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Abstract: The purpose of this research is to study the spatial and temporal groupings of 124 meteo-
rological stations in Thailand under ENSO. The multivariate climate variables are rainfall, relative
humidity, temperature, max temperature, min temperature, solar downwelling, and horizontal wind
from the conformal cubic atmospheric model (CCAM) in years of El Niño (1987, 2004, and 2015)
and La Niña (1999, 2000, and 2011). Euclidean distance timed and spaced with average linkage for
clustering and silhouette width for cluster validation were employed. Five spatial clusters (SCs) and
three temporal clusters (TCs) in each SC with different average precipitation were compared by El
Niño and La Niña. The pattern of SCs and TCs was similar for both events except in the case when
severe El Niño occurred. This method could be applied using variables forecasted in the future to be
used for planning and managing crop cultivation with the climate change in each area.

Keywords: Euclidean distance timed and spaced; meteorological station; multivariable panel data
cluster analysis

1. Introduction

In the past, the climate in Thailand was largely influenced by monsoon winds, such as
southwest moonsoon and northeast moonsoon, resulting in Thailand having a predomi-
nantly rainy season and dry season (summer and winter) taking place at a relatively certain
time. Currently, however, there has been an El Niño–La Niña phenomenon known as the
ENSO phenomenon (ENSO) that affects the climate. The ENSO phenomenon is caused
by variations in the Southern Hemisphere’s climate system. It is a phenomenon that has a
connection between ocean phenomena and ocean winds. It brings about climatic variations,
causing unusually high rainfall and unusual drought [1]. There are three types of weather
variability: drought, rain and cold disasters, and tropical cyclones. Thailand’s proximity to
the Western Pacific makes it directly affected by El Niño during 1997–1998, which resulted
in drought, lower than normal rainfall, and higher than normal air temperatures across the
country [2]. In 1999–2000, during the La Niña period, Thailand experienced more rainfall
than usual and cold weather, breaking records in many provinces [2]. Thailand is in the
humid tropics, which is suitable for agriculture. Most of its population is engaged in agri-
culture, so agricultural products are the main source of the country’s income and, therefore,
vital to its economy. The 12th Agricultural Development Plan (2017–2021) summarizes
the agricultural situation in terms of climate change and seasonal variability, resulting in
decreased agricultural productivity. Existing plant species are unable to adapt to changing
climate conditions, especially the ongoing drought from 2012 to 2015, damaging important
crops. This may be due to insufficient observation or experience by farmers to cope with
unprecedented situations in time, posing a risk of loss of productivity and increased pro-
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duction costs [3]. ENSO-related climate variability exerts strong influences on agricultural
production in different regions, including in Thailand [4–9].

Cluster analysis, unsupervised learning, have been applied in many studies to define
spatial and temporal variability from climate variables. In previous studies, only one
variable, mostly focusing on rainfall in a time series format, has been used for spatial and
temporal cluster [10–12]. However, there are other climate factors that affect agricultural
production such as relative humidity and temperature, which statistically significantly
affected sugarcane production, which was likely to decrease in the year of El Niño and
to increase in the year of La Niña [13]. Although there are some studies which employed
longitudinal meteorological factors such as rainfall, air temperature, humidity, pressure,
wind, evaporation, etc., they firstly average data over the time into the general cross-
sectional data and then the distance between samples is calculated for clustering [14].
Averaging over the time will result in a high amount of data loss because the mean shows
the average change in the data, yet it does not show the distribution of the data [15–18].

It would be beneficial to study variation across different geographic scales using
multivariable panel hierarchical clustering from ENSO-effected climate variables in Thai-
land, obtained from the conformal cubic atmospheric model (CCAM). There are seven
weather variables, including rainfall, average temperature, highest temperature, lowest
temperature, temperature difference from highest temperature, temperature difference
from lowest temperature, relative humidity, and solar radiation according to the locations of
the weather stations of the Thailand Meteorological Department. These monthly data have
been characterized by a combination of panel data, cross-sectional data, and time-series
data representing behavioral units and periods.

Therefore, this research will employ the distance measurement that does not need to
average the data, which is Euclidean distance timed and spaced, to cluster meteorological
weather stations in Thailand and discover the seasonal pattern for each cluster using
climate factors associated with precipitation when ENSO phenomena occur, since changes
in rainfall are important variables affecting agricultural productivity. The studied method,
cluster analysis on multivariable panel data with climate change application, therefore,
could be applied to the future data from weather models to group area and season. The
clustering framework applied in this study is shown in Figure 1. The results could be
used as a guideline to benefit the agricultural sector or the relevant agencies to prepare
for the upcoming changes resulting from climate change. In addition, spatial and timely
management plans can also be appropriately executed, including drought monitoring,
water management of both agricultural areas, as well as crop management.
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2. Materials and Methods
2.1. Study Area

Thailand is located between latitudes 5◦37′ N and 20◦27′ N and longitudes 97◦22′ E
and 105◦37′ E. A total of 124 stations of the Thai Meteorological Department (Figure 2)
were selected for the cluster analysis.
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2.2. El Niño–Southern Oscillation (ENSO)

El Niño–southern oscillation (ENSO) is a periodic change in the oceanic atmosphere
system in the tropical Pacific Ocean that affects climate around the world. It occurs every
three to seven years (average five years) and typically lasts nine months to two years,
associated with floods, droughts, and other global disturbances. During normal or non El
Niño conditions, trade winds blow west across the Pacific Ocean. The western part of the
equatorial Pacific is characterized by warm, wet, and low-pressure weather conditions due
to the accumulation of moisture in the form of typhoons and thunderstorms.

During the ENSO event, there was an increase in air pressure across the Indian Ocean,
Indonesia, and Australia, and a decrease in air pressure over Tahiti and the rest of the
central and eastern Pacific Ocean. The trade winds in the South Pacific weaken or head
east, and warm water spreads eastward from the western Pacific and Indian Ocean to the
eastern Pacific. This has led to widespread droughts in the western Pacific and dry eastern
Pacific rainfall. While El Niño is characterized by unusually warm ocean temperatures
in the central to eastern Pacific Ocean, La Niña is characterized by unusually cold ocean
temperatures in the region, but warmer waters in the western Pacific Ocean, as shown in
Figure 3. However, as El Niño conditions lasted for several months, more global warming
occurred in the oceans.
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climate-and-ocean-change/el-nino-southern-oscillation/, accessed on 24 March 2022).

In this study, the Oceanic Niño Index (ONI) from the National Oceanic and Atmo-
spheric Administration (2020) was used to identify the El Niño–southern oscillation. The
ONI is the 3-month running mean of the sea surface temperature anomaly in the Niño
3.4 region (5◦ N–5◦ S, 120◦–170◦ W). The ONI index exceeding +0.5 ◦C or −0.5 ◦C for at
least five consecutive months was considered as a full-fledged El Niño (E) or La Niña (L).
According to Null report, the three latest very strong El Niño events (ONI ≥ 2 ◦C) in 1982,
1997, and 2015 and three latest strong La Niña events (−1.5 to −1.9 ◦C) in 1999, 2007, and
2011 were selected to study the climate variations [19].

2.3. Conformal Cubic Atmospheric Model (CCAM)

The CCAM is a dynamic global climate model developed by the Commonwealth
Scientific and Industrial Research Organization (CSIRO), Division of Atmospheric Re-
search, Australia. It is used to forecast global climate through dynamic scale reduction
by generating a grid covering the region’s forecast area [20]. The model has also been
developed by adding physical parameterization schemes that include longwave radiation,
shortwave radiation, aerosol, cumulus convection, cloud distribution, soil temperature,
etc., to reduce the climate forecast error. The CCAM dataset was downscaled to 10 km grid
resolution, which is sufficient for the analysis of both spatial and temporal forecasts at the
regional level [21,22]. Data were changed from grid data to station format, which covers
124 meteorological measurement stations across Thailand (Figure 1).

Climate variables, focusing mainly on agricultural-related variables for cluster analysis,
were used in this study. They consist of a total of 7 variables: rainfall (mm/day), relative
humidity (percent), average temperature (degrees Celsius), maximum temperature (degree
Celsius), minimum temperature (degrees Celsius), solar radiation (watts/square meter),
and wind speed (m/s). Monthly data of those variables were collected for the years 1987,
1999, 2000, 2004, 2011, and 2015, of which the ENSO phenomenon occurred.

2.4. Multivariate Panel Data

Panel data is the combination of cross-sectional data and time-series data representing
behavioral units over the time

(
xij(t)

)
. Data were collected from cross-section data, which

collects the value of the variables in each unit at a given point in time. Then, the data
were repeatedly collected from the same unit at a subsequent time, either yearly, quarterly,
monthly, weekly, daily, or hourly. If each panel unit is observed at the same time point, a
data set is called balanced panel data. Consequently, if a balanced panel contains n panel
units and T periods, the number of observations in the dataset is necessarily N = n× T.
However, if at least one panel unit is not observed every period, a data set is called
unbalanced panel data. Therefore, the number of observations in the unbalanced panel
dataset is N < n× T.

Multivariate panel data has a very complex structure and cannot be represented by a
simple two-dimensional table. Table 1 shows the multivariate combination of data in a two-
dimensional table format, where n represents the number of samples collected, p represents
the number of variables (x1, x2, . . . , xp), T represents the length of time and represents the
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data value of the ith sample and jth variable at time t, where i ∈ [1, n]; j ∈ [1, p]; t ∈ [1, T].
Descriptive statistics, such as mean and variance of jth variable, is calculated as Equations (1)
and (2), respectively [15–18].

xj =
1
T

1
n

T

∑
t=1

n

∑
i=1

xij(t), (1)

s2
j =

1
T

T

∑
t=1

1
n− 1

n

∑
i=1

[
xij(t)− xj(t)

]2, (2)

Table 1. Multivariate panel data format for spatail cluster.

Sample (i)

Time Index (t)

1 2 · · · T

x1, x2,. . . , xp x1, x2,. . . , xp · · · x1, x2,. . . , xp

1 x11(1), x12(1), . . . , x1p(1) x11(2), x12(2), . . . , x1p(2) · · · x11(T), x12(T), . . . , x1p(T)
2 x21(1), x22(1), . . . , x2p(1) x21(2), x22(2), . . . , x2p(2) · · · x21(T), x22(T), . . . , x2p(T)
...

...
... · · · ...

n xn1(1), xn2(1), . . . , xnp(1) xn1(2), xn2(2), . . . , xnp(2) · · · xn1(T), xn2(T), . . . , xnp(T)

The values for monthly climate variables were organized in two configuration matrices.
Matrix N× p had monthly data (T) for stations (n) in its rows (N = n× T) and the variables
(p) in the columns. It was used to identify clusters of similar stations. Furthermore, monthly
climate variables within these clusters (Nc) were analyzed to discover seasonality within
the spatial cluster. For the second step, monthly climate variables were arranged in T× Nc
rows, and the variables (p) were set up in columns (Table 2).

Table 2. Multivariate panel data format for temporal cluster.

Month (t)

Station Index (i)

1 2 · · · Nc

x1, x2,. . . , xp x1, x2,. . . , xp · · · x1, x2,. . . , xp

Jan x11(1), x12(1), . . . , x1p(1) x11(2), x12(2), . . . , x1p(2) · · · x11(Nc), x12(Nc), . . . , x1p(Nc)
Feb x21(1), x22(1), . . . , x2p(1) x21(2), x22(2), . . . , x2p(2) · · · x21(Nc), x22(Nc), . . . , x2p(Nc)

...
...

... · · · ...
Dec x121(1), x122(1), . . . , x12p(1) x121(2), x122(2), . . . , x12p(2) · · · x121(Nc), x122(Nc), . . . , x12p(Nc)

2.4.1. Multivariate Cluster Analysis

Cluster analysis is an unsupervised learning technique to identify groups with similar
characteristics in the same group [23]. Agglomerative hierarchical clustering was used
in this research. The bottom-up hierarchical algorithm treats each sample as a single
cluster and then combines pair of clusters that are most similar until every cluster is
grouped into one single cluster. In the case of general cross-section data, block distance,
Euclidean distance, Minkowski distance, Chebychev distance, or Mahalanobis distance
are used to measure the distance between two vectors

(
x′i =

[
xi1, xi2, . . . , xip

])
and x′j =[

xj1, xj2, . . . , xjp
]
).

Cluster analysis of samples collected from multivariate panel data is often averaged
over time data into general cross-section data. Typical Euclidean distance is then calculated
for further grouping. However, this will result in information loss because the mean shows
the average change in the data but does not show the distributing characteristics of the
data, such as the standard deviation. Therefore, in this study, a Euclidean distance timed
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and spaced (drk) is used to calculate the distance between sample r and sample k [15–18],
as in Equation (3).

drk =

√
∑T

t=1 ∑p
j=1

(
xrj(t)− xkj(t)

)2
, (3)

The distance should satisfy some conditions as follows:

1. drk ≥ 0, i f xrj(t) = xkj(t) then drk = 0
2. drk = dkr, to all xrj(t), xrj(t)
3. drk ≤ drl + dkl , to all xrj(t), xkj(t), xl j(t)

A distance matrix for spatial grouping analysis contains a distance value between
every pair of samples as in Equation (4a), which is the symmetric matrix (n× n) with all
diagonal values of zero. At the same time, a distance matrix for temporal grouping analysis
within the spatial cluster contains a distance value between every pair of months as in
Equation (4b), which is the asymmetric matrix (12× 12) with all diagonal values of zero.

0
d21
d31

...
dn1

0
d32

...
dn2

0
...
· · ·

. . .
dn(n−1)

0

, (4a)


0

d21
d31

...
d121

0
d32

...
dT2

0
...
· · ·

. . .
d12(11)

0

, (4b)

Average linkage, which is the unweighted pair group method using arithmetic aver-
ages (UPGMA), was used to average the distance values between pairs of clusters [24]. It is
widely used because it compromises the extreme cases [25].

The multivariate cluster analysis used in this paper was implemented directly using
the “philanthropy”, “cluster”, “factoextra” and “FactoMineR” package in R programming
language and RStudio [26].

2.4.2. Cluster Validation

This paper employed silhouette width (Si) [27] to determine the optimal number of
clusters, and it also could be used to validate consistency within clusters of data. The
silhouette measures the similarity of i-th observation to its own cluster and the similarity
of observation to other clusters as Equation (5).

Si =
bi − ai

max(bi, ai)
(5)

where ai is the average distance between i and all other observations in the same cluster,
and bi is the average distance between i and the observations in the “nearest neighboring
cluster” as Equation (6).

bi = min
Ck ,∈C,\C(i)

∑
j∈Ck

d(i, j)
n(Ck)

(6)

where C(i) is the cluster containing observation i, d(i, j) is the Euclidean distance timed
and spaced between observations i and j, and n(C) is the cardinality of cluster C.

Si ranges from −1 to +1, where a high value indicates that the observation is well
matched to its own cluster, while a low or negative value indicates that observation is
poorly matched to its own cluster. The average of observation’s silhouette in a cluster was
obtained to determine whether the clustering configuration is appropriate. The advantage
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of using silhouette only depends on the actual partition of the observations, not on the
clustering algorithm that was used, and no need to access the original data. This paper
implemented this function using the silhouette function in package cluster [28].

3. Results

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Variable Characteristics

Figure 4 shows boxplots of seven variables; they are varied by month but have the
same pattern each year.

Rainfalls were more varied than others in 1997 and 2007 for the El Niño and La Niña
phenomenon, respectively. The average rainfall in La Niña phenomenon was higher than
that in El Niño phenomenon and the normal average, except for 1999, which was affected
by the 1997–1998 very strong El Niño. Furthermore, all factors in each year had a pattern
in relation to the season. For example, rainfall was very high and more fluctuated from
August to September. It can be concluded that climate factors were different from month
to month and year to year. Obviously, the rainfall between El Niño and La Niña differed
significantly, while other climate factors were similar. This suggested the rainfall should be
more focused to analyse the impact of the ENSO phenomenon on spatial clustering.
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3.2. Spatial Clustering

The average silhouette width was used to determine a suitable number of clusters
(k). It suggested the value 4 or 5 for k, due to their maximum width (Figure 5). So, a fair
comparison between the ENSO events was achieved for choosing five spatial clusters (SCs)
close to height 12.5 (distance between clusters) for all datasets in this study.
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Figure 5. The average silhouette width for spatial cluster analysis by number of clusters and years.

Five spatial clusters, SC1, SC2, SC3, SC4, and SC5, which were sorted according to
the amount of precipitation from ascending to high, were formed and displayed on a
spatial map in Figure 6. It was obvious that precipitation was the only meteorological
data to noticeably differ between clusters. Spatial clustering in El Niño events was mostly
grouped in SC2 (yellow) with 62–66 members except in 1982, which mostly in SC1 (red)
with 59 members; however, its average rainfalls were nearly the same to SC2, whereas
spatial clustering in La Niña events was mostly grouped in SC1 (red) with 61–83 members.
While SC5 (pink) was the least populated member with one member, which was the
station in the east for both events (Table 3). These showed most areas in Thailand had low
precipitation rate.
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Table 3. Number of members and mean of monthly climate factors by ENSO events, years and SCs.

Year SC n C
(n = 26)

E
(n = 15)

N
(n = 16)

NE
(n = 28)

S
(n = 27)

W
(n = 12) Rainfall Relative

Humidity
Solar Down

Welling Temperature Max
Temperature

Min
Temperature Horizontal Wind

El Niño

1982 1 59 23 5 1 26 - 4 2.24 64.56 178.31 27.47 32.46 23.01 3.08
2 23 1 - 15 2 - 5 2.25 69.52 182.24 25.11 31.42 19.82 1.97
3 12 2 4 - - 5 1 3.48 75.41 188.43 27.26 29.32 25.38 4.14
4 29 - 5 - - 22 2 4.28 87.29 142.18 25.78 29.74 22.79 1.99
5 1 - 1 - - - - 7.10 78.55 163.36 25.90 28.25 24.00 3.18

Total
x 2.88 71.96 171.45 26.60 31.30 22.60 2.72

s 3.23 14.26 34.31 2.44 2.56 3.24 1.11

1997 1 20 1 - 12 2 - 5 1.72 66.95 191.63 25.64 32.24 20.07 2.07
2 62 23 5 4 26 - 4 1.97 62.51 184.51 28.06 33.29 23.30 3.07
3 13 2 4 - - 6 1 4.29 76.00 183.52 27.54 29.60 25.67 4.00
4 28 - 5 - - 21 2 6.58 87.91 136.45 25.96 29.87 23.00 1.85
5 1 - 1 - - - - 11.06 79.55 149.37 26.18 28.38 24.37 3.32

Total
x 3.29 70.51 174.42 27.13 31.92 22.97 2.73

s 4.60 14.76 39.19 2.31 2.65 3.15 1.10

2015 1 24 1 - 15 2 - 6 1.37 60.61 195.98 26.79 33.67 20.81 2.12
2 66 25 9 1 26 - 5 1.40 57.90 191.31 29.24 34.31 24.50 3.48
3 27 - 5 - - 21 1 4.41 86.58 140.25 26.66 30.76 23.55 1.92
4 6 - - - - 6 - 5.44 80.10 163.10 27.84 29.45 26.47 3.60
5 1 - 1 - - - - 5.64 76.31 167.87 26.99 29.60 24.91 3.21

Total
x 2.28 65.89 179.54 28.12 33.14 23.68 2.88

s 2.85 15.93 36.99 2.34 2.73 3.02 1.22

La Niña

1999 1 83 23 9 13 27 3 8 2.33 62.44 192.34 27.38 33.02 22.31 2.99
2 6 - - 3 - - 3 3.04 73.09 184.80 24.29 31.00 19.03 1.83
3 12 2 4 - - 5 1 3.21 72.95 197.32 27.81 30.03 25.71 4.41
4 22 1 1 - 1 19 - 5.55 88.22 142.53 26.12 30.09 23.13 1.99
5 1 - 1 - - - - 14.74 76.97 161.99 26.40 28.80 24.42 3.79

Total
x 3.12 68.66 183.38 27.04 32.08 22.64 2.90

s 3.89 16.07 34.45 2.09 2.28 3.16 1.16

2007 1 61 23 6 2 26 - 4 2.29 64.40 181.10 27.71 32.82 23.08 3.05
2 22 1 - 14 2 - 5 2.86 70.56 187.98 25.10 31.40 19.78 1.96
3 12 2 4 - - 5 1 4.52 74.00 184.46 27.87 29.99 25.89 4.16
4 28 - 4 - - 22 2 7.45 87.43 139.07 26.22 30.18 23.21 1.91
5 1 - 1 - - - - 9.87 77.86 162.88 26.42 28.75 24.43 3.33

Total
x 3.83 71.73 173.01 26.92 31.67 22.81 2.71

s 5.38 14.20 35.00 2.33 2.46 3.15 1.12

2011 1 67 23 5 7 26 - 6 1.99 62.83 177.59 27.60 32.78 22.93 3.00
2 15 1 - 9 2 - 3 2.33 68.55 181.98 24.91 31.09 19.76 1.95
3 12 2 4 - - 5 1 3.85 74.46 178.97 27.75 29.76 25.84 4.22
4 29 - 5 - - 22 2 5.51 87.37 132.16 26.20 29.91 23.45 2.03
5 1 - 1 - - - - 11.69 77.86 155.50 26.31 28.65 24.33 3.21

Total
x 3.11 70.51 167.45 26.95 31.58 22.96 2.76

s 3.96 15.88 37.61 1.88 2.16 2.92 1.34

n—number of members, C—Central, E—East, N—North, NE—Northeast, S—South, W—West.
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In La Niña event, SC1 (red) was found mostly in Northeast and Central areas, which
had the least amount of rainfall, and SC2 (yellow) was widely distributed in the North,
which had low rainfall. SC3 (green) with moderate rainfall were distributed among all
regions, except North and Northeast, while SC4 (blue) are in the south which had quite
a lot of rainfall. Lastly, SC5 (pink) with the highest rainfall had one station in the East
(Table 3).

While, spatial clustering in El Niño was differently distributed by years. In 1997 and
2015, SC1 (red) was found mostly in the North and SC2 (yellow) was widely distributed in
the Northeast, and vice versa in 1982. In 1982 and 1997, SC3 (green) with moderate rainfalls
were distributed among all regions, except North and Northeast, and SC4 (blue) were in
the South which had quite a lot of rainfall, and vice versa in 2015. In every year, SC5 (pink)
with the highest rainfall had one station in the East (Table 3).

The spatial clistering extracted the drought areas in the North region, classified as SC1
with less rainfall than SC2 and in the South region classified as SC3 with less rainfall than
SC4 for the El Niño event. These areas would be at risk to be the most drought-prone areas.
This suggested the effect of ENSO on spatial clustering.

The distribution of SGs over six regions, showing a clear trend in the redistribution of
SGs observed in this study, is shown in Table 4. More diverse climate was found in the East
and West than other regions. All regions had a heterogenous meteorological distribution.
Every year for both El Niño and La Niña events had 2–4 SCs. However, less distribution
for El Niño (2015) in Central, East, and West regions and for La Niña (1999) in the West,
and more distribution for La Niña (1999) in the South were noted. These would be due to
changes in TGs and intensity of climate factors.

Table 4. The distribution of SGs over six regions for ENSO.

Region Number of Members
El Niño La Niña

1982 1997 2015 1999 2007 2011

Central 26 3 3 2 3 3 3
East 15 4 4 3 4 4 4

North 16 2 2 2 2 2 2
Northeast 28 2 2 2 2 2 2

South 27 2 2 2 3 2 2
West 12 4 4 3 3 4 4

3.3. Temporal Clustering

After spatial cluster analysis had been obtained, a Euclidean distance timed and
spaced with average linkage was next applied to the monthly climate factors for each SC to
find temporal clusters (TCs) within each SG. Normally, Thailand has three seasons, summer
(February–May), rainy (May–October), and winter (October–February). To compare tempo-
ral clusters of the ENSO phenomenon, three TCs within each SC were compared in this
study. TC1, TC2, and TC3, which were sorted according to the amount of ascending precip-
itation, were represented by orange, blue, and green, respectively. TCs corresponding to
each SG is shown in the dendrogram to depict the groups of clusters and their combination,
indicating dissimilarity in the vertical scale and the samples (months) in clustering order
on the horizontal axis. They help to see how long each season lasts and the different period
of seasons in each spatial grouping (Figure 7).
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For example, in 1982, TC1 and TC2 in SC1 depicted a very dry season with average
precipitation intensity of less than 2 mm/day (Table 5). They were composed of three
months. Months of TC1 were December and of TC2 were January and February. TC3, on
the other hand, was a slightly wet season with an average precipitation of 2 mm/day or
more for 9 months, March–November.
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Table 5. Number of members (months) and mean of monthly climate factors by ENSO events, years, SCs and TCs.

Year
SCs TC1 TC2 TC3

SC n n RF RH SDW Temp Wind n RF RH SDW Temp Wind n RF RH SDW Temp Wind

El Niño

1982 1 59 2 0.45 51.90 217.32 25.64 3.53 1 0.64 56.18 203.21 22.77 3.91 9 2.82 68.30 166.87 28.39 2.89
2 23 2 0.33 47.45 233.93 27.23 2.18 2 0.41 60.00 199.95 20.75 2.03 8 3.19 77.42 164.89 25.67 1.90
3 12 1 0.78 67.94 199.38 25.38 5.82 2 1.08 70.43 202.37 26.12 5.22 9 4.31 77.35 184.12 27.72 3.71
4 29 2 1.91 85.07 145.13 24.52 2.63 1 2.24 84.68 139.28 24.04 2.92 9 5.03 88.07 141.84 26.26 1.75
5 1 2 1.21 68.36 216.51 24.63 4.14 1 4.50 71.78 206.18 23.65 5.33 9 8.70 81.57 146.79 26.43 2.72

1997 1 20 4 1.53 66.75 193.05 25.77 2.02 7 1.78 67.14 190.66 25.57 2.09 1 2.07 66.46 192.71 25.56 2.24
2 62 4 1.91 62.18 185.43 28.02 3.03 4 1.97 62.49 184.67 28.11 3.11 4 2.02 62.85 183.43 28.04 3.06
3 13 5 3.38 74.61 188.82 27.43 3.96 2 3.82 76.89 186.10 27.56 4.19 5 5.39 77.02 177.19 27.64 3.95
4 28 3 6.42 87.73 136.62 25.90 1.83 4 6.49 87.92 134.76 25.97 1.84 5 6.75 88.00 137.71 25.99 1.87
5 1 2 0.01 70.45 221.12 24.34 5.25 4 4.12 77.73 163.98 26.08 3.25 6 19.37 83.80 115.71 26.87 2.72

2015 1 24 3 0.26 45.56 237.11 27.97 2.23 3 0.34 54.87 192.98 23.42 2.21 6 2.44 71.01 176.91 27.88 2.01
2 66 3 0.44 54.75 176.82 26.57 3.98 8 1.33 56.87 200.20 30.27 3.42 1 4.88 75.60 163.62 28.95 2.52
3 27 2 1.79 85.62 151.94 25.27 2.08 9 4.88 87.07 142.13 27.14 1.74 1 5.49 84.11 100.02 25.09 3.15
4 6 2 2.13 78.12 179.29 26.77 4.22 1 5.84 82.57 108.83 26.40 5.88 9 6.14 80.27 165.54 28.24 3.21
5 1 3 0.30 69.08 203.24 25.66 4.22 3 1.33 71.78 185.00 27.42 3.68 6 10.46 82.20 141.63 27.44 2.46

La Niña

1999 1 83 5 0.17 49.95 213.89 25.78 3.36 2 1.86 61.83 187.93 29.51 2.70 5 4.68 75.17 172.57 28.13 2.74
2 6 5 0.11 59.90 219.48 22.68 1.87 2 1.16 65.64 196.45 27.46 1.62 5 6.73 89.27 145.45 24.64 1.87
3 12 4 1.69 65.81 199.37 26.91 5.33 2 3.70 77.43 184.96 28.20 3.54 6 4.06 76.22 200.08 28.27 4.08
4 22 1 4.61 89.13 103.48 24.90 2.97 3 4.77 87.38 140.23 25.08 2.39 8 5.96 88.42 148.28 26.67 1.71
5 1 4 0.85 64.87 225.47 25.49 4.78 6 14.34 81.83 141.38 26.80 2.92 2 43.70 86.56 96.88 27.01 4.43

2007 1 61 6 2.22 64.76 181.64 27.62 3.10 2 2.33 63.08 181.16 27.88 3.04 4 2.38 64.51 180.27 27.76 2.98
2 22 2 2.41 70.04 188.90 25.29 1.95 8 2.95 70.70 186.97 25.02 1.95 2 2.95 70.53 191.07 25.26 2.01
3 12 6 2.12 70.71 197.18 28.12 4.51 1 2.83 69.34 211.15 26.99 4.00 5 7.74 78.87 163.87 27.76 3.76
4 28 4 7.09 87.45 140.04 26.20 1.89 4 7.19 87.33 139.16 26.24 1.91 4 8.06 87.52 138.01 26.23 1.92
5 1 1 0.06 64.49 215.43 24.41 5.29 4 2.51 72.80 196.31 25.93 4.26 7 15.47 82.66 136.28 26.99 2.52

2011 1 67 1 0.02 45.31 222.12 23.50 4.01 5 0.43 52.37 188.69 27.67 3.72 6 3.61 74.47 160.92 28.22 2.23
2 15 2 0.03 50.35 210.01 21.59 2.51 4 0.27 54.41 210.47 25.88 2.16 6 4.47 84.04 153.64 25.37 1.63
3 12 1 1.66 65.51 186.20 25.98 6.57 8 3.84 77.03 184.95 27.93 3.56 3 4.62 70.56 160.61 27.86 5.20
4 29 1 3.77 84.22 117.80 24.59 3.30 8 5.00 87.95 142.08 26.45 1.69 3 7.42 86.86 110.50 26.10 2.50
5 1 1 0.10 67.75 214.62 24.21 6.09 4 1.28 71.65 182.57 26.23 3.96 7 19.29 82.86 131.58 26.66 2.38

n—number of members, RF: rainfall, RH: relative humidity, SWD: solar downwelling, Temp: temperature, Wind: horizontal wind.
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TC1 and TC2 in SC2, 1982 depicted a very dry season with average precipitation inten-
sity of less than 2 mm/day. TC1 was composed of February–March. TC2 was December
and January. TC3, on the other hand, was a wet season with an average precipitation of
4.51 mm/day for 8 months, April–November.

TC1 and TC2 in SC3, 1982 was a dry season for three months, December (TC1) and
January–February (TC2), with an average precipitation of less than 2 mm/day, while
TC3 was a wet season with an average precipitation of 4 mm/day or more for 9 months,
March–November.

TCs in SC4 and SC5, 1982 were the same. TC1 was a dry season, January–February,
with an average precipitation of less than 2 mm/day, while TC2 and TC3 were a wet season
with an average precipitation of 2 mm/day or more for 10 months, December (TC2) and
March–November (TC3).

TCs in each SC in La Niña were similar to those in El Niño. Nevertheless, there was
higher average precipitation intensity in La Niña phenomenon, than those in El Niño
phenomenon. Furthermore, the rainy season was a longer period in SC4 and SC5 for both
events of ENSO.

4. Discussion

The highest average rainfall in 1982, 1997, and 2015 (5.64–11.06 mm/day) was less than
that of in 1999, 2007, and 2011 (9.87–14.74 mm/day). This corresponds to the Oceanic Niño
Index (ONI), showing that ONI in 1982, 1997, and 2015 was greater than 0.5 ◦C, meaning
that El Niño occurred, and in 1999, 2007, and 2011 was below −0.5 ◦C, meaning that La
Niña occurred [29].

Lower rainfall than usual was found, so there was a widespread drought in almost all
regions of Thailand in 1982 and 1997, especially in Northeast [30]. There also was a severe El
Niño effect in 2015, causing very low precipitation across the country (x = 2.28 mm/day).

Five spatial clusterings were formed. SC5 with the highest average precipitation was
formed by only one station in Khlong Yai District, Trat Province, in every year whether there
was an El Niño or La Niña phenomenon (x = 5.64− 14.74 mm/day). The topography of
Khlong Yai District is a coastline fully influenced by the southwest monsoon from the Gulf
of Thailand; consequently, it has abundant rainfall for most of the year. This is consistent
with the Trat Agricultural Meteorological Document that reports that Khlong Yai District,
Trat Province, is the wettest area in Thailand [31].

There were approximately 80 stations in SC1 and SC2 with low average precipitation
and especially low in 2015, mostly in the Central, North, and Northeast. It was consistent
with a report that rainfall in these three regions when El Niño occurred was less than the
average 30 years of rainfall of normal years.

There were three TCs in each SC. When the El Niño phenomenon occured, Thailand
rainfall tended to be lower than normal, especially during the summer and early rainy
season (mid-February–June). The dry season in El Niño was longer and less than average
rainfall than TCs for the La Niña phenomena.

Most stations in the south were clustered into SC3 and SC4 with moderate and high
rainfall, respectively, for both El Niño and La Niña phenomena. Usually, rainfall in Thailand,
especially in the southeast coast, is high during October–December. In addition, some
parts of Thailand were not affected by the ENSO phenomenon (El Niño and La Niña), such
as Trat in SC5 with the highest rainfall, and Tak, Chiang Rai, Chiang Mai, Phayao, and
Lampang in SC1 with the least rainfall. This may be due to their topography.

There are 35 provinces with more than one meteorological station of TMD. Of these, sta-
tions in 34 provinces were grouped into different SCs. This may be due to their topography
affecting a different climate.

Spatial clusters were similar for both El Niño and La Niña except in 2015, when severe
El Niño occurred. This might be the Euclidian distance matrix tending to cluster the samples
with climate variables having similar mean. This suggests that other similarity matrices,
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such as correlation, may be possible to group samples based on trends and variation over
time [11].

5. Conclusions

This paper employed multivariate cluster analysis with the average linkage to analyze
the spatial and temporal grouping, using climate factors which are rainfall, relative humid-
ity, average temperature, maximum temperature, lowest temperature, solar radiation, and
wind speed at 124 locations over Thailand from CCAM (10 km), for the years 1982, 1997,
and 2015 (El Niño) and 1999, 2007, and 2011 (La Niña).

Five SCs with a distance between a cluster of 12.5 were compared. It was observed
that SCs were similar for both El Niño and La Niña except in 2015, when severe El Niño
occurred. This indicated the more severe El Niño, the more spatial variation. The main
difference between SC1–SC5 was the ascending amount of precipitation, where SC1 had
the least amount of rainfall and SC5 had the heaviest rainfall.

In addition, three TC patterns in each SC were similar for both El Niño and La Niña.
Nevertheless, the average precipitation intensity in La Niña was higher than that in El Niño.

This paper implements cluster analysis on atmospheric panel data. Even multivariable
panel data is more complicated, but it is practical to cluster. Cluster results arealso more
realistic than cross-sectional data and avoid information loss.

Future studies may focus on using future climate factors from the weather forecast
models for clustering to study the spatial and temporal distributions. Other than the
correlation distance suggested, the robust distance, for example the absolute distance or
the Canberra distance to deal with outliers, should be further studied. Furthermore, as
there might be extreme whether events in the ENSO phenomenon, for example less or
abundant precipitation, which may affect the clustering, outliers should be detected and
handled prior.
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