Interval-Based Computation of the Uncertainty in the Mechanical Properties and the Failure Analysis of Unidirectional Composite Materials
Abstract
:1. Introduction
2. Interval Analysis
Optimal Mean Value Form
3. The Proposed Branch-and-Bound Algorithm
Algorithm 1. ComputeRange |
Input: objective function , starting box , and tolerance Output: enclosure of the range 1: ; 2: ; 3: ; 4: return ; |
- Function range test: A box is discarded from further consideration when the lower bound is greater than the current upper bound . When the range test fails to remove it, it is stored in the working list with candidate sub-boxes for further investigation.
- Cut-off test: The function range test is applied for all candidate sub-boxes in the working list when is improved. Of course, the greater the improvement in is, the more influential the cut-off test is.
- Monotonicity test: Determines whether the objective function is strictly monotone in an entire sub-box or at least one coordinate direction, in which case cannot contain a global minimizer. Therefore, the whole sub-box is discard or its dimension reduced as much as possible when .
Algorithm 2. GlobalMinimize |
Input: objective function , starting box , and tolerance Output: enclosure for the global minimum value 01: ; /* initialize working and result list */ 02: /* apply monotonicity test */ 03: ; /* compute optimal center using Equation (2) */ 04: ; /* initialize upper bound for global minimum */ 05: ; /* optimal mean value form */ 06: ; /* optimal component for subdividing the box */ 07: if then ; /* no subdivision required, append to the result list */ 08: else ; /* append to working list */ 09: while do 10: ; /* remove a triple from the head of the working list */ 11: if then Bisect ; /* subdivide into two subboxes */ 12: for to NBoxes do /* number of boxes is 1 if */ 13: if then next ; /* box is discarded due to function range test */ 14: 15: if then next ; /* box is discarded due to monotonicity test */ 16: ; /* compute optimal center using Equation (2) */ 17: if then /* update upper bound if possible */ 18: ; ; /* and apply cut-off test */ 19: ; /* optimal mean value form for box */ 20: if then next ; /* box is discarded due to function range test */ 21: /* optimal component for subdividing */ 22: if or then ; 23: else ; 24: ; /* set to the first element of the result list */ 25: ; /* construct the global minimum enclosure. */ 26: return ; |
4. Uncertainty Computation in the Elastic Properties and Strengths
- E11 = longitudinal Young’s modulus (fibers direction);
- E22 = transverse Young’s modulus (normal to fibers);
- E33 = normal Young’s modulus (normal to lamina);
- G12 = in-plane shear modulus;
- G13 = out-of-plane shear modulus;
- G23 = out-of-plane shear modulus;
- ν12 = in-plane Poisson’s ratio;
- ν13 = out-of-plane Poisson’s ratio;
- ν23 = out-of-plane Poisson’s ratio.
- F1t = longitudinal tensile strength (fibers direction);
- F1c = longitudinal compressive strength (fibers direction);
- F2t = transverse tensile strength (normal to fibers);
- F2c = transverse compressive strength (normal to fibers);
- F12 = in-plane shear strength;
- F13 = out-of-plane shear strength;
- F23 = out-of-plane shear strength.
Sensitivity Analysis of the Elastic Properties
5. Uncertainty Computation in the Failure Assessment
5.1. Methodology
5.2. Results
- Matrix Tensile Failure (MTF);
- Matrix Compressive Failure (MCF);
- Fiber Tensile Failure (FTF);
- Fiber Compressive Failure (FCF);
- Fiber-Matrix Shear-Out (FMS);
- Delamination in Tension (DT);
- Delamination in Compression (DC).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Micromechanics Relations
Appendix B. The Mathematical Expressions of the Hashin-Type Failure Criteria
Appendix C. Analytic Expressions of the Uncertainty for Hashin-Type Failure Criteria
References
- Pantelakis, S.; Tserpes, K. (Eds.) Revolutionizing Aircraft Materials and Processes; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-35345-2. [Google Scholar]
- Chamis, C. Simplified Composite Micromechanics Equations for Strength, Fracture Toughness, Impact Resistance and Environmental Effects; Lewis Research Center, National Aeronautics and Space Administration: Cleveland, OH, USA, 1984.
- Hinton, M.; Soden, P.; Kaddour, A.-S. Failure Criteria in Fibre-Reinforced-Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-044475-8. [Google Scholar]
- Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Tserpes, K.I.; Papanikos, P.; Kermanidis, T. A Three-Dimensional Progressive Damage Model for Bolted Joints in Composite Laminates Subjected to Tensile Loading: Failure of tensile-loaded bolted composite joints. Fatigue Fract. Eng. Mater. Struct. 2001, 24, 663–675. [Google Scholar] [CrossRef]
- Tserpes, K.I.; Labeas, G.; Papanikos, P.; Kermanidis, T. Strength Prediction of Bolted Joints in Graphite/Epoxy Composite Laminates. Compos. Part B Eng. 2002, 33, 521–529. [Google Scholar] [CrossRef]
- Kolks, G.; Tserpes, K.I. Efficient Progressive Damage Modeling of Hybrid Composite/Titanium Bolted Joints. Compos. Part Appl. Sci. Manuf. 2014, 56, 51–63. [Google Scholar] [CrossRef]
- Stamopoulos, A.G.; Tserpes, K.I.; Dentsoras, A.J. Quality Assessment of Porous CFRP Specimens Using X-Ray Computed Tomography Data and Artificial Neural Networks. Compos. Struct. 2018, 192, 327–335. [Google Scholar] [CrossRef]
- Murthy, P.L.N.; Mital, S.K.; Shah, A.R. Probabilistic Micromechanics/Macromechanics for Ceramic Matrix Composites. J. Compos. Mater. 1998, 32, 679–699. [Google Scholar] [CrossRef]
- Stock, T.A.; Bellini, P.X.; Murthy, P.L.; Chamis, C.C. A Probabilistic Approach to Composite Micromechanics. In Proceedings of the 29th Structures, Structural Dynamics and Materials Conference, Williamsburg, VA, USA, 18–20 April 1988. [Google Scholar]
- Chen, N.; Yu, D.; Xia, B.; Liu, J.; Ma, Z. Interval and Subinterval Homogenization-Based Method for Determining the Effective Elastic Properties of Periodic Microstructure with Interval Parameters. Int. J. Solids Struct. 2017, 106–107, 174–182. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Su, H.; Lin, G. Reliability Estimation of Fatigue Crack Growth Prediction via Limited Measured Data. Int. J. Mech. Sci. 2017, 121, 44–57. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Yang, Y.; Wang, X.; Qiu, Z. A Novel Method of Non-Probabilistic Reliability-Based Topology Optimization Corresponding to Continuum Structures with Unknown but Bounded Uncertainties. Comput. Methods Appl. Mech. Eng. 2017, 326, 573–595. [Google Scholar] [CrossRef]
- Alazwari, M.A.; Rao, S.S. Modeling and Analysis of Composite Laminates in the Presence of Uncertainties. Compos. Part B Eng. 2019, 161, 107–120. [Google Scholar] [CrossRef]
- Alazwari, M.A.; Rao, S.S. Interval-Based Uncertainty Models for Micromechanical Properties of Composite Materials. J. Reinf. Plast. Compos. 2018, 37, 1142–1162. [Google Scholar] [CrossRef]
- Rao, S.S.; Alazwari, M.A. Failure Modeling and Analysis of Composite Laminates: Interval-Based Approaches. J. Reinf. Plast. Compos. 2020, 39, 817–836. [Google Scholar] [CrossRef]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009; ISBN 978-0-89871-669-6. [Google Scholar]
- Hansen, E.R.; Walster, G.W. Global Optimization Using Interval Analysis. In Monographs and Textbooks in Pure and Applied Mathematics, 2nd ed.; Revised and Expanded; Marcel Dekker: New York, NY, USA, 2004; ISBN 978-0-8247-4059-7. [Google Scholar]
- Ratschek, H.; Rokne, J. Computer Methods for the Range of Functions; Ellis Horwood Series in Mathematics and Its, Applications; Horwood, E., Ed.; Halsted Press: Chichester, UK; New York, NY, USA, 1984; ISBN 978-0-85312-703-1. [Google Scholar]
- Krämer, W. High Performance Verified Computing Using C-XSC. Comput. Appl. Math. 2013, 32, 385–400. [Google Scholar] [CrossRef]
- Kulisch, U.; Hammer, R.; Hocks, M.; Ratz, D. C++ Toolbox for Verified Computing I; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 978-3-642-79653-1. [Google Scholar]
- Caprani, O.; Madsen, K. Mean Value Forms in Interval Analysis. Computing 1980, 25, 147–154. [Google Scholar] [CrossRef]
- Rall, L.B. Mean Value and Taylor Forms in Interval Analysis. SIAM J. Math. Anal. 1983, 14, 223–238. [Google Scholar] [CrossRef]
- Baumann, E. Optimal Centered Forms. BIT 1988, 28, 80–87. [Google Scholar] [CrossRef]
- Sotiropoulos, D.G.; Grapsa, T.N. Optimal Centers in Branch-and-Prune Algorithms for Univariate Global Optimization. Appl. Math. Comput. 2005, 169, 247–277. [Google Scholar] [CrossRef]
- Ratz, D. Automatische Ergebnisverifikation Bei Globalen Optimierungsproblemen. Ph.D. Dissertation, Universität Karlsruhe (TH), Institute for Applied Mathematics, Karlsruhe, Germany, 1992. [Google Scholar] [CrossRef]
- Ratz, D.; Csendes, T. On the Selection of Subdivision Directions in Interval Branch-and-Bound Methods for Global Optimization. J. Glob. Optim. 1995, 7, 183–207. [Google Scholar] [CrossRef]
- Soden, P. Lamina Properties, Lay-up Configurations and Loading Conditions for a Range of Fibre-Reinforced Composite Laminates. Compos. Sci. Technol. 1998, 58, 1011–1022. [Google Scholar] [CrossRef]
Property | Symbol | Nominal Value | Uncertainty Interval (Level 5%) |
---|---|---|---|
Fiber volume fraction | Vf | 0.60 | [0.569, 0.631] |
Longitudinal modulus of the fibers (GPa) | Ef11 | 225 | [213.750, 236.250] |
Transverse modulus of the fibers (GPa) | Ef22 | 15 | [14.250, 15.750] |
In-plane shear modulus of the fibers (GPa) | Gf12 | 15 | [14.250, 15.750] |
Transverse shear modulus of the fibers (GPa) | Gf23 | 7 | [6.649, 7.351] |
Poisson’s ratio of the fibers | νf12 | 0.20 | [0.190, 0.211] |
Poisson’s ratio of the fibers | νf23 | 0.20 | [0.190, 0.211] |
Matrix volume fraction | Vm | 0.40 | [0.380, 0.421] |
Young’s modulus of the matrix (GPa) | Em | 4.20 | [3.989, 4.411] |
Shear modulus of the matrix (GPa) | Gm | 1.567 | [1.488, 1.646] |
Poisson’s ratio of the matrix | νm | 0.34 | [0.323, 0.358] |
Property | Symbol | Nominal Value | Uncertainty Interval (Level 5%) |
---|---|---|---|
Fiber volume fraction | Vf | 0.60 | [0.569, 0.631] |
Longitudinal modulus of the fibers (GPa) | Ef11 | 80 | [76.000, 84.000] |
Transverse modulus of the fibers (GPa) | Ef22 | 80 | [76.000, 84.000] |
In-plane shear modulus of the fibers (GPa) | Gf12 | 33.33 | [31.663, 34.997] |
Transverse shear modulus of the fibers (GPa) | Gf23 | 33.33 | [31.663, 34.997] |
Poisson’s ratio of the fibers | νf12 | 0.20 | [0.190, 0.211] |
Poisson’s ratio of the fibers | νf23 | 0.20 | [0.190, 0.211] |
Matrix volume fraction | Vm | 0.40 | [0.380, 0.421] |
Young’s modulus of the matrix (GPa) | Em | 3.25 | [3.087, 3.413] |
Shear modulus of the matrix (GPa) | Gm | 1.24 | [1.177, 1.303] |
Poisson’s ratio of the matrix | νm | 0.35 | [0.332, 0.368] |
Property | Symbol | Nominal Value | Uncertainty Interval (Level 5%) |
---|---|---|---|
Longitudinal tensile strength (MPa) | Fft | 3350 | [3182.5, 3517.5] |
Longitudinal compressive strength (MPa) | Ffc | 2500 | [2375, 2625] |
Tensile strength (MPa) | Fmt | 69 | [65.549, 72.451] |
Compressive strength (MPa) | Fmc | 250 | [237.5, 262.5] |
Shear strength (MPa) | Fms | 50 | [47.5, 52.5] |
Stress concentration factor | kσ | 1.4 | [1.329, 1.470] |
Stress intensity factor | kτ | 1.0 | [0.949, 1.051] |
Property | Symbol | Nominal Value | Uncertainty Interval (Level 5%) |
---|---|---|---|
Longitudinal tensile strength (MPa) | Fft | 21,500 | [2042.5, 2257.5] |
Longitudinal compressive strength (MPa) | Ffc | 1450 | [1377.5, 1522.5] |
Tensile strength (MPa) | Fmt | 80 | [76.0, 84.0] |
Compressive strength (MPa) | Fmc | 120 | [114.0, 126.0] |
Shear strength (MPa) | Fms | 60 | [57.0, 63.0] |
Stress concentration factor | kσ | 1.82 | [1.728, 1.912] |
Stress intensity factor | kτ | 1.0 | [0.949, 1.051] |
Elastic Property | Nominal Value | Interval Range | mid ± rad | Computed Uncertainty Level (%) |
---|---|---|---|---|
E11 | 136.680 | [123.553, 150.470] | 137.011 ± 13.458 | 9.82 |
E22 = E33 | 9.496 | [8.742, 10.292] | 9.517 ± 0.775 | 8.14 |
G12 = G13 | 5.116 | [4.596, 5.690] | 5.143 ± 0.547 | 10.63 |
G23 | 3.929 | [3.595, 4.286] | 3.940 ± 0.345 | 8.75 |
v12 = v13 | 0.256 | [0.239, 0.274] | 0.256 ± 0.017 | 6.64 |
v23 | 0.385 | [0.351, 0.420] | 0.386 ± 0.034 | 8.79 |
Elastic Property | Nominal Value | Interval Range | mid ± rad | Computed Uncertainty Level (%) |
---|---|---|---|---|
E11 | 49.300 | [44.647, 54.183] | 49.415 ± 4.768 | 9.65 |
E22 = E33 | 12.652 | [11.199, 14.307] | 12.753 ± 1.554 | 12.18 |
G12 = G13 | 4.878 | [4.313, 5.522] | 4.917 ± 0.604 | 12.28 |
G23 | 4.878 | [4.313, 5.522] | 4.917 ± 0.604 | 12.28 |
v12 = v13 | 0.260 | [0.242, 0.278] | 0.260 ± 0.018 | 6.72 |
v23 | 0.373 | [0.338, 0.410] | 0.374 ± 0.036 | 9.55 |
Elastic Property | AS4/3501/6 | 21xK43-LY556 | ||||||
---|---|---|---|---|---|---|---|---|
FE | GE | NB | LL | FE | GE | NB | LL | |
E11 | 4 | 2 | 0 | 0 | 4 | 2 | 0 | 0 |
E22 = E33 | 42 | 22 | 10 | 4 | 10 | 6 | 2 | 1 |
G12 = G13 | 16 | 10 | 4 | 2 | 10 | 6 | 2 | 1 |
G23 | 30 | 16 | 7 | 3 | 10 | 6 | 2 | 1 |
v12 = v13 | 10 | 6 | 2 | 1 | 10 | 6 | 2 | 1 |
v23 | 62 | 34 | 16 | 4 | 369 | 198 | 98 | 7 |
Strengths | Nominal Value | Interval Range | mid ± rad | Computed Uncertainty Level (%) |
---|---|---|---|---|
F1t | 2037.600 | [1842.211, 2242.832] | 2042.521 ± 200.310 | 9.81 |
F2t | 49.286 | [44.591, 54.474] | 49.533 ± 4.941 | 9.98 |
F1c | 3.917 | [3.544, 4.330] | 3.937 ± 0.393 | 9.98 |
F2c = F3c | 178.571 | [161.564, 197.369] | 179.467 ± 17.902 | 9.98 |
F12 = F13 | 50.000 | [47.500, 52.500] | 50.000 ± 2.500 | 5.00 |
F23 | 50.000 | [45.238, 55.264] | 50.251 ± 5.013 | 9.98 |
Strengths | Nominal Value | Interval Range | mid ± rad | Computed Uncertainty Level (%) |
---|---|---|---|---|
F1t | 1322.0 | [1196.904, 1453.306] | 1325.105 ± 128.200 | 9.67 |
F2t | 43.956 | [39.769, 48.583] | 44.176 ± 4.407 | 9.98 |
F1c | 3.10 | [2.804, 3.427] | 3.116 ± 0.311 | 9.98 |
F2c = F3c | 65.934 | [59.654, 72.875] | 66.265 ± 6.610 | 9.98 |
F12 = F13 | 60.00 | [57.0, 63.0] | 60.000 ± 3.000 | 5.00 |
F23 | 60.00 | [54.285, 66.316] | 60.301 ± 6.015 | 9.98 |
Layer | ||||||
---|---|---|---|---|---|---|
0° | 1138.460 | 0.510 | 0.026 | −18.250 | −0.210 | 0.030 |
45° | 231.886 | 114.404 | −0.054 | 128.684 | 0.029 | −0.030 |
90° | 102.376 | −341.169 | −0.004 | −18.250 | 0.029 | −0.044 |
−45° | 231.820 | 114.404 | −0.014 | −165.185 | 0.013 | −0.044 |
0° | 1138.460 | 0.510 | 0.026 | −18.250 | 0.042 | −0.044 |
45° | 231.886 | 114.404 | −0.054 | 128.684 | 0.042 | −0.044 |
90° | 102.376 | −341.169 | −0.004 | −18.250 | 0.042 | 0.004 |
−45° | 2318.820 | 114.404 | −0.014 | −165.185 | 0.042 | 0.013 |
Stress Multiplication Factor | Lower Bound | Nominal Value of the Failure Criterion | Upper Bound | Probability of Failure |
---|---|---|---|---|
4.351535 | 0.66887 | 0.817096 | 0.99817 | 0.0% |
4.400102 | 0.683884 | 0.835437 | 1.020575 | 6.1% |
4.500221 | 0.71536 | 0.873888 | 1.067548 | 19.2% |
4.600318 | 0.747537 | 0.913196 | 1.115566 | 31.4% |
4.700291 | 0.78038 | 0.953318 | 1.164579 | 42.8% |
4.800035 | 0.813852 | 0.994208 | 1.214531 | 53.5% |
4.900427 | 0.848251 | 1.036229 | 1.265865 | 63.7% |
5.000417 | 0.883221 | 1.078948 | 1.31805 | 73.1% |
5.100407 | 0.918896 | 1.122529 | 1.371289 | 82.1% |
5.200316 | 0.955248 | 1.166937 | 1.425538 | 90.5% |
5.300061 | 0.992244 | 1.212132 | 1.480748 | 98.4% |
5.320771 | 1.000013 | 1.221623 | 1.492343 | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotiropoulos, D.G.; Tserpes, K. Interval-Based Computation of the Uncertainty in the Mechanical Properties and the Failure Analysis of Unidirectional Composite Materials. Math. Comput. Appl. 2022, 27, 38. https://doi.org/10.3390/mca27030038
Sotiropoulos DG, Tserpes K. Interval-Based Computation of the Uncertainty in the Mechanical Properties and the Failure Analysis of Unidirectional Composite Materials. Mathematical and Computational Applications. 2022; 27(3):38. https://doi.org/10.3390/mca27030038
Chicago/Turabian StyleSotiropoulos, Dimitris G., and Konstantinos Tserpes. 2022. "Interval-Based Computation of the Uncertainty in the Mechanical Properties and the Failure Analysis of Unidirectional Composite Materials" Mathematical and Computational Applications 27, no. 3: 38. https://doi.org/10.3390/mca27030038
APA StyleSotiropoulos, D. G., & Tserpes, K. (2022). Interval-Based Computation of the Uncertainty in the Mechanical Properties and the Failure Analysis of Unidirectional Composite Materials. Mathematical and Computational Applications, 27(3), 38. https://doi.org/10.3390/mca27030038