

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p25_0T 0.47470.0858
∨

* 0.31830.3853
∨ 0.20240.2491

o2p25_1T 0.38070.0510
∨

* 0.24600.2325
∨ 0.20030.2876

o2p25_2T 0.35910.0614
∨ 0.24670.2042

∨
* 0.16130.1526

o2p25_3T 0.28320.0549
∨

* 0.27700.2311
∨ 0.13450.1646

o2p25_4T 0.35100.0812
∨ 0.28360.1489

∨ 0.18750.1673

o2p25_5T 0.26350.0383
∨ 0.15290.1495

∨ 0.10700.1048

o2p25_6T 0.37970.0609
∨ 0.24650.1870

∨ 0.13800.2060

o2p25_7T 0.23480.2446
∨ 0.28160.3644

∨ 0.14270.1694

o2p25_8T 0.25740.0664
∨ 0.18380.2259

∨ 0.16300.1747

o2p25_9T 0.40260.1184
∨

* 0.24490.2455
∨ 0.15390.1615

o2p25_10T 0.25800.0710
∨ 0.14510.1566

∨ 0.11260.1070

o2p25_11T 0.39180.0946
∨

* 0.23270.1687=* 0.18760.1657

o2p25_12T 0.29340.0708
∨

* 0.26210.2174=* 0.23520.1969

Table 11. Results with the generalized spread metric.

Generalized Spread

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p25_0T 0.61780.1985
∧ 0.41900.1534 = * 0.41540.2064

o2p25_1T 0.73440.1685
∧

* 0.44770.1289 = * 0.46610.1128

o2p25_2T 0.60650.2078
∧

* 0.39290.1025 = * 0.39830.1047

o2p25_3T 0.72760.2387
∧ 0.51810.1370 = 0.52250.0790

o2p25_4T 0.64750.3031
∧ 0.46460.1432

∨ 0.55110.1078

o2p25_5T 0.72280.1715
∧ 0.42040.0925

∧ 0.41680.1293

o2p25_6T 0.62580.1539
∧ 0.40260.0982

∨
* 0.46290.1703

o2p25_7T 0.83140.5343
∧

* 0.49950.2457
∨

* 0.58330.2388

o2p25_8T 0.75460.1739
∧

* 0.46930.1447 = * 0.46460.1059

o2p25_9T 0.65340.3432
∧

* 0.48250.1435 = * 0.47260.0690

o2p25_10T 0.65420.2697
∧ 0.47930.1031 = * 0.47790.0891

o2p25_11T 0.65400.3103
∧ 0.43690.1073 = * 0.47840.1629

o2p25_12T 070790.2465
∧

* 0.46840.0953 = * 0.46540.0793

The information presented in Table 10 shows that T-NSGA-II-CD stands out as the
algorithm with the best performance in 12 of 13 cases. The results on Table 11 shows that
T-NSGA-II-SSD positions itself as the best algorithm in 10 of 13 cases and T-FAME in 8 of
13 cases. It can also be observed that these differences are significant in all cases, this is due
to the fact that when the differences are not significant between the best and second-best
algorithms, then that means the algorithms are considered tied. Table 12 confirms the
results observed with the t student and Wilcoxon tests. As a result of applying the Friedman
test with the three algorithms, the ones with the lowest rank for the hypervolume and
generalized spread metrics are T-NSGA-II-CD and T-NSGA-II-SSD, respectively.

Math. Comput. Appl. 2021, 26, 36 27 of 30

Table 12. Friedman ranks of all algorithms with hypervolume and generalized spread.

Hypervolume (p-Value = 5.68 × 10−6) Generalized Spread (p-Value = 5.71 × 10−5)

Algorithm Ranking Algorithm Ranking

T-NSGA-II-CD 14 T-NSGA-II-SSD 19
T-NSGA-II-SSD 25 T-FAME 20

T-FAME 39 T-NSGA-II-CD 39

6.5. Experiment 3. Evaluation of the Algorithm’ Perfomances Using Instances with 100 Projects

As indicated previously, the previous experiment was done with instances with
25 projects, for which the algorithms had to navigate in a space of binary vectors of length
25. In that case the size of the solution space was of 225. For this experiment, 9 instances of
2 objectives and 100 projects were used, these instances represented a greater complexity
for the algorithms because the solution space increased to 2100. The experiment conditions
were just as in the previous one, using the same metrics but in a scenario of greater
complexity scenario. For each instance, the reference set contains the non-dominated
solutions obtained from the combination of the 30 generated fronts. The computation of
the metrics uses the reference set as an approximation to the optimum Pareto Front. The
computation of the median value and interquartile ranges uses the metric values of the
30 instances sorted in ascending order. With the sorted array, the median value was the
average of the metric values from positions 15 and 16. At the same time, the interquartile
ranges correspond to those in positions 23 and 8, corresponding to the 75% and 25% of
the metrics values, respectively. The experiment performs a hypothesis test to validate
the obtained results. The hypothesis was proven using the parametric t student test on
those data sets that passed the normality and homoscedasticity tests and using the non-
parametric Wilcoxon signed-rank test on those that do not. Both tests apply a confidence
level of 95%, pairing T-FAME with each of the other two algorithms. Tables 6–9 shows the
results of the normality homoscedasticity tests done for all the instances used in this work
(25 and 100 projects) and the metrics of hypervolume and generalized spread.

Table 13 shows the results with the hypervolume metric and Table 14 shows the results
with the generalized spread metric. For the hypervolume metric, the algorithm with the
largest value is considered to be the one with the best performance. For the generalized
spread metric, the best algorithm is considered to be the one with the smallest value. The
table cells show the median value of the metric (M) and the interquartile range (IRQ) in
the following format: MIRq. In the result tables, for each instance the best and second
best values are marked with solid or light black, respectively. In order to indicate if the
observed differences in the performance of the algorithms are significant or not, for each
algorithm the symbol

∧
indicates that the performance of T-FAME is significantly better

that the algorithm which it is being compared. The symbol
∨

indicates the opposite, and
the symbol = indicates that the difference is not significant. These symbols are marked
with an asterisk where the t student test was applied. To confirm the results obtained with
the paired tests, a global evaluation is done with the three algorithms. This evaluation was
done by applying a Friedman test with 95% confidence.

Math. Comput. Appl. 2021, 26, 36 28 of 30

Table 13. Results with the hypervolume metric.

Hypervolume

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p100_1T 0.46810.1948
∧

* 0.50640.1804
∧

* 0.62140.2130

o2p100_2T 0.40940.1613
∧

* 0.54750.2357=* 0.51070.2107

o2p100_3T 0.55240.2781=* 0.63660.3261=* 0.59470.2887

o2p100_4T 0.77380.3543
∧ 0.92610.5476

∧ 0.93950.4006

o2p100_5T 0.28930.1453
∧

* 0.35190.2193
∧

* 0.46110.2668

o2p100_6T 0.53590.3131=* 0.54220.4082=* 0.61630.5234

o2p100_7T 0.27130.1066
∧

* 0.34770.1816
∧

* 0.48960.2093

o2p100_8T 0.35500.1282=* 0.51730.2759
∨

* 0.38940.2611

o2p100_9T 0.91420.3142
∧ 10.1428

∨ 10.0285

Table 14. Results with the generalized spread metric.

Generalized Spread

Instance T-NSGA-II-CD T-NSGA-II-SSD T-FAME

o2p100_1T 0.52090.3128
∧ 0.32100.1922

∧ 0.30390.1152

o2p100_2T 0.53600.2984
∧

* 0.31050.1349
∨

* 0.39950.2272

o2p100_3T 0.48490.1753
∧ 0.37910.1171

∧ 0.37770.2171

o2p100_4T 0.28280.0915
∧ 0.25550.0661

∨ 0.26510.0746

o2p100_5T 0.60080.2320
∧ 0.37960.2193

∧ 0.29770.1051

o2p100_6T 0.37290.2967
∧ 0.34570.1845

∧ 0.28760.1838

o2p100_7T 0.50560.2843
∧ 0.32210.1803

∧ 0.31850.1463

o2p100_8T 0.54240.2142
∧

* 0.31540.1280
∨

* 0.33380.1274

o2p100_9T 0.40840.0670
∧ 0.36810.0604= 0.37180.0489

The information presented in Table 13 shows T-FAME stands out as the algorithm
with the best performance in 7 of 9 cases and T-NSGA-II-SSD in 5 of 9 cases. The results on
Table 14 show that T-FAME stands out as the best algorithm in 6 of 9 cases and T-NSGA-II-
SSD in 4 of 9 cases. These differences are significant in all cases, this is due to the fact that
when the differences are not significant between the best and second-best algorithms, then
that means the algorithms are considered tied. Table 15 confirms the results observed with
the t student and Wilcoxon tests. As a result of applying the Friedman test with the three
algorithms, the one that has the lowest rank for both metrics is T-FAME.

Table 15. Friedman ranks of all algorithms with hypervolume and generalized spread.

Hypervolume (p-Value = 0.00104) Generalized Spread (p-Value = 0.00113)

Algorithm Ranking Algorithm Ranking

T-FAME 12.5 T-FAME 13
T-NSGA-II-SSD 14.5 T-NSGA-II-SSD 14
T-NSGA-II-CD 27 T-NSGA-II-CD 27

7. Conclusions and Future Work

This work approaches the Multi-Objective Portfolio Optimization Problem with Trape-
zoidal Fuzzy Parameters. To the best of our knowledge, there are no reports of this variant
of the problem. This work, for the first time, presents a mathematical model of the problem,

Math. Comput. Appl. 2021, 26, 36 29 of 30

and, additionally, contributes with a solution algorithm using the Fuzzy Adaptive Multi-
objective Evolutionary (FAME) methodology and two novel steady state algorithms that
apply the Non-Dominated Genetic Algorithm (NSGA-II) methodology to solve this variant
of the problem. Traditionally, these kinds of algorithms use the Crowding Distance density
estimator, so this work proposes substituting this estimator for the Spatial Spread Deviation
to improve the distribution of the solutions in the approximated Pareto fronts. This work
contributes with a defuzzification process that permits measurements on the algorithms’
performances using commonly used real metrics. The computational experiments use a set
of problem instances with 25 and 100 projects and hypervolume and generalized spread
metrics. The results with the challenging instances of 100 projects show that the algorithm
T-FAME has the evaluated algorithms’ best performance. Three hypothesis tests supported
these results, and this is encouraging because they confirm the feasibility of the proposed
solution approach.

The main open works identified in this research are to develop algorithms for solving
the problem with many objectives, preferences, and dynamic variants. Currently, we are
working to change the fuzzy controller selector for a selector based on a reinforcement
learning agent.

Author Contributions: Conceptualization: A.E.-P., D.L.-G., H.J.F.-H., L.C.-R.; Methodology:
M.L.M.-R., N.R.-V.; Investigation: H.J.F.-H., L.C.-R.; Software: C.G.-S., N.R.-V.; Formal Analysis:
H.J.F.-H.; Writing review and editing: A.E.-P., D.L.-G., H.J.F.-H., C.G.-S. All authors have read and
agreed to the published version of the manuscript.

Funding: Authors thanks to CONACYT for supporting the projects from (a) Cátedras CONACYT
Program with Number 3058. (b) CONACYT Project with Number A1-S-11012 from Convocatoria
de Investigación Científica Básica 2017–2018 and CONACYT Project with Number 312397 from
Programa de Apoyo para Actividades Científicas, Tecnológicas y de Innovación (PAACTI), a efecto
de participar en la Convocatoria 2020-1 Apoyo para Proyectos de Investigación Científica, Desarrollo
Tecnológico e Innovación en Salud ante la Contingencia por COVID-19. (c) A. Estrada and D. López
would like to thank CONACYT for the support numbers 740442 and 931846.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Salo, A.; Keisler, J.; Morton, A. Portfolio Decision Analysis: Improved Methods for Resource Allocation; Springer: Berlin/Heidelberg,

Germany, 2011; p. 409.
2. Carlsson, C.; Fuller, R.; Heikkila, M.; Majlender, P. A fuzzy approach to R&D portfolio selection. Int. J. Approx. Reason. 2007,

44, 93–105.
3. Coffin, M.A.; Taylor, B.W. Multiple criteria R&D project selection and scheduling using fuzzy sets. Comput. Oper. 1996, 23, 207–220.
4. Klapka, J.; Pinos, P. Decision support system for multicriterial R&D and information systems projects selection. Eur. J. Oper. Res.

2002, 140, 434–446.
5. Ringuest, J.L.; Graves, S.B.; Case, R.H. Mean–Gini analysis in R&D portfolio selection. Eur. J. Oper. Res. 2004, 154, 157–169.
6. Stummer, C.; Heidemberger, K. Interactive R&D portfolio analysis with project interdependencies and time profiles of multiple

objectives. IEEE Trans. Eng. Manag. 2003, 30, 175–183.
7. Salo, A.; Keisler, J.; Morton, A. Portfolio Decision Analysis. Improved Methods for Resource Allocation, International Series in Operations

Research & Management Science, Chapter An Invitation to Portfolio Decision Analysis; Springer: New York, NY, USA, 2011; pp. 3–27.
8. Fernandez, E.; Lopez, E.; Lopez, F.; Coello, C. Increasing selective pressure toward the best compromise in Evolutionary

Multiobjective Optimization: The extended NOSGA method. Inf. Sci. 2011, 181, 44–56. [CrossRef]
9. Roy, B. Robustness for Operations Research and Decision Aiding; Springer: Berlin/Heidelberg, Germany, 2013.
10. Balderas, F.; Fernandez, E.; Gomez, C.; Rangel, N.; Cruz-Reyes, L. An interval-based approach for evolutionary multi-objective

optimization of project portfolios. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1317–1358. [CrossRef]
11. García, R.R. Hiper-heurístico para Resolver el Problema de Cartera de Proyectos Sociales. Master’s Thesis, Maestro en Ciencias

de la Computación, Instituto Tecnológico de Ciudad Madero, Tamps, Mexico, 2010.
12. Rivera, Z.G. Enfoque Metaheurístico Híbrido para el Manejo de Muchos Objetivos en Optimización de Cartera de Proyectos

Interdependientes con Decisiones de Apoyo Parcial. Ph.D. Thesis, Doctorado en Ciencias de la Computación, Instituto Tecnológico
de Tijuana, Tamps, Mexico, 2015.

13. Bastiani, M.S. Solución de Problemas de Cartera de Proyectos Públicos a partir de Información de Ranking de Prioridades. Ph.D.
Thesis, Doctorado en Ciencias de la Computación, Instituto Tecnológico de Tijuana, Tamps, Mexico, 2017.

http://doi.org/10.1016/j.ins.2010.09.007
http://doi.org/10.1142/S021962201950024X

Math. Comput. Appl. 2021, 26, 36 30 of 30

14. Sánchez, S.P. Incorporación de Preferencias en Metaheurísticas Evolutivas a través de Clasificación Multicriterio. Ph.D. Thesis,
Doctorado en Ciencias de la Computación, Instituto Tecnológico de Tijuana, Tamps, Mexico, 2017.

15. Martínez, V.D. Optimización Multiobjetivo de Cartera de Proyectos con Fenómenos de Dependencias Temporales y Decisiones
Dinámicas de Financiamiento. Ph.D. Thesis, Doctorado en Ciencias de la Computación, Instituto Tecnológico de Tijuana, Tamps,
Mexico, 2020.

16. Durillo, J.J.; Nebro, A.J.; Luna, F.; Alba, E. On the Effect of the Steady-State Selection Scheme in Multi-Objective Genetic
Algorithms. In Evolutionary Multi-Criterion Optimization. EMO 2009. Lecture Notes in Computer Science; Ehrgott, M., Fonseca, C.M.,
Gandibleux, X., Hao, J.K., Sevaux, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; p. 5467.

17. Zadeth, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
18. Vahidi, J.; Rezvani, S. Arithmetic Operations on Trapezoidal Fuzzy Numbers. J. Nonlinear Anal. Appl. 2013, 2013, 1–8. [CrossRef]
19. Kumar, V. Multi-Objective Fuzzy Optimization; Indian Institute of Technology: Kharagpur, India, 2010.
20. Yao, S.; Jiang, Z.; Li, N.; Zhang, H.; Geng, N. A multi-objective dynamic scheduling approach using multiple attribute decision

making in semiconductor manufacturing. Int. J. Prod. Econ. 2011, 130, 125–133. [CrossRef]
21. Karp, R.M. Reducibility Among Combinatorial Problems. Complex. Comput. Comput. 1972, 85–103. [CrossRef]
22. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective

Optimization: NSGA-I. In Proceedings of the Proceedings of the Parallel Problem Solving from Nature VI, Paris, France, 18–20
September 2000; pp. 849–858.

23. Umbarkar, A.J.; Sheth, P.D. Crossover operators in genetic algorithms: A review. ICTAC J. Soft Comput. 2015, 6, 1083–1092.
24. Reeves, C.R. Genetic Algorithms. In International Series in Operations Research & Management Science, Handbook of Metaheuristics;

Gendreau, M., Potvin, J.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; p. 146.
25. Santiago, A.; Dorronsoro, B.; Nebro, A.J.; Durillo, J.J.; Castillo, O.; Fraire, H.J. A novel multi-objective evolutionary algorithm

with fuzzy logic based adaptive selection of operators: FAME. Inf. Sci. 2019, 471, 233–251. [CrossRef]
26. Roy, S.; Chakraborty, U. Introduction to Soft Computing: Neurofuzzy and Genetic Algorithms; Dorling-Kindersley: London, UK, 2013.
27. Rainer, S.; Kenneth, P. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J.

Glob. Optim. 1997, 11, 341–359.
28. While, V.; Member, S.; Bradstreet, L.; Barone, V. A Fast Way of Calculating Exact Hypers. IEEE Trans. Evol. Comput. 2012, 16, 86–95.

[CrossRef]
29. Zhou, A.; Jin, Y.; Zhang, Q.; Sendhoff, B.; Tsang, E. Combining Model-based and Genetics-based Offspring Generation for

Multi-objective Optimization Using a Convergence Criterion. IEEE Congr. Evol. Comput. 2006, 892–899. [CrossRef]

http://doi.org/10.1016/S0019-9958(65)90241-X
http://doi.org/10.5899/2013/jnaa-00111
http://doi.org/10.1016/j.ijpe.2010.12.014
http://doi.org/10.1007/978-1-4684-2001-2_9
http://doi.org/10.1016/j.ins.2018.09.005
http://doi.org/10.1109/TEVC.2010.2077298
http://doi.org/10.1109/CEC.2006.1688406

	Introduction
	Elements of Fuzzy Theory
	Fuzzy Sets
	Generalized Fuzzy Numbers
	Trapezoidal Addition Operator
	Graded Mean Integration (GMI)
	Order Relation in the Set of the Trapezoidal Fuzzy Numbers
	Pareto Dominance

	Multi-Objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters
	Mathematical Model
	Strategy to Generate the Fuzzy Trapezoidal Instances
	Evaluating the Solutions and Verifying the Feasibility

	Steady-State T-NSGA-II Algorithm
	Representation of the Solutions
	One-Point Crossover Operator
	Uniform Mutation Operator
	Initial Population
	Population Sorting
	Non-Dominated Sorting
	Calculating the Crowding Distance
	Calculating the Spatial Spread Deviation (SSD)
	Pseudocode of the T-NSGA-II Algorithm

	T-FAME Algorithm
	Fuzzy Controller
	Additional Genetic Operators
	Used Structures to Store the Population and the Approximated Pareto Front
	T-FAME Algorithm Pseudocode

	Experimental Results
	Performance Metrics Used
	Experimental Setup
	Experiment 1. Validating the Implemented Algorithms
	Experiment 2. Evaluating the Performance of the Algorithms with Instances of 25 Projects
	Experiment 3. Evaluation of the Algorithm’ Perfomances Using Instances with 100 Projects

	Conclusions and Future Work
	References

