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Abstract: Four discrete models, using the exact spectral derivative discretization finite difference
(ESDDFD) method, are proposed for a chaotic five-dimensional, conformable fractional derivative
financial system incorporating ethics and market confidence. Since the system considered was
recently studied using the conformable Euler finite difference (CEFD) method and found to be
hyperchaotic, and the CEFD method was recently shown to be valid only at fractional index α = 1,
the source of the hyperchaos is in question. Through numerical experiments, illustration is presented
that the hyperchaos previously detected is, in part, an artifact of the CEFD method, as it is absent
from the ESDDFD models.

Keywords: conformable calculus; fractional-order financial system; ESDDFD and NSFD methods;
hyperchaotic attractor; market confidence; ethics risk

1. Introduction

Hyperchaotic systems [1,2]—typically defined as systems with at least two positive
Lyapunov exponents [3–5]—of a fractional-order have been investigated in many contexts,
such as systems of Rössler [6] or Lorenz [7] type, those with flux controlled memristors [8]
or realized in circuits [9–11], those arising from cellular neural networks [12], and financial
systems [13]. As recounted in [13], a nonlinear financial system depicting the relationship
among interest rates, investments, prices, and savings was first introduced by Huang
and Li [14]. It was extended to fractional-order in Chen [15], to uncertain fractional-
order form in Wang et al. [16], to delayed form in Mircea et al. [17], and to discrete form
in Xin et al. [18]. The average profit margin was added as a variable in Yu et al. [19],
while investment incentive and market confidence were introduced in Xin et al. [20,21].
Xin and Zhang [21] updated the 3-dimensional Huang and Li [8] model to a 4-dimensional
one by accounting for market confidence and [13] incorporated ethics risk to obtain
a 5-dimensional system, which was then fractionalized to obtain the following fractional-
order financial system considered in [13]:

Tα1
t x = z + (y− a)x + k(w− pu)

Tα2
t y = 1− by− x2 + k(w− pu)

Tα3
t z = −x− cz + k(w− pu)

Tα4
t w = −dxyz

Tα5
t u = k(w− pu)

(1)

where α = (α1, α2, α3, α4, α5) is subject to α1, α2, α3, α4, α5 ∈ (0, 1), and Tαi
t , 1 ≤ i ≤ 5,

denotes the conformable fractional derivative of order αi. The variables x, y, z, w, and
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u are the interest rate, investment demand, price index, market confidence, and ethics
risk, respectively; the parameters a, b, and c are the saving amount, cost per investment,
and demand elasticity of commercial markets, respectively, and a, b, c ≥ 0; k, p, d are impact
factors associated with ethics risk.

Since analytic solutions do not exist, suitable numerical schemes to obtain solutions of
the conformable derivative financial system are needed. Though there are several methods
to solve a conformable derivative system [22–47], these are too complex for many people.
Inspired by the discretization process for the Caputo derivative for Ricatti equations [45]
and Chua systems [46], the conformable Euler’s finite difference (CEFD) method [47] for the
5-dimensional fractional-order financial system is proposed in [13]. Numerical experiments
with the resulting discrete model were conducted to detect a hyperchaotic attractor of
the system. However, the standard Euler discretization of integer-order systems, such as
studied in [13], is known to induce (see, e.g., [48,49]) numerical instabilities and spurious be-
havior where none exist in the continuous system. Moreover, the CEFD method has recently
been shown [50] to be valid only for α = 1 and is, therefore, not a valid fractional method.
Nonstandard finite difference (NSFD) models have extensively [48] been shown to elimi-
nate induced chaos; the exact spectral derivative discretization finite difference (ESDDFD)
methodology is a novel extension, developed in the context of advection–reaction–diffusion
equations [51], of the NSFD method to non-integer derivatives [52].

It is, therefore, natural to ask whether some of the hyperchaotic behavior detected in
the fractional financial system is an artifact of the method and whether ESDDFD models can
be constructed to eliminate such induced hyperchaos. The purpose of the present study is
to investigate this question—in particular, the effects of the discretization of the derivative
and that of non-linear terms. To this end, the following four discrete models using the
ESDDFD method are constructed for the system (1) and the bifurcation experiments of [13]
are repeated with the new models.

xk+1−xk
φj(h,α1)

= Fx
i (xk, yk, zk, uk, wk)

yk+1−yk
φj(h,α2)

= Fy
i (xk, yk, zk, uk, wk)

zk+1−zk
φj(h,α3)

= −xk − czk + k(wk − puk)

uk+1−uk
φj(h,α5)

= k(wk − puk)

wk+1−wk
φj(h,α4)

= Fw
i (xk, yk, zk, zk)

(2)

i = 1, 2 and j = 1, 2, where:

Fx
1 (xk, yk, zk, uk, wk) = zk + (yk+1 − a)xk + k(wk − puk)

Fy
1 (xk, yk, zk, uk, wk) = 1− byk − xkxk + k(wk − puk)

Fw
1 (xk, yk, zk, zk) = − d

2 xkyk(zk + zk)

Fx
2 = Fx

1 (xk, yk+1, zk, uk, wk)

Fy
2 = Fy

1 (xk, yk+1, zk, uk, wk)

Fw
2 = Fw

1 (xk, yk+1, zk, zk+1)

The remainder of this article is organized as follows. In Section 2, the ESDDFD
fundamentals, a description of the model (1), and the CEFD model from [3] are presented.
Section 3 presents the construction of the denominator functions, φj(h, αm), 1 ≤ m ≤ 5,
for the ESDDFD model (2) and compares sub-models of (2) with corresponding CEFD
sub-models. In Section 4, experimental results of hyperchaotic attractor detection from
the proposed financial system using both methods are presented. Concluding remarks in
Section 5 close the paper.
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2. Preliminaries
2.1. The Conformable Derivative ESDDFD Discrete Model Construction Fundamentals

While the Riemann–Liouville, Caputo, Atangana–Baleanu, and Grünwald–Letnikov
fractional derivatives [53–60] are widely used in various applications, their definitions
lack the chain rule, a classical derivative property satisfied by the conformable fractional
derivative (CFD) [61–63] and its various extensions (see e.g., [64]). A financial system with
a market confidence and ethics risk model was recently [13] added to the many existing
applications of the CFD in various scientific fields [22,65–74].

2.2. The Conformable Derivative Hyperchaotic Financial System and Its CEFD Model

The conformable fractional derivative financial system model (1) is based on a suc-
cessive addition of various factors, starting with the Huang and Li [8] nonlinear financial
system model:

x′ = z + (y− a)x
y′ = 1− by− x2

z′ = −x− cz
(3)

modeling the interaction of interest rate (x), investment demand (y), and price index (z);
the variables and parameters are the same as in (1). Model (3) was extended, by Xin and
Zhang [15], to account for market confidence:

x′ = z + (y− a)x + m1w
y′ = 1− by− x2 + m2w
z′ = −x− cz + m3w
w′ = −dxyz

(4)

where m1, m2, m3 are the impact factors associated with market confidence (w); the remain-
ing variables and parameters are the same as in (3). Model (1) is the fractionalization,
predicated on the practice that fractional-order economic systems [15,75–79] can generalize
their integer-order forms [14,80,81], of the following extension of (4) in [13] to account for
both market confidence and ethics risk (u):

x′ = z + (y− a)x + k(w− pu)
y′ = 1− by− x2 + k(w− pu)
z′ = −x− cz + k(w− pu)
w′ = −dxyz
u′ = k(w− pu)

(5)

When α = (1, 1, 1, 1, 1), system (1) degenerates to system (5); in the absence of ethics
risk, (5) reduces to (4); in the absence of market confidence, (4) reduces to (3). In these
three cases, therefore, any discrete method developed for (1) must reduce to that of the
three respective reduced systems. Chaotic behavior for both the CEFD and ESDDFD
models will be numerically investigated in Section 4 for (1) as well as the reduced fractional
counterpart of system (3).

The following discrete model was obtained in [13] from the CEFD method and used
to numerically investigate hyperchaos of the system (1):

xk+1 = xk +
hα1
α1

(zk + (yk − a)xk + k(wk − puk))

yk+1 = yk +
hα2
α2

(1− byk − xkxk + k(wk − puk))

zk+1 = zk − hα3
α3

(xk + czk − k(wk − puk))

uk+1 = uk +
hα5
α5

k(wk − puk)

wk+1 = wk − hα4
α4

dxkykzk

(6)
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3. ESDDFD Discretization of the Conformable Derivative System and Its Reductions

In the ESDDFD and NSFD discretization methodologies, the first step is to consider
a linear sub-system whose exact or best scheme can be constructed. Such a sub-system,
in this case, is the following:

Tα1
t x = −ax,

Tα2
t y = −by,

Tα3
t z = −cz,
Tα4

t w = 0,
Tα5

t u = −kpu,

(7)

which has only positive solutions for any positive initial data. The exact discretization of (7),
which has a solution identical to that of (7), is as follows:

xk+1−xk
φ1(h,α1)

= −axk,

yk+1−yk
φ1(h,α2)

= −byk,

zk+1−zk
φ1(h,α3)

= −czk,

wk+1−wk
φ1(h,α4)

= 0,

uk+1−uk
φ1(h,α5)

= −kpuk,

(8)

where the nonstandard denominators φ1(h, αi), 1 ≤ i ≤ 5, are given by:

φ1(h, αi) =
1

Qi

(
1− e−

Qi
αi
[(t+h)αi−tαi ]

)
,

with Q1 = a, Q2 = b, Q3 = c, Q4 = 0, Q5 = kp.

Since (1) reduces to (7), any valid discrete model for (1) must be reducible to one con-
sistent with its exact discretization—that is, (8). By comparison, a reduction of the CEFD
model (6) to the sub-system (7) yields the following discrete sub-system:

xk+1 = xk − hα1
α1

axk,

yk+1 = yk − hα2
α2

byk,

zk+1 = zk − hα3
α3

czk,

wk+1 = wk + Q4
hα4
α4

wk,

uk+1 = uk − hα5
α5

kpuk,

(9)

which is positive only if the following condition is satisfied:
(

1− hαi
αi

Qi

)
≥ 0, 1 ≤ i ≤ 5,

with the Qi as in (8); such conditional positivity is known to induce chaotic behavior. All of
the sub-Equations (8) are of the form:

Tα
t P = −λP,

whose CEFD scheme is:
Pk+1 = Pk −

hα

α
λPk,

which has been conclusively shown in [50] to be valid only for α = 1.
It is shown in [50] that a modified CEFD (MCEFD) may be obtained from the following

alternate CFD definition, which is equivalent to the fractional change of variables in the
integer-valued derivative (see also [82]):
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Definition 1. Given a real-valued function on [0, ∞), the conformable fractional derivative has the
following alternative definition:

C
0 Tα

t [ f (t)] ≡ lim
h→0

CFD
0 ∆α

t [ f (t)] = αlim
h→0

f (t + h)− f (t)[
(t + h)α − tα

] ,

where C
0 Tα

t [ f (0)] is understood to mean C
0 Tα

t [ f (0)] = lim
t→0+

C
0 Tα

t [ f (t)].

Therefore, the Euler scheme, resulting from the MCFED, is the same as that given in
Equation (8), only with the denominator of:

φ1(h, αi) =
1

Qi

(
1− e−

Qi
αi
[(t+h)αi−tαi ]

)
replaced by:

φ2(h, αi) =
1
αi

[
(t + h)αi − tαi

]
, 1 ≤ i ≤ 5,

which is equivalent to replacing hαi by αiφ2(h, αi) in the CEFD scheme (9).
To enable the assessment of the effect of the denominators φj(h, αi), j = 1, 2, the fol-

lowing schemes are compared:

xk+1−xk
φj(h,α1)

= zk + (yk − a)xk ,

yk+1−yk
φj(h,α2)

= 1− byk − (xk)
2,

zk+1−zk
φj(h,α3)

= −xk − czk, j = 1, 2.

(10)

To enable the assessment of the effect of the non-local discretization of nonlinear terms,
the following schemes are compared:

xk+1−xk
φj(h,α1)

= zk + (yk+1 − a)xk,

yk+1−yk
φj(h,α2)

= 1− byk − xk+1xk,

zk+1−zk
φj(h,α3)

= −xk − czk, j = 1, 2.

(11)

The terms (y− a)x, and x2 are discretized non-locally as, respectively, (yk+1 − a)xk
and xk+1xk, while discretization of the terms z (in the first Equation of (10)) and x (in the
third as zk and xk) ensures respective consistency with the terms cz in the third and ax in
the first Equation of (11) in the cases where c = 1 and a = 1.

By comparison, the scheme obtained through a reduction of the CEFD model (6) to its
3-dimensional sub-system (3) yields the following discrete sub-system:

xk+1 = xk +
hα1
α1

(zk + (yk − a)xk)

yk+1 = yk +
hα2
α2

(1− byk − xkxk)

zk+1 = zk +
hα3
α3

(−xk − czk).

(12)

Since system (12) reduces to the x− y− z sub-system of (9), which suffers from induced
chaos, it is to be expected that it too suffers the same, which will be numerically investigated
in the next section.
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The ESDDFD models (2) are then obtained by discretizing k(w− pu) as k(wk − puk) to
ensure consistency with (8) and then discretizing xyz non-locally as either 1

2 xkyk(zk + zk) or
1
2 xkyk+1(zk + zk+1), where the form xkyk+1 is used to match the xy term in the x-equation.

xk+1−xk
φj(h,α1)

= zk + (yk − a)xk + k(wk − puk)

yk+1−yk
φj(h,α2)

= 1− byk − (xk)
2 + k(wk − puk)

zk+1−zk
φj(h,α3)

= −xk − czk + k(wk − puk)

uk+1−uk
φj(h,α5)

= k(wk − puk)

wk+1−wk
φj(h,α4)

= − d
2 xkyk(zk + zk), j = 1, 2.

(13)

and
xk+1−xk
φj(h,α1)

= zk + (yk+1 − a)xk + k(wk − puk)

yk+1−yk
φj(h,α2)

= 1− byk − xk+1xk + k(wk − puk)

zk+1−zk
φj(h,α3)

= −xk − czk + k(wk − puk)

uk+1−uk
φj(h,α5)

= k(wk − puk)

wk+1−wk
φj(h,α4)

= − d
2 xkyk+1(zk + zk+1), j = 1, 2.

(14)

The schemes (13) are explicit and can be explicitly solved for each j = 1, 2, in the order
xk+1, yk+1, zk+1, uk+1, wk+1 to obtain the following:

xk+1 = xk + φj(h, α1)[zk + (yk − a)xk + k(wk − puk)]

yk+1 = yk + φj(h, α2)
[
1− byk − (xk)

2 + k(wk − puk)
]

zk+1 = zk − φj(h, α3)[xk + czk − k(wk − puk)]

uk+1 = uk + φj(h, α5)[k(wk − puk)]

wk+1 = wk − d
2 φj(h, α4)xkyk(zk + zk), j = 1, 2.

(15)

While implicit, the schemes (14) can be explicitly solved for each j = 1, 2 in the order
uk+1, zk+1, xk+1, yk+1, wk+1 to obtain the following:

uk+1 = uk + φj(h, α5)[k(wk − puk)]

zk+1 = zk − φj(h, α3)[xk + czk − k(wk − puk)]

xk+1 = 1
[1+φj(h,α1)xkφj(h,α2)xk]

(
xk + φj(h, α1)xk

{
yk + φj(h, α2)[1− byk + k(wk − puk)]

})
+ 1

[1+φ(h,α1)xkφ(h,α2)xk ]
φj(h, α1)[zk − axk + k(wk − puk)]

wk+1 = wk − φj(h, α4)
d
2 xkyk+1(zk + zk+1)

4. Numerical Experiments

In this section, hyperchaos detection experiments are conducted, parallel to those of [13],
by varying the parameters related to ethics risk, such as α5, the confidence factor k, and the risk
factor p, in the CEFD and ESDDFD models and their reductions. The following parameters
and initial point values are fixed following [1]: h = 0.002, a = 0.8, b = 0.6, c = 1, d = 2,
α1 = 0.3, α2 = 0.5, α3 = 0.6, α4 = 0.24, x0 = 0.4, y0 = 0.6, z0 = 0.8, w0 = 0.3, u0 = 0.4.
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4.1. Three-Dimensional Systems Comparison

There were no experiments performed in [13] for this case. Simulations for both the
ESDDFD model (11) and the CEFD model (12) are performed with the same parameters.
The following models (16)–(19), obtained through the ESDDFD method,

xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk − 0.8)xk,

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1− 0.6yk − (xk)
2,

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk,

(16)

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk − 0.8)xk,

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1− 0.6yk − (xk)

2,

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk − zk,

(17)

xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk+1 − 0.8)xk,

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1− 0.6yk − xk+1xk,

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk,

(18)

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk+1 − 0.8)xk,

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1− 0.6yk − xk+1xk,

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk

(19)

are compared to (20), obtained through the CEFD method:

xk+1 − xk +
h0.3

0.3 (zk + (yk − 0.8)xk),

yk+1 = yk +
h0.5

0.5 (1− 0.6yk − xkxk),

zk+1 = zk +
h0.6

0.6 (xk − zk).

(20)

While bifurcations can be seen in Figure 1a for the CEFD model, they are absent from the
results of the ESDDFD models, Figure 1b–e.
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4.2. Five-Dimensional Systems Comparison: Varying α5, k, and p

For this case, experiments performed in [13] are performed with the same parameters
for models obtained through the ESDDFD method, for the various cases and values of
(α5, k, p) used in [13]. Model (21) from the CEFD method,

xk+1 = xk +
h0.3

0.3 (zk + (yk − 0.8)xk + k(wk − puk))

yk+1 = yk +
h0.5

05 (1− 0.6yk − xkxk + k(wk − puk))

zk+1 = zk − h0.6

0.6 (xk + zk − k(wk − puk))

wk+1 = wk − h0.24

0.24 2xkykzk

uk+1 = uk +
hα5
α5

k(wk − puk)

(21)

is compared to the following four models—respectively, MCEFD (22), ESDDFD1 (23),
ESDDFD2 (24), ESDDFD3 (25)—obtained through the ESDDFD and NSFD methods:

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk − 0.8)xk + k(wk − puk)

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1− 0.6yk − xkxk + k(wk − puk)

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk − zk + k(wk − puk)

wk+1−wk
1

0.24

[
(t+h)0.24−t0.24

] = −xkyk(zk + zk)

uk+1−uk
1

α5
[(t+h)α5−tα5 ]

= k(wk − puk)

(22)

xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk − 0.8)xk + k(wk − puk)

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1− 0.6yk − xkxk + k(wk − puk)

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk + k(wk − puk)

wk+1−wk[
1−e

−1
0.24 [(t+h)0.24−t0.24 ]

] = −xkyk(zk + zk)

uk+1−uk

1
kp

[
1−e

−kp
α5

[(t+h)α5−tα5 ]
] = k(wk − puk)

(23)

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk+1 − 0.8)xk + k(wk − puk)

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1− 0.6yk − xk+1xk + k(wk − puk)

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk − zk + k(wk − puk)

wk+1−wk
1

0.24

[
(t+h)0.24−t0.24

] = −xkyk+1(zk + zk+1)

uk+1−uk
1

α5
[(t+h)α5−tα5 ]

= k(wk − puk)

(24)
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xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk+1 − 0.8)xk + k(wk − puk)

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1− 0.6yk − xk+1xk + k(wk − puk)

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk + k(wk − puk)

wk+1−wk[
1−e

−1
0.24 [(t+h)0.24−t0.24 ]

] = −xkyk+1(zk + zk+1)

uk+1−uk

1
kp

[
1−e

−kp
α5

[(t+h)α5−tα5 ]
] = k(wk − puk)

(25)

4.2.1. Varying α5 with Fixed k = 2 and p = 1 and α5 ∈ [0.232, 0.328]

In this case, Ref. [13] concluded that system (6) is hyperchaotic with α5 ∈ [0.232, 0.328];
fixing α5 = 0.24, a set of two positive Lyapunov exponents and three negative Lyapunov
exponents were found. Profiles for x, y, z, w and u, when α5 = 0.232 for model (21),
are given below. Chaos can be clearly seen in Figure 2 which gives the phase portraits for
the CEFD model. For each model (22) through (25). Figure 3 shows phase portraits using
the same step size and parameter values. These models produce identical graphs, which
differ significantly from the graphs for model (21). The bifurcation tests for the ESDDFD
model are performed with the same parameters. The bifurcation diagrams for x, z and u
for model (21) are in Figure 4. These again show clear signs of chaos while the bifurcation
diagrams for models (22) through (25), which are given in Figures 5–8, do not.
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are performed with the same parameters. The bifurcation diagrams for 𝑥, 𝑧 and 𝑢 for 
model (21) are in Figure 4. These again show clear signs of chaos while the bifurcation 
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(a) (b) 

 
(c) 

Figure 2. CEFD model (21) profiles of (a) 𝑥 − 𝑦 − 𝑧, (b) 𝑥 − 𝑢 − 𝑧, (c) 𝑥 − 𝑤 − 𝑧, at ℎ = 0.002, 𝑘 =2, 𝑝 = 1, 𝛼ହ = 0.232. 
Figure 2. CEFD model (21) profiles of (a) x − y − z, (b) x − u − z, (c) x − w − z, at h = 0.002,
k = 2, p = 1, α5 = 0.232.
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Figure 3. Phase portraits (a) 𝑥 − 𝑦 − 𝑧,  (b) 𝑥 − 𝑢 − 𝑧,  (c) 𝑥 − 𝑧 − 𝑤 , at ℎ = 0.002, 𝑘 = 2, 𝑝 =1, 𝛼ହ = 0.232 for models (22) through (25). Figure 3. Phase portraits (a) x− y− z, (b) x− u− z, (c) x− z−w, at h = 0.002, k = 2, p = 1, α5 = 0.232
for models (22) through (25).
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Figure 4. CEFD model (21); bifurcation of (a) 𝑢 (b) 𝑥 (c) 𝑧 versus 𝛼ହ for ℎ = 0.002. 
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Figure 4. CEFD model (21); bifurcation of (a) u (b) x (c) z versus α5 for h = 0.002.
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Figure 5. MCEFD Model (22); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].
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Figure 6. ESDDFD model (23); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].
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Figure 7. ESDDFD model (24); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].
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Figure 8. ESDDFD model (25); (a) 𝑢 vs 𝛼ହ,  (b) 𝑥 vs 𝛼ହ,  (c) 𝑧 vs 𝛼ହ , at 𝑘 = 2, 𝑝 = 1, 𝛼ହ ∈[0.232, 0.328ሿ. 
For step sizes above 0.003, CEFD, (21), fails. MCEFD, (22) fails for step sizes above 

0.573. The graphs in Figure 9 were produced using the same parameter values as before, 
except ℎ = 0.1. The graphs in Figure 10 were done with h = 1.0. These show the effect of 
larger step sizes on methods (23), (24), and (25). The ESDDFD methods preserve the end 
behavior at much larger step sizes than CEFD and MCEFD. Note the differences in the 
early behavior between the methods, especially when compared with h = 0.002. 

 

Figure 8. ESDDFD model (25); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].

For step sizes above 0.003, CEFD, (21), fails. MCEFD, (22) fails for step sizes above
0.573. The graphs in Figure 9 were produced using the same parameter values as before,
except h = 0.1. The graphs in Figure 10 were done with h = 1.0. These show the effect of
larger step sizes on methods (23), (24), and (25). The ESDDFD methods preserve the end
behavior at much larger step sizes than CEFD and MCEFD. Note the differences in the
early behavior between the methods, especially when compared with h = 0.002.
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Figure 9. Phase portraits (a) 𝑥 − 𝑦 − 𝑧, (b) 𝑥 − 𝑢 − 𝑧, (c) 𝑥 − 𝑧 − 𝑤, at ℎ = 0.1, 𝑘 = 2, 𝑝 = 1, 𝛼ହ =0.232 for models (22) through (25). 
Figure 9. Phase portraits (a) x− y− z, (b) x− u− z, (c) x− z−w, at h = 0.1, k = 2, p = 1, α5 = 0.232
for models (22) through (25).
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Figure 10. Phase portraits (a) 𝑥 − 𝑦 − 𝑧, (b) 𝑥 − 𝑢 − 𝑧, (c) 𝑥 − 𝑧 − 𝑤, at ℎ = 1.0, 𝑘 = 2, 𝑝 = 1, 𝛼ହ =0.232 for models (22) through (25). ℎ = 1.0, 𝛼ହ =  0.232 for (23) through (25). 

4.2.2. Varying p with Fixed 𝑘 = 2, 𝛼ହ =  0.3, and 𝑝 ∈ [1, 2ሿ 
In this case, Ref. [13] concluded that system 6 is hyperchaotic with p ∈ [1, 2]. Fixing p = 1, a set of two positive Lyapunov exponents and three negative Lyapunov exponents 

was determined. Bifurcation tests for the ESDDFD models are performed with the same 
parameters for the full discrete model (2). Figure 11 shows the bifurcation diagrams for 𝑢, 𝑥 and 𝑧 for the CEFD model (21). Figures 12–15 show the bifurcation diagrams for the 
models (22) through (25). As in Section 4.2.1, the CEFD diagrams show evidence of chaos 
while the other models do not. 

  
(a) (b) 

Figure 10. Phase portraits (a) x− y− z, (b) x− u− z, (c) x− z−w, at h = 1.0, k = 2, p = 1, α5 = 0.232
for models (22) through (25). h = 1.0, α5 = 0.232 for (23) through (25).

4.2.2. Varying p with Fixed k = 2, α5 = 0.3, and p ∈ [1, 2]

In this case, Ref. [13] concluded that system 6 is hyperchaotic with p ∈ [1, 2]. Fixing
p = 1, a set of two positive Lyapunov exponents and three negative Lyapunov exponents
was determined. Bifurcation tests for the ESDDFD models are performed with the same
parameters for the full discrete model (2). Figure 11 shows the bifurcation diagrams for
u, x and z for the CEFD model (21). Figures 12–15 show the bifurcation diagrams for the
models (22) through (25). As in Section 4.2.1, the CEFD diagrams show evidence of chaos
while the other models do not.
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Figure 11. CEFD model (21); (a) 𝑢 vs 𝑝, (b) 𝑥 vs 𝑝, (c) 𝑧 vs 𝑝, at 𝑘 = 2, 𝛼ହ = 0.3, 𝑝 ∈ [1, 2ሿ. 
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Figure 12. MCEFD model (22); (a) 𝑢 vs 𝑝, (b) 𝑥 vs 𝑝, (c) 𝑧 vs 𝑝, at 𝑘 = 2, 𝛼ହ = 0.3, 𝑝 ∈ [1, 2ሿ. 
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Figure 11. CEFD model (21); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].
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Figure 12. MCEFD model (22); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].
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Figure 12. MCEFD model (22); (a) 𝑢 vs 𝑝, (b) 𝑥 vs 𝑝, (c) 𝑧 vs 𝑝, at 𝑘 = 2, 𝛼ହ = 0.3, 𝑝 ∈ [1, 2ሿ. 
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Figure 13. ESDDFD1 model (23); (a) 𝑢 vs 𝑝, (b) 𝑥 vs 𝑝, (c) 𝑧 vs 𝑝, at 𝑘 = 2, 𝛼ହ = 0.3, 𝑝 ∈ [1, 2ሿ. 
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Figure 14. ESDDFD2 model (24); (a) 𝑢 vs 𝑝, (b) 𝑥 vs 𝑝, (c) 𝑧 vs 𝑝, at 𝑘 = 2, 𝛼ହ = 0.3, 𝑝 ∈ [1, 2ሿ. 
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Figure 13. ESDDFD1 model (23); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].
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Figure 14. ESDDFD2 model (24); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].
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Figure 14. ESDDFD2 model (24); (a) 𝑢 vs 𝑝, (b) 𝑥 vs 𝑝, (c) 𝑧 vs 𝑝, at 𝑘 = 2, 𝛼ହ = 0.3, 𝑝 ∈ [1, 2ሿ. 
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Figure 15. ESDDFD2 model (25); (a) 𝑢 vs 𝑝, (b) 𝑥 vs 𝑝, (c) 𝑧 vs 𝑝, at 𝑘 = 2, 𝛼ହ = 0.3, 𝑝 ∈ [1, 2ሿ. 
Setting 𝑝 = 1.94, phase portraits are given for models (22) through (25) in Figure 16. 

Figure 17 shows the phase portraits for model (21). There are clear signs of chaos in the 
phase portraits for model (21) and no chaos in those for the other models.  

 

 

 

 

Figure 15. ESDDFD2 model (25); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].

Setting p = 1.94, phase portraits are given for models (22) through (25) in Figure 16.
Figure 17 shows the phase portraits for model (21). There are clear signs of chaos in the
phase portraits for model (21) and no chaos in those for the other models.
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Figure 17. Model (21) phase portraits (a) x− y− z, (b) x− z− u, and (c) x− z−w at k = 2, p = 1.94,
α5 = 0.3.

4.2.3. Varying k with Fixed p = 1 and α5 = 0.3, with k ∈ [1.5, 2.5]

In this case, Ref. [13] concluded that system (6) is hyperchaotic with k ∈ [1.5, 2.5].
Fixing k = 1.5, a set of two positive Lyapunov exponents and three negative Lyapunov
exponents were determined. Bifurcation tests for the ESDDFD models are performed with
the same parameters for the full discrete model (2). Figure 18 gives the bifurcation diagrams
for CEFD, model (21). Figures 19–22 give the bifurcation diagrams for x, u and z, for models
(22) through (25). Once again there is chaos evident in the CEFD diagrams but no chaos in
the diagrams for the other models.
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Figure 22. ESDDFD2 model (25); (a) u vs. k, (b) x vs. k, (c) z vs. k, at p = 1, α5 = 0.3, k ∈ [1.5, 2.5].

Setting k = 2.45, phase portraits are given for models (22) through (25) in Figure 23. The
phase portraits for CEFD, model (21), are given in Figure 24. Again, while the phase portraits
for CEFD show chaos, it is lacking in the phase portraits for models (22) through (25).
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Figure 24. Model (21) phase portraits; (a)  𝑥 − 𝑦 − 𝑧,  (b) 𝑥 − 𝑧 − 𝑢, and (c)  𝑥 − 𝑧 − 𝑤  at 𝑘 =2.45, 𝑝 = 1, 𝛼ହ = 0.3. 

4.2.4. With Fixed k = 2, p = 1 and 𝛼ହ = 0.24 
In this case, Ref. [13] concluded that system (6) has a hyperchaotic attractor in the 𝑦 − 𝑧 − 𝑢 and 𝑥 − 𝑦 − 𝑤 planes. Two phase portraits for model (21) are given in Figure 

Figure 23. Phase portraits (a) x− y− z, (b) x− u− z, (c) x− z−w, at h = 0.1, k = 2.45, p = 1, α5 = 0.3
for models (22) through (25).
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Figure 24. Model (21) phase portraits; (a) x− y− z, (b) x− z− u, and (c) x− z−w at k = 2.45, p = 1,
α5 = 0.3.

4.2.4. With Fixed k = 2, p = 1 and α5 = 0.24

In this case, Ref. [13] concluded that system (6) has a hyperchaotic attractor in the
y− z− u and x− y− w planes. Two phase portraits for model (21) are given in Figure 25
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while the corresponding phase portraits for models (22) through (25) are given in Figure 26.
While the results for model (21) show chaos, the results for models (22) through (25) do not.
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Figure 26. Phase portraits (a) y− z− u, (b) x − y− w, at h = 0.002, k = 2, p = 1, α5 = 0.24 for
models (22) through (25).

5. Discussion

A discrete model using the conformable Euler finite difference (CEFD) model, (6),
was constructed in [13] and used to detect hyperchaotic behavior of the system (1). In
this paper, a discrete model (2) has been constructed for the system (1), and the parame-
ters from [13] were used to study hyperchaos using bifurcation techniques. The discrete
model (2) is constructed using the exact spectral derivative discretization finite difference
(ESDDFD) method, a universal extension of the nonstandard finite difference method to
fractional derivatives, which is designed to eliminate contrived chaos. Various cases are
considered in parallel to those considered in [13] as well as for sub-systems relevant to
the construction of the discrete model (2). While the proposed ESDDFD models produce
similar results to each other, those results are significantly different from those obtained
in [13] and exhibit no hyperchaotic behavior.

In view of the results obtained, it is reasonable to question the validity of the conclu-
sions of hyperchaotic behavior previously reported for related models, which the authors
intend to pursue in the future. While the conformable derivative is a local derivative and
has neither memory nor nonlocality, it is a multiple of the Caputo FD [83], and therefore
related to those with these properties. It will, therefore, be interesting to explore what, if any,
properties of the conformable system are inherited by the Caputo and Riemann–Liouville
FDs through these relationships. Further, as suggested in [13], studies incorporating
real economic data with parameter estimation for the financial system with market confi-
dence and ethics for all these derivatives are also necessary. Finally, as can be easily seen
from Theorem 4.1 of [50], the discretization methods presented here for CFD systems are
easy to implement and are equally applicable to all Caputo type derivatives, and hence,
to Riemann–Liouville derivatives through their relationship; hence, they have potential to
impact a wide range of fractional derivative applications.
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